数字图像增强几何变换

合集下载

数字图像处理 -习题2增强-噪声-几何变换-频域变换

数字图像处理  -习题2增强-噪声-几何变换-频域变换

第三章图像增强一.填空题1. 我们将照相机拍摄到的某个瞬间场景中的亮度变化范围,即一幅图像中所描述的从最暗到最亮的变化范围称为____动态范围__。

2.所谓动态范围调整,就是利用动态范围对人类视觉的影响的特性,将动态范围进行__压缩____,将所关心部分的灰度级的变化范围扩大,由此达到改善画面效果的目的。

3. 动态范围调整分为线性动态范围调整和__非线性调整___两种。

4. 直方图均衡化把原始图的直方图变换为分布均匀的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

基本思想是:对图像中像素个数多的灰度值进行__展宽_____,而对像素个数少的灰度值进行归并,从而达到清晰图像的目的。

5. 数字图像处理包含很多方面的研究内容。

其中,__图像增强_的目的是将一幅图像中有用的信息进行增强,同时将无用的信息进行抑制,提高图像的可观察性。

6. 灰级窗,是只将灰度值落在一定范围内的目标进行__对比度增强___,就好像开窗观察只落在视野内的目标内容一样。

二.选择题1. 下面说法正确的是:(B )A、基于像素的图像增强方法是一种线性灰度变换;B、基于像素的图像增强方法是基于空间域的图像增强方法的一种;C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高;D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好。

2. 指出下面正确的说法:(D )A、基于像素的图像增强方法是一种非线性灰度变换。

B、基于像素的图像增强方法是基于频域的图像增强方法的一种。

C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高。

D、基于频域的图像增强方法可以获得和基于空域的图像增强方法同样的图像增强效果。

3.指出下面正确的说法:(D )①基于像素的图像增强方法是一种非线性灰度变换。

②基于像素的图像增强方法是基于空域的图像增强方法的一种。

数字图像处理学

数字图像处理学

数字图像处理学数字图像处理(digital image processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二就是数学的发展(特别就是离散数学理论的创办和健全);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。

一、实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等,具体要求如下:1、编程同时实现图像位移,建议位移后的图像大小维持不变;2、编程实现图像的镜像;3、编程同时实现图像的单位矩阵;4、编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5、编程同时实现以任一角度对图像展开旋转变换,建议分别用双线性插值和最近邻插值两种方法去同时实现,并比较两种方法的转动效果。

二、实验目的和意义:本实验的目的就是并使学生熟识并掌控图像处理编程环境,掌控图像位移、镜像、单位矩阵和转动等几何变换的方法,并能够通过程序设计同时实现图像文件的读、写下操作方式,及图像位移、镜像、单位矩阵和转动等几何变换的程序实现。

三、实验原理与主要框架:3.1实验所用编程环境:visualc++(简称vc)是微软公司提供的基于c/c++的应用程序集成开发工具、vc拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的windows应用程序和web应用程序。

vc除了提供更多高效率的c/c++编译器外,还提供更多了大量的可以器重类和组件,包含知名的谷歌基础类库(mfc)和活动模板类库(atl),因此它就是软件开发人员不可多得的开发工具。

vc丰富的功能和大量的扩展库,类的重用特性以及它对函数库、dll库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于vc具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具。

数字图像处理图像变换实验报告.

数字图像处理图像变换实验报告.

实验报告实验名称:图像处理姓名:刘强班级:电信1102学号:1404110128实验一图像变换实验——图像点运算、几何变换及正交变换一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、学习使用“数字图像处理实验教学软件系统”,能够进行图像处理方面的简单操作;2、熟悉图像点运算、几何变换及正交变换的基本原理,了解编程实现的具体步骤;3、观察图像的灰度直方图,明确直方图的作用和意义;4、观察图像点运算和几何变换的结果,比较不同参数条件下的变换效果;5、观察图像正交变换的结果,明确图像的空间频率分布情况。

