新人教版初二上册数学总复习

合集下载

初二数学上册知识点总结(人教版)

初二数学上册知识点总结(人教版)

初二数学上册知识点总结(人教版)初二数学上册知识点总结(人教版)本文档总结了初二数学上册的重要知识点。

以下是每个章节的主要内容概述。

第一章:有理数- 有理数的概念和性质- 有理数的加法、减法、乘法和除法运算- 有理数的大小比较和绝对值- 有理数的混合运算第二章:平方根和立方根- 平方根和立方根的概念和性质- 求平方根和立方根的方法- 平方根和立方根的运算法则第三章:比例与相似- 比例的概念和性质- 求解比例的方法- 相似的概念和性质- 判断两个图形是否相似的方法第四章:代数式- 代数式的概念和表达方法- 代数式的加法、减法、乘法和除法运算- 多项式的概念和运算法则- 代数式的应用问题第五章:一次函数与方程- 一次函数的概念和性质- 一次函数的图像和性质- 解一元一次方程的方法- 一次函数与方程的实际应用第六章:一次不等式和不等式组- 不等式及其解集的概念- 解一元一次不等式的方法- 解不等式组的方法- 不等式和不等式组的应用第七章:平面图形的认识- 平面图形的基本概念和性质- 三角形的分类和性质- 四边形的分类和性质- 平行线和垂直线的判定方法第八章:平面图形的应用- 通过条件画图的方法- 图形的旋转、翻折和滑动变换- 图形的对称性和轴- 图形的符号表示和坐标表示第九章:数据的处理- 数据的收集和整理方法- 数据的统计和分析方法- 数据的图表表示和解读- 数据的应用问题以上是初二数学上册的知识点总结。

希望对你的学习有所帮助!。

请整理人教版八年级数学上册总复习知识点汇总。

请整理人教版八年级数学上册总复习知识点汇总。

请整理人教版八年级数学上册总复习知识点汇总。

请整理人教版八年级数学上册总复知识点汇总本文档旨在提供人教版八年级数学上册总复的知识点汇总。

以下是各章节的重点内容:第一章四则运算- 熟练掌握加法、减法、乘法和除法的基本运算规则- 理解加法和减法的交换律、结合律和分配律- 掌握小数的加减法运算第二章整数- 了解整数的概念,包括负整数、零和正整数- 掌握整数的加减法运算- 理解整数的数轴表示法第三章分数- 了解分数的概念,包括真分数、假分数和带分数- 掌握分数的加减法运算- 理解分数的乘除法运算第四章百分数- 了解百分数的概念和表示方法- 掌握百分数的转化与应用- 熟练计算百分数的加减法运算第五章立方根- 了解立方根的概念和表示方法- 学会计算立方根的近似值- 理解立方根与立方的关系第六章平方根- 了解平方根的概念和表示方法- 学会计算平方根的近似值- 理解平方根与平方的关系第七章二次根式- 了解二次根式的概念和表示方法- 掌握二次根式的运算- 理解二次根式与平方的关系第八章代数式与简单方程- 掌握代数式的概念和运算法则- 能够解一元一次方程- 了解方程的应用第九章图形与平面图形- 了解图形的分类和特点- 熟练计算图形的周长和面积- 掌握平行线与相交线的性质第十章立体图形- 了解常见的立体图形,如长方体、正方体和棱柱等- 掌握立体图形的表面积和体积计算方法- 理解立体图形的展开与拼接以上是人教版八年级数学上册的总复习知识点汇总。

希望能对您的复习有所帮助!。

人教版八年级数学上册复习资料

人教版八年级数学上册复习资料

人教版八年级数学上册复习资料第一章有理数一、有理数的概念正数、负数和零统称为有理数,它包括正有理数、负有理数和零。

二、有理数的比较大小1.比较同号有理数时,绝对值大的数大;2.比较异号有理数时,负数小于零,负数绝对值大的数小。

三、有理数的运算1.有理数的加减运算:–同号的两个数相加,绝对值相加,符号不变;–异号的两个数相减,绝对值相加,符号由大数的符号决定;2.有理数的乘除运算:–同号的两个数相乘或相除,结果为正,异号相乘或相除,结果为负;–任何一个数除以零都没有意义。

