金刚石刀具
CVD金刚石膜刀具制造技术及其应用

CVD金刚石膜刀具制造技术及其应用化学气相沉积(CVD)金刚石作为一种新型超硬刀具材料,为金刚石刀具的应用开辟了新的途径。
CVD金刚石刀具主要有两种类型:CVD金刚石薄膜涂层刀具和CVD金刚石厚膜焊接刀具。
目前来说,CVD金刚石厚膜刀具的应用比较广泛。
一、CVD金刚石薄膜涂层刀具CVD金刚石薄膜涂层刀具是指通过CVD方法在一定温度下使金刚石沉积于某些基体(通常为K类硬质合金)刀片上的刀具,其金刚石膜厚度约为10~30μm。
CVD金刚石薄膜涂层刀具因金刚石厚度较薄,难于刃磨,前、后刀面及刃口质量较差,只适用于粗加工、半精加工和复杂形状刀具。
粗加工的切削较大,当金刚石与基体间的附着力不足以抗拒切削力的破坏时,金刚石膜就会脱落。
这种刀具加工出的工件表面粗糙度一般大于Ra0.2μm。
尽管目前国内CVD薄膜涂层刀具的应用尚处于萌芽状态,但随着CVD金刚石生长技术的提高,CVD金刚石基团颗粒的大小已经由40~50μm缩小到十几甚至几个纳米,从而出现了纳米金刚石。
如美国阿贡国家实验室(Argonne Nat. Lab)的Dr. Gruen D.M已经生长出质量良好、表面为镜面(表面最高峰与最低峰间距为15nm)、任意厚度的纳米金刚石膜,而且其涂层的附着力足够。
相信其对涂层刀具的应用有所促进。
二、CVD金刚石厚膜焊接刀具CVD金刚石厚膜焊接刀具是先把切割好的CVD金刚石厚膜一次焊接至基体(通常为K类硬质合金)上,形成复合片,然后抛光复合片,二次焊接至刀体上,刃磨成需要的形状和刃口。
制造工艺流程:高品质的CVD金刚石膜的制备→激光切割→一次焊接成复合片→复合片抛光→二次焊接至刀体上→刃磨→检验。
下面介绍几个关键工序,如切割,焊接,抛光和刃磨等。
1.激光切割CVD金刚石膜硬度高、不导电(现已有导电型CVD金刚石,但其电阻率很大)、耐磨性极强,常规的机械加工和线切割等方法不适合于CVD 金刚石厚膜的切割。
论述金刚石刀具超精密切削的机理丶条件和应用范围

金刚石刀具超精密切削的机理丶条件和应用范围
金刚石刀具是超精密切削中常用的刀具材料,其切削机理、条件和应用范围如下:
1.切削机理:
⏹金刚石刀具的切削刃非常锋利,在切削过程中能够实现“切入式切削”,
使切削力大大减小。
⏹金刚石的硬度极高,切削时不易被工件材料磨损,能够保持良好的切削刃
形状。
⏹金刚石的传热性能极佳,能够快速地将切削热量传递出去,从而降低切削
温度,减少热损伤。
1.切削条件:
⏹刀具刃口半径:为了实现超精密切削,需要将刀具的刃口半径减小到亚微
米级,以提高切削的精度和表面粗糙度。
⏹切削用量:为了减小切削力和热量,需要选择较小的切削深度和进给速度,
以提高切削效率。
⏹工件材料:金刚石刀具适用于加工各种硬材料,如淬火钢、硬质合金等。
但是,对于一些韧性较大的材料,需要进行预处理或选择其他刀具材料。
1.应用范围:
⏹金刚石刀具广泛应用于超精密切削领域,如光学零件、轴承、硬盘磁头、IC
芯片等高精度、高表面质量的零件加工。
⏹在加工过程中,金刚石刀具还可以用于制作各种微细结构,如微孔、微槽
等。
综上所述,金刚石刀具的超精密切削需要满足一定的条件,并具有广泛的应用范围。
金刚石材料刀具简介

金刚石材料刀具简介可以制成切削刀具的金刚石材料有天然单晶金刚石、人造单晶金刚石、化学气相沉积法(CVD)金刚石厚膜、人造聚晶金刚石复合片等。
