射线与物质的相互作用全解

合集下载

4 射线与物质的相互作用(γ射线 )

4 射线与物质的相互作用(γ射线 )

2009/9/21
22/46
电子对效应中正负电子对的动能


电子对效应中正负电子对取得的动能之 hv 2me c 2 ) ,∆是参加的原子 和应为( 核的反冲动能,通常,几乎可以忽略不 计。 2 ( hv 2 m c 正电子和负电子的总动能为 ), e 但正电子(或负电子)的动能可能是从 零到 (hv 2me c 2)范围内的各种数值。

无论在哪个能量范围,光电截面都是随γ射线能量的增加而 减少的,只不过在低能区减少得更快些 。
31/46
2009/9/21
原子的电子对效应截面

原子的电子对效应截面σp,可由理论计算得到。 它是吸收物质的原子序数Z和γ光子能量的函数。 当hν稍大于2mec2,但并不太大时, 当hν>>mec2时
P ∝Z 2 E r
2
me c 2 7 2 4 32 ( ) a th Z 5 hv
随着Z的增大,光电效应作用截面迅速增加
因为光电效应是光子和束缚电子的相互作用,Z越大则电子在 原子中束缚得越紧,越容易使原子核参与光电效应过程来满足 能量和动量守恒要求

应尽可能选用Z高的物质来探测γ射线或者防护γ射线,以提高
探测效率和获得更好的防护效果。

如果电子在原子中束缚愈紧,发生光电效 应的几率就愈大。当入射光子的能量大于 K壳层的电离能时,实验和理论都表明, 光电效应在K壳层发生的几率约为80%, 在L层发生的几率比较小一些,在M层发生 的几率更小。
2009/9/21
11/46
2 康普顿效应



康普顿效应是光子与核外电子发生非弹性碰撞, 光子把部分能量转给电子使其从原子内部反冲 出来,而能量降低了的光子沿着与原来运动方 向不同的角度散射出去。当光子的能量为0.5-1.0MeV时,该效应比较明显。 从原子中反冲出来的电子称康普顿电子或反冲 电子。能量变低后的光子称为散射光子,原来 的光子称为入射光子。 康普顿效应中光子只是损失部分能量,运动方 向发生变化,康普顿效应发生在束缚得最松的 外层电子上。

射线与物质的相互作用全解

射线与物质的相互作用全解

射线与物质的相互作用全解1.α射线与物质相互作用:α射线是由两个质子和两个中子组成的氦核,在与物质相互作用时,主要通过库仑相互作用与物质中的原子核和电子发生碰撞。