第二章几何图形的认识一、几何图形的基本概念点、线、面是几何基本要素,图形是由这些要素组成的。

二、图形的分类按照图形的形状和性质,可以将其分类为点、线、面以及特殊图形,如圆、三角形、四边形等。

三、图形的面积和周长1.面积是指一个图形所占的二维空间;2.周长是指一个图形的边界长度。

第三章代数式一、代数式的概念用字母和常数组成的式子叫做代数式,字母表示未知量,常数表示已知量。

二、代数式的运算1.合并同类项:将相同的字母项合并,系数相加;2.移项:把含有未知量项的式子移到一边,把常数项移到另一边,注意符号的变化。

三、解一元一次方程将方程中未知量的系数移到等号左边,常数项移到等号右边,然后把未知量的系数化为1即可得到方程的解。

第四章线性方程组一、线性方程组的概念两个或两个以上的线性方程组成的方程组叫做线性方程组。

二、线性方程组的解法1.代入法:将其中一个方程的一个未知量表示成另一个未知量的函数,然后代入另一个方程中求解;2.消元法:将方程组中的某一个未知量表示成另一个未知量的函数,逐步消元直至得到未知量的值。

三、画图解法将方程组中每一个线性方程的图象画在坐标系上,求出交点即为解的解法。

第五章比例与相似一、比例的基本概念在等式两侧加上同一数或同一式子后,等式仍然成立。

二、比例的四则运算1.比例的乘除运算:乘法比例、除法比例;2.比例的倒数:倒数比例、互为倒数。

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结

人教版八年级上数学知识点总结
一、整数运算
1. 整数的加减法运算
- 同号相加、异号相减
- 借位规则
2. 整数的乘除法运算
- 正数乘除正数为正,负数乘除负数为正
- 正数乘除负数为负,负数乘除正数为负
二、分数与小数
1. 分数的概念与表示方法
- 分子、分母的含义
- 分数的大小比较
2. 分数的加减法运算
- 分数相加减时,先找到相同的分母
3. 分数的乘除法运算
- 乘法:分子相乘,分母相乘- 除法:乘以倒数
4. 小数的概念与表示方法
- 小数位数与数值大小的关系
三、代数式与方程式
1. 代数式的概念与运算
- 字母的含义
- 代数式的加减运算
2. 一元一次方程
- 方程的定义与解法
- 列方程的步骤与技巧
四、正比例与反比例
1. 正比例
- 定义与性质
- 比例关系的表示方法
2. 反比例
- 定义与性质
- 比例关系的表示方法
五、平面图形与坐标系
1. 平面图形的概念与性质
- 直线、曲线、多边形等
2. 坐标系与坐标表示
- 直角坐标系
- 坐标点的表示方式
以上是人教版八年级上数学的主要知识点总结,希望能对同学们复习和学习有所帮助。