1、天然单晶金刚石天然单晶金刚石是一种各向异性的单晶体。
硬度达HV9000-10000,是自然界中最硬的物质。
这种材料耐磨性极好,制成刀具在切削中可长时间保持尺寸的稳定,故而有很长的刀具寿命。
天然金刚石刀具刃口可以加工到极其锋利。
可用于制作眼科和神经外科手术刀;可用于加工隐形眼镜的曲面;可用于切割光导玻璃纤维;用于加工黄金、白金首饰的花纹;最重要的用途在于高速超精加工有色金属及其合金。
如铝、黄金、巴氏合金、铍铜、紫铜等。
用天然金刚石制作的超精加工刀具其刀尖圆弧部分在400倍显微镜下观察无缺陷,用于加工铝合金多面体反射镜、无氧铜激光反射镜、陀螺仪、录像机磁鼓等。
表现粗糙度可达到Ra(0.01-0.025)μm。
天然金刚石材料韧性很差,抗弯强度很低,仅为(0.2-0.5)Gpa。
热稳定性差,温度达到700℃-800℃时就会失去硬度。
温度再高就会碳化。
另外,它与铁的亲和力很强,一般不适于加工钢铁。
2、人造单晶金刚石人造单晶金刚石作为刀具材料,市场上能买到的目前有戴比尔斯(DE-BEERS)生产的工业级单晶金刚石材料。
这种材料硬度略逊于天然金刚石。
其它性能都与天然金刚石不相上下。
由于经过人工制造,其解理方向和尺寸变得可控和统一。
随着高温高压技术的发展,人造单晶金刚石最大尺寸已经可以做到8mm。
由于这种材料有相对较好的一致性和较低的价格,所以受到广泛的注意。
作为替代天然金刚石的新材料,人造单晶金刚石的应用将会有大的发展。
3、人造聚晶金刚石人造聚晶金刚石(PCD)是在高温高压下将金刚石微粉加溶剂聚合而成的多晶体材料。
一般情况下制成以硬质合金为基体的整体圆形片,称为聚晶金刚石复合片。
根据金刚石基体的厚度不同,复合片有1.6mm、3.2mm、4.8mm等不同规格。
而聚晶金刚石的厚度一般在0.5mm左右。
金刚石刀具生产工艺

金刚石刀具生产工艺
金刚石刀具生产工艺是指将金刚石作为刀具材料进行加工和制造的工艺流程。
金刚石是目前已知最硬的物质,具有非常优异的耐磨性,因此被广泛应用于刀具制造领域。
下面将介绍金刚石刀具生产的一般工艺流程,包括原材料准备、金刚石刀具粗加工、精加工、热处理和涂层等步骤。
首先,金刚石刀具的生产需要准备好金刚石颗粒和刀具基体材料。
金刚石颗粒可通过化学合成或天然矿石提取得到,而刀具基体材料则根据需要选择合适的金属材料,如高速钢、硬质合金等。
接下来是金刚石刀具的粗加工。
将金刚石颗粒与刀具基体进行混合后,通过高温高压的方式使金刚石颗粒牢固地固结在刀具基体上。
这一步骤通常使用烧结或镶嵌的方法进行。
然后是金刚石刀具的精加工。
通过磨削、切割、抛光等方法对已固结金刚石的刀具基体进行修整和加工,以达到所需的外形和尺寸精度。
这一步骤需要使用高精度的机床和磨具进行操作。
完成精加工后,金刚石刀具需要经过热处理来提高其硬度和耐磨性。
热处理可以通过淬火、回火等方法进行,以改善金刚石与刀具基体之间的结合强度,并使其具有更好的耐磨性能。
最后是涂层工艺。
涂层是在金刚石刀具的表面形成一层保护膜,用于提高其耐高温、耐磨和耐腐蚀等性能。
常用的涂层材料有金属氮化物、碳化物等。
涂层工艺通常采用物理气相沉积或化
学气相沉积等方法进行。
综上所述,金刚石刀具的生产工艺包括原材料准备、金刚石刀具粗加工、精加工、热处理和涂层等步骤。
通过这些工艺流程,可以制造出耐磨耐用的金刚石刀具,用于各种切削加工和磨削工艺中。