-α粒子与原子核碰撞:由于α粒子具有正电荷,与带正电荷的原子核发生库仑力相互作用。

当α粒子的动能较高时,它能够克服原子核的库仑斥力,与原子核进行散射或靶核核反应。

例如,α衰变中,α粒子通过电子云与原子核接触,克服库仑斥力,从而离开原子核。

-α粒子与电子碰撞:α粒子也能与物质中的电子发生库仑散射。

这种散射主要影响较低能量的α粒子,使其改变方向,并逐渐失去能量。

2.β射线与物质相互作用:β射线包括β正电子和β负电子,它们在与物质相互作用时,主要通过电磁相互作用与物质的电子发生碰撞。

-β电子与物质中的电子相互作用:β电子与物质中的电子发生库仑散射,导致β电子方向改变,并逐渐失去能量。

此外,β电子还会与物质中的原子核发生库仑相互作用,引起散射或产生次级带电粒子。

同时,β电子还会与物质中的靶核发生β衰变反应。

-β正电子与物质相互作用:β正电子与物质中的电子发生湮没作用,这是由于正电子和电子之间的共振效应导致的。

正电子与物质中的电子湮没后,能量转化为两个光子。

3.γ射线与物质相互作用:γ射线是电磁波,在与物质相互作用时,主要通过光电效应、康普顿散射和对消能量通过光子转化为电子对等几种机制与物质发生相互作用。

-光电效应:γ射线与物质中的原子发生相互作用,使原子内的电子受到能量的激发或被打出原子,形成光电子。

-康普顿散射:γ射线与物质中的电子发生碰撞,因为能量较高,导致电子被击中后发生能量和动量的转移,γ射线发生能量和方向的散射。

-电子对产生:γ射线经过物质时,其能量可能会转化为电子对(正电子和电子对)。

这是一种相对论效应,当γ射线的能量较高时,会出现这种现象。

4.X射线与物质相互作用:X射线与物质相互作用的主要机制是光电效应和康普顿散射。

-光电效应:X射线与物质中的原子发生相互作用,使原子内的电子受到能量的激发或被打出原子,形成光电子。

肿瘤放射物理学-物理师资料-2.3 X(γ)射线与物质的相互作用

肿瘤放射物理学-物理师资料-2.3 X(γ)射线与物质的相互作用

(3).光电截面
电子在原子中被束缚得越紧,产生光电效应的概率就越大。 如果入射光子的能量超过K层电子结合能,那么大约80%的光 电吸收发生在这K层电子上。
入射光子与物质原子发生光电效应的截面称之为光电截面。


5 4

k
k为k层光电截面
(4). 作用系数
光电效应总截面:
Z n /(h )3
低原子序数 n≈4 高原子序数 n≈4.8
光电线性衰减系数:



MA
N A

Zn
/(h )3
光电质量衰减系数:


NA MA

Z n1 /(h )3
a. 原子序数的影响 光电效应总截面 光电线性衰减系数
Z4~4.8
光电质量衰减系数
Z3~3.8
随原子序数增加,光电效应发生的概率迅速增加。
如果一个入射粒子与物质的相互作用有多种相互独立的 作用方式,则相互作用总截面等于各种作用截面之和
c p
总截面 光电效应截面
电子对效应截面 康普顿效应截面
2、线性衰减系数、质量衰减系数
X(γ)光子与每单位厚度物质发生相互作用的概率,称为线性
衰减系数,用µ表示,单位m-1或cm-1。
en tr (1 g)
g为次级电子的动能因辐射而损失的份额。
4、半价层(HVL) 定义为X(γ)射线束流强度衰减到其初始值一半时所需的某种
物质的衰减块的厚度。它与线性衰减系数的关系可表示为
HVL 0.693