人教版八年级上册数学知识点归纳

人教版八年级上册数学知识点归纳

新人教版八年级数学上册知识点总结〔上〕〔含思维导图〕因式分解:1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用"提取公因式法〞、"公式法〞、"分组分解法〞、"十字相乘法〞.3.公因式确实定:系数的最大公约数·一样因式的最低次幂.5.因式分解的本卷须知:〔1〕选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;〔2〕使用因式分解公式时要特别注意公式中的字母都具有整体性;〔3〕因式分解的最后结果要求分解到每一个因式都不能分解为止;〔4〕因式分解的最后结果要求每一个因式的首项符号为正;〔5〕因式分解的最后结果要求加以整理;〔6〕因式分解的最后结果要求一样因式写成乘方的形式.6.因式分解的解题技巧:〔1〕换位整理,加括号或去括号整理;〔2〕提负号;〔3〕全变号;〔4〕换元;〔5〕配方;〔6〕把一样的式子看作整体;〔7〕灵活分组;〔8〕提取分数系数;〔9〕展开局部括号或全部括号;〔10〕拆项或补项.3.对于分式的两个重要判断:〔1〕假设分式的分母为零,则分式无意义,反之有意义;〔2〕假设分式的分子为零,而分母不为零,则分式的值为零;注意:假设分式的分子为零,而分母也为零,则分式无意义.4.分式的根本性质与应用:〔1〕假设分式的分子与分母都乘以〔或除以〕同一个不为零的整式,分式的值不变;〔2〕注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;〔3〕繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式.10.分式的通分:根据分式的根本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.11.最简公分母确实定:系数的最小公倍数·一样因式的最高次幂.13.含有字母系数的一元一次方程:在方程a*+b=0(a≠0)中,*是未知数,a和b是用字母表示的数,对*来说,字母a是*的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示数,用*、y、z等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母〔或分式方程的每个分母〕,假设值为零,求出的根是增根,这时原方程无解;假设值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加"验增根〞的程序.数的开方2.平方根的性质:〔1〕正数的平方根是一对相反数;〔2〕0的平方根还是0;〔3〕负数没有平方根.8.立方根的性质:〔1〕正数的立方根是一个正数;〔2〕0的立方根还是0;〔3〕负数的立方根是一个负数.三角形几何A级概念:〔要求深刻理解、熟练运用、主要用于几何证明〕几何B级概念:〔要求理解、会讲、会用,主要用于填空和选择题〕一根本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:假设CD⊥AB,BE⊥CA,则CD·AB=BE·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和.8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,"文字表达题〞需要自己画图,写、求证、证明.12.符合"AAA〞"SSA〞条件的三角形不能判定全等.13.几何习题经常用四种方法进展分析:〔1〕分析综合法;〔2〕方程分析法;〔3〕代入分析法;〔4〕图形观察法.14.几何根本作图分为:〔1〕作线段等于线段;〔2〕作角等于角;〔3〕作角的平分线;〔4〕过点作直线的垂线;〔5〕作线段的中垂线;〔6〕过点作直线的平行线.15.会用尺规完成"SAS〞、"ASA〞、"AAS〞、"SSS〞、"HL〞、"等腰三角形〞、"等边三角形〞、"等腰直角三角形〞的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何根本作图.17.几何画图的类型:〔1〕估画图;〔2〕工具画图;〔3〕尺规画图.※18.几何重要图形和辅助线:〔1〕选取和作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何根本作图.附思维导图:.。

新人教版八年级数学上册期中考试知识点总复习课件精华版省名师优质课赛课获奖课件市赛课一等奖课件

新人教版八年级数学上册期中考试知识点总复习课件精华版省名师优质课赛课获奖课件市赛课一等奖课件

例4:求证:有一条直角边和斜边上旳高 相应相等旳两个直角三角形全等。
分析:首先要分清题设和结论,然后按要求画出图形, 根据题意写出已知求证后,再写出证明过程。
阐明:文字证明题旳
书写格式要原则。
如图:将纸片△ABC沿DE折叠,点A落在点F处,
已知∠1+∠2=100°,则∠A=
度;
例5、如图6,已知:∠A=90°, AB=BD,ED⊥BC于 D.
你能画图阐明吗?
3.逆定理:与一条线段两个端点距离相等旳点, 在线段旳垂直平分线上。(完备性)
4.线段垂直平分线旳集合定义: m 线段垂直平分线能够看作是 A F
与线段两个端点距离相等旳所
有点旳集合。
C D
B
E
三.用坐标表达轴对称小结:
在平面直角坐标系中,有关x轴对称
旳点横坐标相等,纵坐标互为相反数.有
(-2, -3) (1, 2) (6, -5)
• 有关y轴旳对 2、称已点知点P(2a+b,-3a)与点P’(8,b+2).
(0,1.6) (4,0) (0, -1.6) (-4,0)
关y轴对称旳点横坐标互为相反数,纵坐
标相等.
点(x, y)有关x轴对称旳点旳坐标为_(x_,_-__y_).
点(x, y)有关y轴对称旳点旳坐标为_(-___x_, y_).
练习
1、完毕下表. (抢答)
已知点
(2,-3) (-1,2) (-6,- (0,-1.6) (4,0) 5)
• 有关x轴旳对 (2, 3) (-1,-2) (-6, 5) 称点
10、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一
条直线上求证:BE=AD 证明:

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版第十一章三角形。

1. 三角形的概念。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。

3. 三角形的三边关系。

- 三角形两边之和大于第三边,两边之差小于第三边。

- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。

4. 三角形的高、中线与角平分线。

- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。

- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线都在三角形内部,且相交于一点。

5. 三角形的内角和与外角和。

- 三角形内角和定理:三角形的内角和为180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。

- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。

- 三角形的一个外角大于与它不相邻的任何一个内角。

- 三角形的外角和为360^∘。

初二数学上册复习提纲人教版【八篇】

精心整理初二数学上册复习提纲人教版【八篇】导语:初二是数学学习的分水岭,很多孩子学习数学都会感到随着年级的升高越来越困难,这当然和孩子的智能倾向有关,但也和学习方法、思考问题方式、学习习惯有关。

以下是整理的初二数学上册复习12.。

3第二章实数1.平方根和算术平方根的概念及其性质:(1)概念:如果,那么是的平方根,记作:;其中叫做的算术平方根。

(2)性质:①当≥0时,≥0;当<0时,无意义;②=;③。

2(1(23(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限4.与实数有关的概念:在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;51置;2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

12别:(1两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。

菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。

四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。

菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形(3(4(5)等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

初二数学上册知识点总结人教版(精选14篇)

初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。

特别地,当b=0时,称y是x的正比例函数。

2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。

3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。

人教版初二上册数学知识点总结(汇集6篇)

人教版初二上册数学知识点总结(汇集6篇)人教版初二上册数学知识点总结(1)1全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上人教版初二上册数学知识点总结(2)一次函数(1)正比例函数:一般地,形如y=kx(k是常数,k?0)的函数,叫做正比例函数,其中k叫做比例系数;(2)正比例函数图像特征:一些过原点的直线;(3)图像性质:①当k>0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k(4)求正比例函数的解析式:已知一个非原点即可;(5)画正比例函数图像:经过原点和点(1,k);(或另外一个非原点)(6)一次函数:一般地,形如y=kx+b(k、b是常数,k?0)的函数,叫做一次函数;(7)正比例函数是一种特殊的一次函数;(因为当b=0时,y=kx+b即为y=kx)(8)一次函数图像特征:一些直线;(9)性质:①y=kx与y=kx+b的倾斜程度一样,y=kx+b可看成由y=kx平移|b|个单位长度而得;(当b>0,向上平移;当b②当k>0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;③当k④当b>0时,直线y=kx+b与y轴正半轴有交点为(0,b);⑤当b(10)求一次函数的解析式:即要求k与b的值;(11)画一次函数的图像:已知两点;用函数观点看方程(组)与不等式(1)解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值;从图像上看,这相当于已知直线y=kx+b,确定它与x轴交点的横坐标的值;(2)解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围;(3)每个二元一次方程都对应一个一元一次函数,于是也对应一条直线;(4)一般地,每个二元一次方程组都对应两个一次函数,于是也对应两条直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学知识点归纳第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

要点:①三条线段;②不在同一直线上;③首尾顺次相接以“是否有边相等”,可以将三角形分为两类:①三边都不相等的三角形;②等腰三角形(又分为等边三角形和底边和腰不相等的等腰三角形)。

按照角分,可分为锐角三角形、直角三角形、钝角三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

注意:已知两边可得第三边的取值范围是:两边之差<第三边<两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