金刚石刀具在数控机床中的应用

金刚石刀具在数控机床中的应用随着科技的不断进步和发展,数控机床在工业领域中扮演着重要的角色。
数控机床的出现大大提高了生产效率和加工质量,而金刚石刀具作为一种高性能的切削工具,在数控机床中的应用也越来越广泛。
本文将探讨金刚石刀具在数控机床中的应用,并分析其优势和挑战。
一. 金刚石刀具的基本特性金刚石刀具由金刚石颗粒和金属粉末经压制、烧结等工艺制成,具有极高的硬度、耐磨性和热稳定性。
这些特性使得金刚石刀具在切削加工中具备以下优势:1. 高硬度:金刚石刀具的硬度仅次于金刚石,可用于切削超硬材料如陶瓷和高硬度合金等。
2. 耐磨性:金刚石刀具具有出色的耐磨性,可在切削过程中保持较长的使用寿命。
3. 热稳定性:金刚石刀具具有良好的热稳定性,可承受高温切削环境下的工作,不易变形。
二. 金刚石刀具在数控机床中的应用领域1. 切削加工金刚石刀具广泛应用于数控机床的切削加工领域,包括车削、铣削、钻削、磨削等。
由于金刚石刀具的高硬度和耐磨性,可用于加工硬度较高的材料,如钛合金、高速钢等。
同时,金刚石刀具还能够提供更高的加工精度和表面质量。
2. 精密加工在数控机床的精密加工中,金刚石刀具的应用更能体现出其独特的优势。
例如,在汽车零部件的精密加工过程中,采用金刚石刀具可以实现更高的加工精度和更好的表面质量。
3. 工具磨损监测由于金刚石刀具的耐磨性较高,因此可以通过监测金刚石刀具的磨损情况,准确地评估刀具的使用寿命。
这对机床的保养和刀具的及时更换具有重要意义,可降低生产成本,并提高生产效率。
三. 金刚石刀具在数控机床中的挑战虽然金刚石刀具在数控机床中有广泛的应用前景,但面临着一些挑战和限制:1. 成本高昂:金刚石刀具的制造成本较高,所以其售价也相对较高,这给广泛应用带来了一定的限制。
2. 技术要求高:金刚石刀具的加工工艺复杂,需要高精度和高温高压的条件,所以其生产过程要求较高的技术水平。
3. 刀具表面质量难以保证:由于金刚石刀具的硬度很高,常规的抛光或修整技术难以完成对其表面的加工,从而可能会影响到加工表面质量。
金刚石刀具知识点

⾦刚⽯⼑具知识点⼑具基础知识⼀、⼑具材料应具备的性能;A,⾼的硬度和⾼耐磨性1.硬度是⼑具材料应具备的基本特性2.耐磨性是指材料抵抗磨损的能⼒。
B,⾜够的强度和韧性1.强度是⼑具材料抵抗破坏的能⼒2,韧性是指材料发⽣断裂时外界做功的⼤⼩。
3.⾼的耐热性和热传性4.良好的⼯艺性和经济性1)切削性能⽬前⼑具材料分四⼤类:⼯具钢、硬质合⾦、陶瓷及超硬⼑具材料等。
常⽤的⼑具材料⼀、⼯具钢1. 碳素⼯具钢碳素⼯具钢是含碳量为0.65%~1.3%的优质碳素钢。
常⽤的钢号有T7A、T8A等。
耐热温度:200℃~300℃。
2. 合⾦⼯具钢1868年,英国的穆舍特制成含钨的合⾦⼯具钢。
在碳素⼯具钢中加⼊适当的元素铬(Cr)、硅常⽤的合⾦⼯具钢有9CrSi,CrWMn等(Si)、锰(Mn)、钒(V)、钨(W)等炼成的。
耐热温度:325℃~400℃。
主要⽤于制造细长的或截⾯积⼤、刃形复杂的⼑具。
⼆,⾼速钢⾼速钢是⼀种富含钨(W)、铬(Cr)、钼(Mo)、钒(V)等元素的⾼合⾦⼯具钢。
美国的F.W.泰勒和M.怀特于1898年创制的。
含碳量⼀般在0.70~1.65%之间。
耐热温度:500℃~650℃。