与μ的意义一样, HVL表示物质对X(γ)光子的衰减能力。
5、平均自由程(l) 定义为X(γ)光子在与物质发生作用前平均的自由运动距离。

射线与物质的相互作用全解

射线与物质的相互作用全解

射线与物质的相互作用全解射线与物质的相互作用是物理学中的重要课题之一、射线主要包括X 射线、γ射线以及带电粒子射线。

它们与物质相互作用过程可以通过不同的机制进行解释,其中主要包括光电效应、康普顿散射、电子对产生以及核反应等。

本文将详细介绍射线与物质不同相互作用过程的全解。

首先,光电效应是指射线与物质相互作用时,射线能量被物质的原子或分子吸收,同时将一些原子或分子的一个外层电子打出,使其形成自由电子,并使原子或分子离子化。

光电效应的发生需要满足光子能量大于物质原子或分子的束缚能。

在光电效应中,射线的能量被完全转化为电子的动能,并且随着射线能量的增加,光电效应的截面逐渐增大。

其次,康普顿散射是指射线与物质相互作用时,射线与物质中的自由电子碰撞,并转移能量。

在康普顿散射过程中,射线的能量减小,同时产生散射射线,其散射角度与原始射线方向有关。

康普顿散射的截面依赖于射线能量和散射角度,而与物质性质无关。

因此,康普顿散射广泛应用于材料成分分析和非破坏性检测等领域。

第三,电子对产生是指高能射线与物质相互作用时,射线的能量转化为正负电子对。

在电子对产生中,射线的能量足够高,超过物质原子或分子的静止能量,因此,能够产生正负电子对。

电子对的产生量与射线能量呈正比,并且与物质性质无关。

最后,核反应是指射线与物质的原子核相互作用而产生新的核反应产物。

核反应的过程可以分为两类:一类是射线与原子核碰撞产生的弹性散射或非弹性散射,另一类是射线与原子核相互作用产生裂变反应或聚变反应。

核反应的截面与射线能量和物质的原子核性质密切相关。

需要指出的是,射线与物质相互作用过程的解释是基于经典物理学理论的基础上进行的。

在高能物理学领域中,射线与物质相互作用的解释需要使用量子场论的框架来描述。

此外,射线与物质的相互作用和影响还涉及到辐射生物学、辐射医学以及放射化学等学科的研究。

这些都是相当广泛和复杂的领域,需要进一步深入的研究和实践来完全解释。

射线与物质相互作用

射线与物质相互作用


I
厚层
表示射线β计数率与 h无关,已达饱和 此时h称为饱和厚度
①③ ②
I I ,
③对于以上两者之间,有: I I0 (1 eh )

过渡层
1.3.2 γ射线与物质的相互作用 1.3.2.1、作用形式
一、γ 射线的特点
即是粒子,又是光子,具有波粒二象性,是一种波 长极短的电磁辐射,不带电,静止质量为零,不会 发生电离,激发,轫致辐射作用。
(
dE dX
)电离



n)
2、轫致辐射
当高速电子或其它带电粒子通过物质,而被原子核库 仑场阻止而减速时,伴生的电磁辐射,此称轫致辐射。 另一定义:当快速运动的带电粒子在原子核附近突然 被减速时,则有一部分动能转变为连续能量的电磁辐 射,这种过程称为轫致辐射。
(
dE dX
)辐射

Z 2EN m02
三、带电粒子在介质中的射程
1、带电粒子的吸收:带电粒子与物质作用(电离,激 发,轫致辐射)不断损失自已的能量,直到能量完全 耗尽,而停在介质中,这一过程称为~。
2、射程:沿入射方向从入射点到终止点的直线距离。
α粒子的射程
3
R
β α
R 0.318E2 (cm)
R' 3.2104
A
R (cm)
强度(cps/道/%K )
8
K谱
10
K谱 (a)
12
Cs-137的仪器谱
为什么会发生这一现象?
如何发生的?
其过程是这样的:
(1)γ 光子与NaI晶体作用,产生次 级电子:
光电效应____光电子
康吴效应_____反冲电子,散射光 子__光电子

X射线与物质的相互作用

X射线与物质的相互作用

µ= wj µj ∑
j
元素的质量吸收系数, 其中µj 代表吸收体内第 j 元素的质量吸收系数,wj是它所占 重量百分比( 重量百分比( ) wj = 1 。

X射线的电离作用 射线的电离作用
∗ 物质受X射线照射时,使核外电子脱离原子轨道, 这种作用叫电离作用。 ∗ 在光电效应和散射过程中,出现光电子和反冲电 子脱离其原子的过程叫一次电离,这些光电子或 反冲电子在行进中又和其它原子碰撞,使被击原 子逸出电子叫二次电离。在固体和液体中,电离 后的正、负离子将很快复合,不易收集。但在气 体中的电离电荷却很容易收集起来,利用电离电 荷的多少可测定X射线的照射量(X射线测量仪器 正是根据这个原理制成的)。 ∗ 电离作用是X射线损伤和治疗的基础
讨论 若 λ 的关系与物质无关 与物质无关, ∆λ 与θ 的关系与物质无关,是光子与近自由电子
0
可见光观察不 可见光观察 到康普顿效应. λ >> λC 则 ≈ λ0 ,可见光观察不到康普顿效应
间的相互作用. 间的相互作用 的散射光是因光子与金属中的紧束缚 光子与金属中的 λ 散射中∆ = 0 的散射光是因光子与金属中的紧束缚 电子(原子核)的作用. 电子(原子核)的作用 物理意义 光子假设的正确性, 光子假设的正确性,狭义相对论力学的正确性 . 微观粒子也遵守能量守恒 动量守恒定律 能量守恒和 定律. 微观粒子也遵守能量守恒和动量守恒定律
光电效应的过程
∗电子被光子击出:“光电子”产生。光子本身消 失了, ∗物质的原子被电离,原壳层处留下空位。 ∗“光电子”继续撞击物质中的其它原子,它的动 能以热的形式消耗在附近晶格中; ∗空位为外层电子(自由电子)所填充,产生辐射: 发出标识X-射线。
光电效应示意图