三、实验原理1、图像灰度直方图、点运算和几何变换的基本原理及编程实现步骤图像灰度直方图是数字图像处理中一个最简单、最有用的工具,它描述了一幅图像的灰度分布情况,为图像的相关处理操作提供了基本信息。

图像点运算是一种简单而重要的处理技术,它能让用户改变图像数据占据的灰度范围。

点运算可以看作是“从象素到象素”的复制操作,而这种复制操作是通过灰度变换函数实现的。

如果输入图像为A(x,y),输出图像为B(x,y),则点运算可以表示为:B(x,y)=f[A(x,y)]其中f(x)被称为灰度变换(Gray Scale Transformation,GST)函数,它描述了输入灰度值和输出灰度值之间的转换关系。

一旦灰度变换函数确定,该点运算就完全确定下来了。

另外,点运算处理将改变图像的灰度直方图分布。

点运算又被称为对比度增强、对比度拉伸或灰度变换。

点运算一般包括灰度的线性变换、阈值变换、窗口变换、灰度拉伸和均衡等。

图像几何变换是图像的一种基本变换,通常包括图像镜像变换、图像转置、图像平移、图像缩放和图像旋转等,其理论基础主要是一些矩阵运算,详细原理可以参考有关书籍。

实验系统提供了图像灰度直方图、点运算和几何变换相关内容的文字说明,用户在操作过程中可以参考。

下面以图像点运算中的阈值变换为例给出编程实现的程序流程图,如下:2、图像正交变换的基本原理及编程实现步骤数字图像的处理方法主要有空域法和频域法,点运算和几何变换属于空域法。

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

数字图像处理知识点总结

数字图像处理知识点总结

定小于任何其他排列形式.
矢量量化原理
第7章
矢量量化的编码就是根据一定的失真测度 在码书搜索出与输入矢量失真最小的码字的索引。
用Canny算子进行边缘检测的主要步骤
① 用高斯滤波器平滑图像 第9章
② 计算滤波后图像梯度的幅值和方向
③ 对梯度幅值应用非极大值抑制,其过程为找处图像梯度中的局 部极大值点,把其它非局部极大值点置零以得到得到细化的边 缘 ④ 用双阈值算法检测和连接边缘,使用两个阈值T1和T2(T1>T2), T1用来找到每条线段,T2用来在这些线段的两个方向上延伸寻 找边缘的断裂处,并连接这些边缘。
背景差分法 如何利用多幅运动图像构造一个 第9章 基准图像
• 找出多幅对应像素点灰度值变化在一定阈值范围内的部 分为基准图像,可通过检测图像序列相邻两帧之间的变 化,保留对应像素点灰度值变化在一定阈值范围内的部 分,再与下一帧的图像对比,重复上述过程,最终取得 基准图像。
• I=imread(‘原图像名.tif’); % 读入原图像,tif格式 • whos I • imshow(I) % 显示图像I的基本信息 % 显示图像
自动阈值 迭代式阈值选择算法的基本思想
第9章
• 开始时选择一个阈值作为初始估计值,然后按某种策略 不断地改进这一估计值,直到满足给定的准则为止。在 迭代过程中,关键之处在于选择什么样的阈值改进策略, 好的阈值的改进策略应该具备两个特征,一是能够快速 收敛,二是在每一个迭代过程中,新产生阈值优于上一 次的阈值。
• title(‘原图像’);
• %对原图像进行屏幕控制;显示直方图均衡化后 的图像 • figure;imshow(J); • %给直方图均衡化后的图像加标题名 • title(‘直方图均衡化后的图像’) ;