⾼速钢的抗弯强度是硬质合⾦的3~5倍,冲击韧性是硬质合⾦的6~10倍1.普通⾼速钢(HSS)2.钨系⾼速钢:W18Cr4V (W18)3.具有较好的综合性能,可制造复杂刃型的⼑具。
但由于钨是稀有⾦属,现在很少使⽤。
4.钨钼系⾼速钢:W6Mo5Cr4V2 (M2)5.M2的碳化物颗粒⼩,分布均匀,具有较⾼的抗弯强度、塑性、韧性和耐磨性。
⼜因为钼的存在,使其热塑性⾮常好。
2. ⾼性能⾼速钢(HSS-E)⾼性能⾼速钢是在普通⾼速钢中增加⼀些碳、钒及添加钴(Co)、铝等元素的新钢种。
钴⾼速钢:W2Mo9Cr4VCo8 (M42)⼀种含钴的超硬⾼速钢,常温硬度67HRC-69HRC,具有良好的综合性能。
铝⾼速钢:W6Mo5Cr4V2Al在M2的基础上加Al、增C,提⾼了钢的耐热性和耐磨性。
金刚石刀具的磨损机理

金刚石刀具的磨损机理引言:由于金刚石材料的高硬度和各向同性使其磨损非常缓慢。
是一种理想的刀具材料。
为了充分发挥PCD刀具的切削性能,世界各国先后投入大量人力物力对PCD刀具进行研究。
1、金刚石刀具的磨损形态金刚石刀具的磨损形态常见于前刀面磨损、后刀面磨损和刃口崩裂。
1、金刚石刀具的磨损机理金刚石刀具的磨损机理比较复杂,可分为宏观磨损与微观磨损。
前者以机械磨损为主,后者以热化学磨损为主。
宏观磨损的基本规律如图,早期磨损迅速,正常磨损十分缓慢。
通过高倍显微镜观察,刃口质量越差及锯齿度越大,早期磨损就越明显。
这是因为金刚石刀刃圆弧采用机械方法研磨时,实际得到的是不规则折线如图,在切削力作用下,单位折线上压力迅速增大,导致刀刃磨损加快。
另一个原因是,当金刚石刀具的刃磨压力过大或刃磨速度过高,及温度超过某一临界值时,金刚石刀具表面就会发生氧化与石墨化,使金刚石刀具表面的硬度降低,形成硬度软化层。
在切削力作用下,软化层迅速磨损。
由此可见,金刚石刀具刃磨质量的高低会严重影响它的使用寿命与尺寸精度的一致性。
当宏观磨损处于正常磨损阶段,金刚石刀具的磨损十分缓慢,实践证明,在金刚石的结晶方向上的磨损更是缓慢。
随着切削时间的延长,刀具仍有几十至几百纳米的磨损,这就是微观磨损。
通过高倍显微镜长期观察以及用光谱与衍射分析后,金刚石刀具的微观磨损原因可能有以下3个:1随着切削时间的不断延长,切削区域能量不断积聚,温度不断升高,当达到热化学反应温度时,就会在刀具表面形成新的变质层。
变质层大多是强度甚差的氧化物与碳化物,不断形成,不断随切屑消失,逐渐形成磨损表面。
2金刚石晶体在切削力特别是承受交变脉冲载荷持续作用下,一个又一个C原子获得足够的能量后从晶格中逸出,造成晶体缺陷,原子间引力减弱,在外力作用下晶格之间发生剪切与剥落,逐渐形成晶格层面的磨损,达到一定数量的晶格层面磨损后就会逐渐形成刀具的磨损表面。
3金刚石刀具在高速切削有色金属及其合金时,在长时间的高温高压作用下,当金刚石晶体与工件的金属晶格达到分子甚至原子之间距离时,引起原子之间相互渗透。
金刚石刀具制作工艺流程

金刚石刀具制作工艺流程一、原料准备。
咱得先找好金刚石原料呀。
这金刚石可不好找呢,它可是超级硬的家伙。
一般都是从天然金刚石或者人工合成的金刚石里挑。
天然金刚石那可真是大自然的宝藏,不过数量有限而且贵得很。
人工合成的金刚石现在也很厉害啦,品质也很不错。
要选那些晶体结构比较好的金刚石,就像挑水果一样,要挑长得好看、没有啥缺陷的金刚石才行。
在这个过程中,还得考虑金刚石的粒度大小,不同的刀具用途可能需要不同大小的金刚石呢。