第三章 射线与物质的相互作用

第三章 射线与物质的相互作用

第三章射线与物质的相互作用一·电离:电离辐射非电离辐射阿尔法粒子(氦)易发生电离,但易被阻挡(电离只能由高能粒子发生)粒子:1·激发态:(低能态-高能态)M ~M+ 和电子剥离内层电子即激发过程(电离过程)2·退激发态:由高能态-低能态直接电离与间接电离直接电离:间接电离:强电离弱电离中等电离二·放射源接收器(检测器)射程计算:电子对/距离- 电离强度(二)·贝塔射线与物质的相互作用(中等电离辐射)质量小- 作用于电子(核外电子)上作用于物质时引起直接电离致辐射:用轰击重金属核(三)·伽马X射线光电效应:光子能量小于1.0 电子伏特光电子:由光电效应引起的所剥离的自由电子内层电子被剥离后产生“空穴”使得外层电子进入内层被称为俄歇电子康普顿散射:0.2-5.0 电子伏特部分能量被吸收剩余的继续作用高能光子散射角度较小低能光子散射角度较大即受光子能量影响电子对:光子能量大于1.02 电子伏特产生正电子负电子正负电子湮灭释放能量(质量变为能量并释放光子能量与之前相同)但能量来源于之前的光子光子与物质之间的作用>30种原子序数与光子能量关系图(包含光电效应康普顿效应电子对)(四)·中子中子一般来源于核反应快中子能量高速度快弹性散射:小核非弹性散射:大核中子俘获:减速以后的中子(也是快中子)会发生被俘获后发出伽马射线(大原子如铱192)热中子:由快中子蜕变快电子重带电粒子快电子的速度大;重带电粒子相对速度小;快电子除电离损失外,辐射损失不可忽略;重带电粒子主要通过电离损失而损失能量;快电子散射严重重带电粒子在介质中的运动径迹近似为直线阿尔法射线与束缚电子发生非弹性碰撞-------电离,激发贝塔射线与核外电子发生非弹性碰撞——电离,激发,致辐射伽马射线X射线光电反应-----光子被吸收康普顿散射----光子被散射弹性散射------产生两个光子中子非弹性散射------ 光子中子俘获-------其他辐射单纯路径上离子化物质密度------线性能量转移---线碰撞阻止本领阿尔法:贝塔:伽马=104:102:1辐射的生物学效应1·能量吸收------皮肤出现红斑2·大分子被破坏-----蛋白质---结构改变---变性---失去功能核酸----被打破断裂--自我修复(出错碱基替换即基因突变)。