数字图像处理试题及答案

数字图像处理试题及答案

数字图像处理试题及答案一、单项选择题(每题2分,共10分)1. 数字图像处理中,图像的灰度变换不包括以下哪一项?A. 对数变换B. 幂律变换C. 直方图均衡化D. 图像锐化答案:D2. 在数字图像处理中,边缘检测的目的是:A. 提取图像中的纹理信息B. 提取图像中的边缘信息C. 增强图像的对比度D. 改变图像的颜色分布答案:B3. 下列哪种滤波器用于平滑图像?A. 高通滤波器B. 低通滤波器C. 带通滤波器D. 带阻滤波器答案:B4. 在数字图像处理中,图像的几何变换不包括以下哪一项?B. 缩放C. 剪切D. 颜色变换答案:D5. 在数字图像处理中,以下哪种方法用于图像分割?A. 阈值处理B. 边缘检测C. 直方图分析D. 颜色量化答案:A二、多项选择题(每题3分,共15分)6. 数字图像处理中的图像增强技术包括:A. 直方图均衡化B. 锐化C. 噪声滤除D. 图像压缩答案:ABC7. 在数字图像处理中,以下哪些是空间域的图像增强方法?A. 直方图均衡化B. 中值滤波C. 拉普拉斯算子D. 傅里叶变换8. 数字图像处理中,以下哪些是频域的图像增强方法?A. 低通滤波B. 高通滤波C. 带通滤波D. 傅里叶变换答案:ABC9. 在数字图像处理中,以下哪些是图像的几何变换?A. 旋转B. 缩放C. 平移D. 颜色变换答案:ABC10. 数字图像处理中,以下哪些是图像分割的方法?A. 阈值处理B. 边缘检测C. 区域生长D. 颜色量化答案:ABC三、简答题(每题5分,共20分)11. 简述数字图像处理中边缘检测的基本原理。