二、基体选择。
有了金刚石还不行,还得有个好的基体来搭配它。
基体就像是金刚石的家,得结实又靠谱。
一般会选择金属材料做基体,像硬质合金之类的就很常用。
这就好比给超级英雄(金刚石)找个坚固的基地一样重要。
要根据刀具的使用环境和要求来选择合适的基体材料。
如果是要做那种需要承受很大压力的刀具,那基体的硬度和强度就得足够高。
而且,基体的形状也要根据刀具的设计来确定,有圆形的、方形的等等各种形状呢。
三、金刚石的镶嵌。
接下来就是把金刚石镶嵌到基体上啦。
这可是个技术活呢。
就像给宝石镶嵌到戒指上一样,不过这个难度可大多了。
一种常见的方法是烧结法,把金刚石和基体材料放在一起,通过高温高压让它们融合在一起。
在这个过程中,要控制好温度和压力的参数,要是不小心弄错了,可能金刚石就镶嵌不好,刀具的性能就会大打折扣。
还有一种是电镀法,就像给东西镀上一层漂亮的金属外衣一样,把金刚石镶嵌在基体上。
这个方法可以让金刚石分布得比较均匀,不过也需要很精细的操作。
四、刀具的成型加工。
金刚石镶嵌好之后,刀具还不是最终的样子呢。
还需要进行成型加工。
这时候就需要用到各种加工设备啦,像磨床之类的。
要把刀具的刃口磨得锋利无比,就像给宝剑开刃一样。
这个过程中,要根据刀具的设计要求,精确地控制刃口的角度和形状。
如果刃口角度不对,那刀具在使用的时候就可能不好用,切东西就不顺畅。
而且在加工的时候,还得注意不要损伤到金刚石,毕竟金刚石是刀具的核心部分呀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金刚石刀具
金刚石刀具具有极高的硬度和耐磨性、低摩擦系数、高弹性模量、高热导、低热膨胀系数,以及与非铁金属亲和力小等优点。
可以用于非金属硬脆材料如石墨、高耐磨材料、复合材料、高硅铝合金及其它韧性有色金属材料的精密加工。
金刚石刀具类型繁多,性能差异显著,不同类型金刚石刀具的结构、制备方法和应用领域有较大区别。
天然金刚石刀具目前主要用于紫铜及铜合金和金、银、铑等贵重有色金属,以及特殊零件的超精密镜面加工,如录相机磁盘、光学平面镜、多面镜和二次曲面镜等。
但其结晶各向异性,刀具价格昂贵。
PCD的性能取决于金刚石晶粒及钴的含量,刀具寿命为硬质合金(WC基体)刀具的10~500倍。
主要用于车削加工各种有色金属如铝、铜、镁及其合金、硬质合金和耐磨性极强的纤维增塑材料、金属基复合材料、木材等非金属材料。
切削加工时切削速度、进给速度和切削深度加工条件取决于工件材料以及硬度。
人造聚晶金刚石复合片(PDC)性能和应用接近PCD刀具,主要用在有色金属、硬质合金、陶瓷、非金属材料(塑料、硬质橡胶、碳棒、木材、水泥制品等)、复合材料等切削加工,逐渐替代硬质合金刀具。
由于金刚石颗粒问有部分残余粘结金属和石墨,其中粘结金属以聚结态或呈叶脉状分布会减低刀具耐磨性和寿命。
此外存在溶媒金属残留量,溶媒金属与金刚石表面直接接触。
降低(PDC)的抗氧化能力和刀具耐热温度,故刀具切削性能不够稳定。
金刚石厚膜刀具制备过程复杂,因金刚石与低熔点金属及其合金之间具有很高的界面能。
金刚石很难被一般的低熔点焊料合金所浸润。
可焊性极差,难以制作复杂几何形状刀具,故TDF焊接刀具不能应用在高速铣削中。
金刚石涂层刀具可以应用于高速加工,原因是除了金刚石涂层刀具具有优良的机械性能外,金刚石涂层工艺能够制备任意复杂形状铣刀,用于高速加工如铝钛合金航空材料和难加工非金属材料如石墨电极等。