第二章 辐射防护基础知识(三)——射线与物质相互作用

第二章 辐射防护基础知识(三)——射线与物质相互作用

种现象称为射程歧离。
– 产生这种现象的原因——
每两次碰撞间粒子穿过的距离以及每次碰撞使带电粒子失去的能 量不完全相同,因而相同能量的粒子的射程不是一个定值。由于 每个粒子都必须经过多次的碰撞,因此,各个粒子的射程间的相 互差别并不很大。重带电子粒子的射程涨落一般都很小。
3. 阻止本领
带电粒子使物质原子电离或激发而损失的能量称 为电离能量损失。 把带电粒子在物质中单位路程上的电离损失称为 电离能量损失率,又称为阻止本领。常用符号
R = 3.2 × 10
4
A
ρ
Raiv
式中,A和ρ分别表示吸收物质原子的质量数和 密度(单位为g/cm3),R的单位为cm。
2.几个重要概念 2.几个重要概念
射程和路径的区别
带电粒子的射程和路程
2.几个重要概念 2.几个重要概念
3)射程歧离
– 一组单能粒子射程的平均值称为平均射程。 – 相同能量的粒子在同一种物质中的射程并不完全相同,这
原电离—— 次级电离——由原电离产生的电子如果具有足够的动
能,它也能使原子电离
1. 作用类型 1)电离(ionization)—— 电离( 电离
δ电子——α粒子与物质原子壳层电子直接碰撞时, 可以产生高能电子的电离,出射的电子 δ电子可以使物质原子再电离或激发
带电粒子通过物质
物质中原子被电离, 物质中原子被电离,在 粒子通过的路径上形成 许多离子对: 许多离子对: 正离子和自由电子
3. 非弹性散射
非弹性碰撞——
– 当快速电子通过物质时,它与物质原子的壳层电子发生
碰撞,而体系功能不守恒,入射电子将自己的一部分能 量给于原子壳层电子,使原子发生电离或激发
– 电子——电子碰撞:实质上是静电相互作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图中,b部分代表非相对论状况,c部分代表相对论状况 。a部分是入射粒子能量很低时的情况。
16
17
第三节 快电子与物质的相互作用
快速电子:e , 。
特点: 1、运动速度大; 2、电离损失,辐射损失; 3、碰撞中能量转移大,方向改变大(散射严重)。 一.能量损失率 二.吸收与射程 三.正电子与物质的相互作用
6
三.带电粒子在物质中的慢化
(2) 辐射损失-带电粒子与靶原子核的非弹性碰撞过程。
入射带电粒子速度和方向发生变化,同时发射韧致辐射。
辐射损失是轻带电粒子损失动能的一种重要方式。
(3) 带电粒子与靶原子核的弹性碰撞
入射粒子不辐射光子,不激发原子核,方向偏转; 入射粒子损失一部分动能,靶核得到反冲。
叫做核碰撞损失,核阻止; 主要对低能重离子入射。
根据量子理论,并考虑了相对论修正。推 导出来的重带电粒子电离能量损失率的精确表 达式称为Bathe-Block公式:
12
一、电离损失率
Bathe-Block公式:
4z 2e 4 dE NB 2 m0v dx ion
2m0v 2 C 2 2 B Z ln ln(1 ) I Z
式中:z 为入射带电粒子电荷数; Z 为靶物质原子的原子序数; N 为靶物质单位体积中的原子数; v 为入射带电粒子速度; I 为靶物质平均等效电离电位; m0 为电子静止质量; β=v/c 为重粒子速度与真空中光速之比。
13
一、电离损失率
Bathe公式的几点讨论: 1、S与入射粒子质量无关,只与电荷z及速度v有关。
14
一、电离损失率
3、S与靶物质的电子密度NZ成正比, S NZ Z
吸收材料原子序数高、材料密度大的材料其 阻止本领大。 4、S与v2的关系
v2较小,S 1/v2 ; v2较大,相对论效应,对数项增大,S上升 ; v2很小,电荷交换效应,俘获; v2极小,核阻止作用。
15
一、电离损失率
概述
二.弹性碰撞和非弹性碰撞
三.带电粒子在物质中的慢化
3
一、致电离辐射的种类
带电粒子辐射 非带电粒子辐射
快电子:e , ;
重带电粒子- , P, d , T
电磁辐射:γ、Χ射线;
中子 n;
致电离辐射:能量大于~10eV量级的射线。
我们以后提到的“辐射”或“射线”,均指“致电离辐射 ”。