答案:边缘检测的基本原理是识别图像中亮度变化剧烈的区域,这些区域通常对应于物体的边界。

通过应用边缘检测算子,如Sobel算子、Prewitt算子或Canny算子,可以突出图像中的边缘,从而为后续的图像分析和处理提供重要信息。

12. 描述数字图像处理中直方图均衡化的目的和效果。

答案:直方图均衡化的目的是改善图像的对比度,使图像的直方图分布更加均匀。

数字图像处理---图像的几何变换

数字图像处理---图像的几何变换

数字图像处理---图像的⼏何变换图像的⼏何变换图像的⼏何变换包括了图像的形状变换和图像的位置变换图像的形状变换图像的形状变换是指图像的放⼤、缩⼩与错切图像缩⼩图像的缩⼩是对原有的数据进⾏挑选或处理,获得期望缩⼩尺⼨的数据,并尽量保持原有的特征不消失分为按⽐例缩⼩和不按⽐例缩⼩两种最简单的⽅法是等间隔地选取数据图像缩⼩实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1<1,K 2<1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像放⼤图像放⼤时对多出的空位填⼊适当的值,是信息的估计最简单的思想是将原图像中的每个像素放⼤为k ∗k 的⼦块图像放⼤实现设原图像⼤⼩为M ∗N ,缩⼩为K 1M ∗K 2N (K 1>1,K 2>1)1. 设原图为F (i ,j ),i =1,2,...,M ,j =1,2,...,N ;压缩后地图像为G (x ,y ),x =1,2,...,k 1M ,y =1,2,...,k 2N2. G (x ,y )=F (c 1∗i ,c 2∗j );其中,c 1=1/k 1,c 2=1/k 2图像错切图像错切变换实际上是平⾯景物在投影平⾯上的⾮垂直投影效果图像错切的数学模型x ′=x +d x y y ′=y(x ⽅向的错切,dx =tan θ)x ′=x y ′=y +d y x(y ⽅向的错切,dy =tan θ)图像的位置变换图像的位置变换是指图像的平移、镜像与旋转,即图像的⼤⼩和形状不发⽣变化主要⽤于⽬标识别中的⽬标配准图像平移公式:{{x ′=x +Δx y ′=y +Δy图像镜像图像镜像分为⽔平镜像和垂直镜像,即左右颠倒和上下颠倒公式:图像⼤⼩为M*Nx ′=x y ′=−y (⽔平镜像)x ′=−x y ′=y(垂直镜像)由于不能为负,因此需要再进⾏⼀次平移x ′=x y ′=N +1−y (⽔平镜像)x ′=M +1−xy ′=y(垂直镜像)图像旋转公式:x ′=xcos θ−ysin θy ′=xsin θ+ycos θ由于计算结果值所在范围与原有值不同,因此需要在进⾏扩⼤画布、取整、平移等处理画布扩⼤原则:以最⼩的⾯积承载全部的画⾯信息⽅法:根据公式x ′=xcos θ−ysin θy ′=xsin θ+ycos θ计算x ′min ,x ′max ,y ′min ,y ′max旋转后可能导致像素之间相邻连接不再连续,因此需要通过增加分辨率的⽅式填充空洞插值最简单的⽅式就是⾏插值(列插值)⽅法1. 找出当前⾏的最⼩和最⼤的⾮背景点坐标,记作:(i,k1)、(i,k2)2. 在(k1,k2)范围内进⾏插值,插值⽅法为空点的像素值等于前⼀点的像素值3. 重复上述操作直⾄没有空洞图像的仿射变换图像的仿射变换即通过通⽤的仿射变换公式,表⽰⼏何变换{{{{{{{齐次坐标原坐标为(x,y),定义齐次坐标为(wx,wy,w)实质上是通过增加坐标量来解决问题仿射变换通式通过齐次坐标定义仿射变换通式为x ′=ax +by +Δx y ′=cx +dy +Δy⇒x ′y ′=a b Δx c dΔyx y⼏何变换表⽰1. 平移x ′y ′1=10Δx 01Δy 001x y12. 旋转x ′y ′1=cos θ−sin θ0sin θcos θ0001x y 13. ⽔平镜像x ′y ′1=−10001001x y14. 垂直镜像x ′y ′1=1000−10001x y15. 垂直错切x ′y ′1=1d x 00−10001x y16. ⽔平错切x ′y ′1=100d y −10001x y1图像的⼏何校正由于图像成像系统的问题,导致拍摄的图⽚存在⼀定的⼏何失真⼏何失真分为{[][][][][][][][][][][][][][][][][][][][][]1. 系统失真:有规律的、可预测的2. ⾮系统失真:随机的⼏何校正的基本⽅法是先建⽴⼏何校正的数学模型,其次利⽤已知条件确定模型参数,最后根据模型对图像进⾏⼏何校正步骤:1. 图像空间坐标的变换2. 确定校正空间各像素的灰度值(灰度内插)途径:1. 根据畸变原因,建⽴数学模型2. 参考点校正法,根据⾜够多的参考点推算全图变形函数空间坐标变换实际⼯作中利⽤⼀幅基准图像f(x,y),来校正失真图像g(x′,y′)根据⼀些控制点对,建⽴两幅图像之间的函数关系,通过坐标变换,以实现失真图像的⼏何校正两幅图像上的f(x,y)=g(x′,y′)时,称其为对应像素(同名像素)通过表达式x′=h1(x,y)y′=h2(x,y)表⽰两幅图像之间的函数关系通常⽤多项式x′=n∑i=0n−i∑j=0a ij x i y jy′=n∑i=0n−i∑j=0b ij x i y j来近似h1(x,y)、h2(x,y)当多项式系数n=1时,畸变关系为线性变换x′=a00+a10x+a01yy′=b00+b10x+b01y六个未知数需要⾄少三个已知点来建⽴⽅程式当多项式系数n=2时,畸变关系式为x′=a00+a10x+a01y+a20x2+a11xy+a02y2y′=b00+b10x+b01y+b20x2+b11xy+b02y2 12个未知数需要⾄少6个已知点来建⽴⽅程式当超过已知点数⽬超过要求时,通过最⼩⼆乘法求解n=2时多项式通式为B2∗n=H2∗6A6∗n(n为待求点数)B2∗n=x′1x′2⋯x′n y′1y′2⋯y′n{ []H 2∗6=a 00a 10a 01a 20a 11a 02b 00b 10b 01b 20b 11b 02A 6∗n =11⋯1x 1x 2⋯x n y 1y 2⋯y n x 21x 22⋯x 2n x 1y 1x 2y 2⋯x n y ny 21y 22⋯y 2n同名点对要求1. 数量多且分散2. 优先选择特征点直接法利⽤已知点坐标,根据x ′=h 1(x ,y )y ′=h 2(x ,y )⇒x =h ′1(x ′,y ′)y =h ′2(x ′,y ′)x =n ∑i =0n −i∑j =0a ′ij x ′i y′jy =n ∑i =0n −i∑j =0b ′ijx ′i y ′j解求未知参数;然后从畸变图像出发,根据上述关系依次计算每个像素的校正坐标,同时把像素灰度值赋予对应像素,⽣成校正图像由于像素分布的不规则,导致出现像素挤压、疏密不均等现象,因此最后还需要进⾏灰度内插,⽣成规则图像间接法间接法通过假定⽣成图像的⽹格交叉点,从⽹格交叉点(x,y)出发,借助已知点求取未知参数,根据x ′=n ∑i =0n −i∑j =0a ij x i y jy ′=n ∑i =0n −i∑j =0b ij x i y j推算⽹格交叉点(x,y)对应畸变图像坐标(x',y'),由于对应坐标⼀般不为整数,因此需要通过畸变图像坐标周围点的灰度值内插求解,作为⽹格交叉点(x,y)的灰度值间接法相对直接法内插较为简单,因此常采⽤间接法作为⼏何校正⽅法像素灰度内插最近邻元法最近邻元法即根据四邻域中最近的相邻像素灰度决定待定点灰度值该⽅法效果较佳,算法简单,但是校正后图像存在明显锯齿,即存在灰度不连续性双线性内插法[][]{{双线性内插法是利⽤待求点四个邻像素的灰度在两个⽅向上作线性内插该⽅法相较最近邻元法更复杂,计算量更⼤,但是没有灰度不连续的缺点,且具有低通滤波性质,图像轮廓较为模糊三次内插法三次内插法利⽤三次多项式S(x)来逼近理论最佳插值函数sin(x)/xS(x)=1−2|x|2+|x|30≤|x|<1 4−8|x|+5|x|2−|x|31≤|x|<20|x|≥2该算法计算量最⼤,但是内插效果最好,精度最⾼{Processing math: 100%。