显示为纯金刚石。
ND是目前已知矿物中最硬的物质,主要用于制备刀具车刀。
天然金刚石刀具精细研磨后刃口半径可达0.01~0.002µm。
其中天然单晶金刚石(Single Crystalline Diamond,SCD)刀具切削刃部位经高倍放大1500倍仍然观察到刀刃
光滑。
SCD车削铝制活塞时Ra可达到4µm,而在同样切削条件下用PCD 刀具加工时的表面粗糙时的Ra为15~50µm。
故采用SCD刀具配合精密车床进行精密和超精密加工,可获得镜面表面。
聚晶金刚石(PCD)刀具
PCD是高温超高压条件下通过钴等金属结合剂将金刚石微粉聚集烧结合成的多晶体材料,又称烧结金刚石。
聚晶金刚石刀具整体烧结成铣刀,用于铣削加工,PCD晶粒呈无序排列状态,属各向同性,硬度均匀,石墨化温度为550℃。
刀具具有高硬度、高导热性、低热胀系数、高弹性模量和低摩擦系数。
刀刃非常锋利等特点。
人造聚晶金刚石复合片(PDC)刀具
为提高PCD刀片的韧性和可焊性,常将PCD与硬质合金刀体做成人造聚晶金刚石复合刀片(PDc)。
即在硬质合金基底其表面压制一层0.5~1mm厚的PCD烧结而成。
复合刀片的抗弯强度与硬质合金基本一致,硬度接近PCD,故可以替代PCD使用。
PCD及人造聚晶金刚石复合片(PDC)刀具的刃口锋利性和加工的工件表面质量低于ND。
同时其可加工性很差,磨削比小,难以根据刀头的几何形状任意成形。
目前利用人造聚晶金刚石复合片只能制备车刀,至今还不能制造带断屑槽的可转位刀片和复杂三维曲面几何形状的铣刀。
CVD金刚石厚膜(TDF)焊接刀具
金刚石厚膜焊接刀具是把激光切割好CVD金刚石厚膜一次焊接至基体(通常为K类硬质合金)上,形成复合片,然后抛光复合片,二次焊接至刀体上,刃磨成需要的形状和刃口。
如图3(a)所示,为CVD金刚石厚膜(金刚石膜厚度达30µm),具有硬度高、耐磨损、摩擦系数小等特点,是制造切削有色金属和非金属材料刀具的理想材料。
由于金刚石焊接过程工艺复杂,CVD金刚石厚膜(TDF)焊接刀具尚未大批量应用。
金刚石涂层刀具
金刚石涂层刀具是用CVD法直接在硬质合金(K类硬质合金)或陶瓷等基体上沉积一层1~25µm金刚石薄膜,无解理面各向同性。
如图3(b)。
薄膜涂层刀具硬度达9800~10000HV。
热导率高,室温下导热系数高达2000W·m-1·K-1,而硬质合金刀具导热系数仅为80~100m-1·K-1。
CVD方法金刚石可以涂层到任何复杂形状的刀具上,这是聚晶金刚石无法拥有的最显著的优势。
刀具作为直接或间接安装在金刚石机床上,用以完成工件加工任务的金刚石工具,我们必须考虑两个适用性和一个协调性。
即适用于所选用的机床,适用于所选用的工件,以及与加工任务相匹配。
首先是与机床匹配。
各位可能首先想到的,是外形和尺寸的匹配。
的确,外形和尺寸的匹配是金刚石刀具在机床上能够正确安装的基础。
没有这个基础,刀具无法被正确地安装在机床上,因此也就谈不上完成什么加工任务。
但是,仅有这一点是不够的。
金刚石刀具在被安装在机床上之后,是需要完成一定的加工任务的。
在完成这个加工任务的过程中,需要保证加工精度、需要承受和传递切削力和切削扭距、需要完成切削热的承受、传递和导出,需要考虑有可能的切削废弃物(切屑和料头)甚至是工件的传输,以及现代的刀具参数数字化传递等等。