2
快速电子在物质中穿透本领比重带电粒子大得多。
19
一、快电子的能量损失率
快速电子损失能量的方式:电离损失,辐射损失。 辐射损失的方式是发出韧致辐射。 带电粒子穿过物质时受到物质原子核的库仑作用,速度大 小和运动方向都发生变化,这时伴随发射电磁波。称之为轫 致辐射。
有:电离损失率,辐射损失率。 对于重带电粒子,
dE S Sion dx ion
11
一、电离损失率
假设:
(1)物质原子的电子可以看成是自由的(入射 粒子的动能大于大于电子的结合能)。
(2)物质原子的电子可看成是“静止”的。
(3)由于碰撞中入射粒子传给电子的能量比 自身能量小得多,可认为在碰撞后入射带电粒 子仍按原方向运动。
18
一、快电子的能量损失率
对于快速电子,考虑相对论效应时的电离损失率:
2e 4 NZ dE B 2 m0v dx ion
m0v 2 E 2 2 B ln 2 ln 2 2 1 1 2 2 I (1 ) 1 2 1 1 1 2 8
射线与物质的相互作用
堪培拉北京代表处
1
射线与物质的相互作用
具有一定动能的射线会与物质发生相互作用,叫做致电
离辐射。
第一节 第二节
概述 重带电粒子与物质的相互作用
第三节
第四节 第五节
快电子与物质的相互作用
射线与物质的相互作用
中子与物质的相互作用
2
第一节
一.致电离辐射的种类
二.重带电粒子的射程
特点:重带电粒子均为带正电荷离子;主要通 过电离损失而损失能量,同时使介质原子电离或激 发;其运动径迹近似为直线。
10
一、电离损失率
能量损失率: 入射带电粒子在物质中经过单位路程损失的能量。 也叫线性阻止本领。 dE dE dE S Sion Srad dx dx ion dx rad
7
三.带电粒子在物质中的慢化
(4) 带电粒子与靶原子中核外电子弹性碰撞 与电子的库仑作用,使入射粒子方向偏转; 入射粒子损失一部分动能,但能量转移很小,电 子能量状态不发生改变。 100eV以下的粒子才需考虑。
8
9
第二节 重带电粒子与物质中的相互作用 与核外电子的非弹性碰撞; 与原子核的非弹性碰撞。 一.电离损失率
5
三.带电粒子在物质中的慢化
载能带电粒子在靶物质中的慢化过程,可以分为四种 过程,其中前两个过程是主要的: (1)电离损失-带电粒子与靶物质原子中核外电子的非弹性 碰撞过程。
入射带电粒子与核外电子的库仑作用,使电子获得能 量引起:
电离——核外层电子克服束缚成为自由电子,原子成为 正离子,主要发生在最外层电子。δ 电子。 激发——使核外层电子由低能级跃迁到高能级而使原子 处于激发状态,退激发光。 电离损失是带电粒子在物质中损失动能的主要方式。
E1 E2 Sm1 Sm1 (v0 ) Sm2 (v0 ) m Sm2 m 1 2 例如,1MeV的p与2MeV的d,z相同,v相同;S相同。
2、S与入射粒子的电荷平方z2成正比, z 12 Sm1 (v0 ) 2 Sm2 (v0 ) z2 例如,相同速度的p与,S=4Sp 。
4
二.弹性碰撞和非弹性碰撞 带电粒子通过库仑力与物质发生相互作用。 相互作用过程中,满足能量守恒:
1 2 1 1 '2 1 2 mv MV mv MV 'Байду номын сангаас E 2 2 2 2
当E = 0时,弹性碰撞; 当E 0时,非弹性碰撞; E > 0时,为第一类非弹性碰撞,如入射粒子与 处于基态的核碰撞,且使核激发; E < 0时,为第二类非弹性碰撞,如入射粒子与 处于激发态的核碰撞。
相关文档
最新文档