数字图像的几何运算

数字图像的几何运算

数字图像的几何运算数字图像的几何运算是指对图像进行平移、旋转、缩放和翻转等几何变换操作的过程。

这些几何运算可以改变图像的位置、方向、大小和形状,是数字图像处理中常用的操作之一。

本文将介绍几何运算的原理和应用,并讨论其在图像处理领域的重要性和作用。

一、几何运算的原理数字图像是由像素组成的二维矩阵,每个像素代表图像的一个点,包含了图像的颜色和位置信息。

几何运算是基于像素的位置信息对图像进行变换和调整的方法,可以通过修改像素的坐标来实现图像的平移、旋转、缩放和翻转等操作。

1. 平移平移是指将图像沿着水平和垂直方向进行移动,使得图像的位置发生变化。

平移操作可以通过修改像素的坐标来实现,将每个像素的坐标按照设定的平移量进行移动,从而改变图像的位置。

平移操作可以用以下公式表示:R’(x, y) = R(x-dx, y-dy)R(x, y)代表原始图像的像素,R’(x, y)代表平移后的图像像素,dx和dy分别代表水平和垂直方向的平移量。

二、几何运算的应用几何运算在数字图像处理中具有重要的应用价值,能够实现图像的位置、方向、大小和形状的调整,为图像处理提供了丰富的操作手段。

以下是几何运算的一些常见应用:1. 图像校正对于拍摄时出现的倾斜、扭曲等问题,可以通过旋转操作对图像进行校正,使得图像恢复到正常的状态。

图像校正能够提高图像的质量和美观度,减少图像处理时的误差和影响。

2. 图像增强通过缩放操作对图像进行放大或缩小,可以改变图像的大小和细节,使得图像更加清晰和细致。

图像增强能够提高图像的清晰度和可视性,使得图像更加逼真和吸引人。

3. 图像合成通过平移操作将多个图像进行位置调整,可以实现多个图像的合成和叠加,融合不同图像的信息和特点,生成新的图像内容。

图像合成能够实现图像的复杂处理和创意设计,为图像处理提供了更多的可能性。

4. 图像镜像通过翻转操作对图像进行镜像处理,可以改变图像的对称性和形状,生成镜像对称的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1图像增强1.1图像分段线性变换1.1.1图像分段线性变换原理直方图均衡化的目的是将原始图像的直方图变为均衡分布的形式,即将已知灰度概率密度分布的图像,经过某种变换变成一幅具有均匀灰度概率密度分布的新图像,从而改善图像的灰度层次。