注意:①三角形的三条高是线段;②画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高。

4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

注意:①三角形有三条中线,且它们相交三角形内部一点,交点叫重心。

②画三角形中线时只需连结顶点及对边的中点即可。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

注意:①三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13.公式与性质:⑴三角形的内角和定理:三角形的内角和为180°直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形。

⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

性质3:三角形的一个外角和与之相邻的内角互补。

过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角。

⑶多边形内角和公式:n 边形的内角和等于(2)n -·180° ⑷多边形的外角和:多边形的外角和为360°⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线。

第十二章 全等三角形一、知识框架:边边边、边角边、角边角、角角边、斜边、直角边判定全等形 全等三角形性质对应边相等、对应角相等二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形; ③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等. 理解:①长边对长边,短边对短边;②最大角对最大角,最小角对最小角;③对应角的对边为对应边,对应边对的角为对应角。

应用(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:1)边边边(SSS):三边对应相等的两个三角形全等。

2)边角边(SAS):两边和它们的夹角对应相等的两个三角形全等。

3)角边角(ASA):两角和它们的夹边对应相等的两个三角形全等。

4)角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等。

5)斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等。

4.证明两个三角形全等的基本思路:找第三边(SSS)(1)已知两边找夹角(SAS)找是否有直角(HL)找两角的夹边(ASA)(3)已知两角找夹边外的任意角(AAS)5.角平分线:⑴画法:略⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系);⑵根据题意,画出图形,并用数字符号表示已知和求证;⑶经过分析,找出由已知推出要求证的途径,写出证明过程。

7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)截长补短法证三角形全等。

第十三章轴对称一、知识框架:作轴对称图形的对称轴生活画轴对称图形中轴对称的轴关于坐标轴对称的点的坐标的关系对称等腰三角形等边三角形二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.(3)对称图形和轴对称的区别与联系轴对称图形轴对称图形区别(1)轴对称图形是指一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴联系如果吧轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称如果把两个成对称轴的图形拼在一起看成一个整体,那个么他就是一个轴对称图形。

(4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.如果两个图形关于某条直线对称,那个对称轴是任何一对对应点所连线的垂直平分线。

轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(5)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(6)等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.②对称的图形都全等.③如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

④两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上.⑶关于坐标轴对称的点的坐标性质①点(x, y)关于x轴对称的点的坐标为(x, -y).③(x, y)关于y轴对称的点的坐标为(-x, y).④点(x, y)关于原点对称的点的坐标为(-x,- y)。

⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等,都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.在直角三角形中,如果一个锐角等于30°,那么它所对应的直角边等于斜边的一半。

第十四章整式的乘除与分解因式一、知识框架:二、知识概念:1.基本运算:⑴同底数幂的乘法:mnm na a a+⨯= (m,n 都是正整数)同底数幂相乘。

底数不变,指数想加。

⑵幂的乘方:()nm mn aa = (m,n 都是正整数)幂的乘方,底数不变,指数相乘. ⑶积的乘方:()nn nab a b =积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 2.整式的乘法:⑴单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里所含有的字母,则连同他的指数作为积的一个因式。

⑵单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积想加⑶多项式与多项式相乘,先用一个多项式每个项乘以另一个多项式每一项,再把所得的积想加. 表达式:(a+b )(p+q)=a(p+q)+b(p+q)=ap+aq+bp+bq 3、整式的除法:⑴同底数幂的除法:mnm na a a-÷=(a ≠0,m,n 都是正整数,并且m >n )同底数幂相除,底数不变,指数相减。

a 0=1(a ≠0)任何不等于0的数的0次幂都等于1.⑵单项式相除:把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.⑶多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商想加. 4.乘法公式:⑴平方差公式:()()22a b a b a b -⨯+=-⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+添括号时,如果括号前面是正号,括到括号里的各项都不变符号,如果括号前面是符号,括到括号里的各项都改变符号。

相关文档
最新文档