这些任务些虽然不是常见,确也是刀具可能承担的任务。
如果我们能够在选择金刚石刀具,考虑刀具与机床的匹配性方面一并考虑,会增加我们解决加工问题的思路。
保证加工精度、传递切削力和力矩、提供切削液的通道是我们目前在保证外形和尺寸的匹配后,经常会遇到的问题。
例如在加工中心上,我们经常使用圆柱形(通常称为直柄)作为夹持方式。
那么就圆柱形的刀柄,除典型的完整的圆柱形外,还有一些在圆柱形上增加一些其它要素的变化,如削平型直柄(铣刀按直径分为单削平面和双削平面两种,钻削常见全削平面,都被称为侧压式),带2°倾斜的斜削平式,带扁尾的直柄(常用于钻头),带方身的直柄(常用于丝锥和铰刀)等多种方式。
就这类刀柄与机床的联结方式来说,只用圆柱部分定位、夹紧的也不在少数。
各种压力角的弹簧套系统,强力夹头系统,液压锁紧系统、热膨胀装夹系统、力变形锁紧系统等都是用于锁紧圆柱刀柄的。
但各种夹持方式各有优点和缺点。
就拿最常见
的弹簧套系统来说,大的压力角(此处将压力角定义为锥面锁紧的正压力与圆柱轴线的夹角),即大的锥角代表锁紧行程较短,有利于快速地锁紧与松开,但在相同的锁紧力矩下分解到圆柱面上的正压力较小,由此产生的金刚石摩擦力距小,能够抵抗的切削力距也相应比较小,刀具易在刀柄中产生打滑的现象,影响加工过程的平稳性和加工表面质量;同时此类夹头可夹持的刀柄直径变化范围较大,有利于减少弹簧套的库存,优化管理。
而小的压力角就相反。
小的压力角的弹簧套可夹持的刀柄直径范围较小,夹紧时的锁紧行程较长,不利于快速夹紧与松开,但其夹持精度稍高,夹紧力大,能承受更大的切削载荷。
液压锁紧系统是一种新兴的夹持系统,它利用高粘度液压油的不可压缩性使刀具夹持腔的内壁发生弹性变形,从而锁紧刀具。
液压锁紧系统的精度高,锁紧与松开不需要专门的器械从而显得比较方便,锁紧力矩通常也优于弹簧套系统,但其内壁只能在弹性变形的范围内工作。
一旦超出此范围,内壁就会出现不可逆转的塑性变形,就会造成该刀柄装夹腔的永久性失效。
因此,削平型刀柄,尤其是钻削刀具常用的全削平型刀柄是不能在液压锁紧系统中使用的。
空腔施压、刀柄未插到容腔底部等,也是会导致该系统损坏失效的常见原因。
热膨胀装夹系统则通常需要专用设备,这样的设备以能控制加热、冷却按多种预定模式进行的为佳。
非专业的加热设备(甚至火焰加热)也许可以使用,但常常由于温度和加热曲线不能得到良好的控制而对刀柄的其它部分受到影响,甚至改变其金相组织,从而使系统很快失效。
另外就是热膨胀装夹系统的刀具长度难以调整,需要专门的辅助工具,这给在需要多刀具同步工作的场合增添了一些麻烦。
在另一方面,刀具夹持方式也可能决定着生产效率的可能值。
圆柱刀柄和液压、热膨胀都是可以适应较高转速的平衡设计,而削平型的装夹却是一种典型的非平衡设计,刀具厂商都将其列入不推荐用于高速切削的行列。
就刀柄本身而言,在被铣(或磨)去一部分材料形成压力面时,刀柄部分的重心即与刀具的回转中心不重合了。
在刀具夹紧的过程中,削平柄被锁紧螺钉推向已经偏离中心的那一侧,金刚石刀具的重心将进一步偏离刀具在机床上的回转中心,这些都增加了刀具的不平衡。
加上一些使用者在原始的锁紧螺钉损坏或遗失后随意配上一个螺钉,长度等往往没有在意,这样的行为也给刀具的平衡性能增加了不确定性。
因此,金刚石削平型(包括斜削平)都不建议在高速下使用。
精密加工之金刚石刀具080101020057 王智才
08模具。