它的基本思想是把原始图像的直方图变换成均匀分布的形式,这样就增加了像素灰度值的动态范围,从而达到了增强图像整体对比度的效果。

MATLAB图像处理工具箱中提供的histeq函数,可以实现直方图的均衡化。

线性变换是指在图像灰度范围内分段对逐个像元进行处理,是将原图像亮度值动态范围按线性关系(线性函数)变换到指定范围或整个动态范围。

在实际运算中给定的是2个亮度区间,即要把输入图像的某个亮度值区间[a,b]映射为输出图像的亮度值区间[c,d]。

即按线性比例对图像每一个象素灰度作灰度线性变换,改善图像视觉效果。

在实际图像处理中,为了突出感兴趣的目标或灰度区域,相对抑制不感兴趣的灰度区域,常常采用分段线性变换来进行图像灰度的处理。

1.1.2图像分段线性变换的matlab实现刘.jpg');>> figure(1);>> subplot(1,3,1);imshow(l);>> title('(a)原始图像')>> J1= rgb2gray(I);>> subplot(1,3,2);imshow(J1);>> title('灰度图像');>> axis on;>> J2=imadjust(J1,[0.01 0.3],[]);>> subplot(1,3,3),imshow(J2);>> title('分线段性变换图');其图为:(3)原始團像分线段性变换團100200300400500S00100 200 3001.2图像均衡直方图1.2.1图像均衡直方图原理直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。

这种方法通常用来增加许多图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候。

通过这种方法,亮度可以更好地在直方图上分布。

这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能。

直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。

设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x, y)处的灰度f映射为g。

在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1) EQ(f)在0< f £ I范围内是一个单值单增函数。

这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。

(2) 对于0 £ f-1 有0 £ g £1L,这个条件保证了变换前后灰度值动态范围的一致性。

累积分布函数(cumulative distribution function , CDF即可以满足上述两个条件,并且通过该函数可以完成将原图像f的分布转换成g的均匀分布。

此时的直方图均衡化映射函数为:=EQ( ) = (ni/n) = pf(A),(k=0, 1, 2, ••…,-L-1)上述求和区间为0到k,根据该方程可以由源图像的各像素灰度值直接得到直方图均衡化后各像素的灰度值。

在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并计算出原始直方图分布,然后根据计算出的累计直方图分布求出然后根据计算出的累计直方图分布求出」的灰度映射关系。

在重复上述步骤得到源图像所有灰度级到目标图像灰度级的映射关系后,按照这个映射关系对源图像各点像素进行灰度转换,即可完成对源图的直方图均衡化。

1.2.2图像均衡直方图的matlab实现刘jpg');>> b=rgb2gray(l);>> subplot(2,2,1);imshow(b);>>title('灰度图像');>> subplot(2,2,3);imhist(b);>> title('灰度直方图');>> c=histeq(b,64);>> subplot(2,2,2);imshow(c);>> title('均化处理后图像');>> subplot(2,2,4);imhist(c);>> title('均化处理后图像直方图');结果是均优处理后團像灰度直方圄"朗團像1.3图像均值滤波1.3.1图像均值滤波原理均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。

线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点( X, y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点( x,y), 作为处理后图像在该点上的灰度个g (x, y),即个g (x, y) =1/m Eff x, y) m为该模板中包含当前像素在内的像素总个数。

132图像均值滤波的matlab实现刘jpg');>> b=rgb2gray(l);>> subplot(1,2,1);imshow(b);>> title('灰度图像');>> h=[1,2,1;0,0,0;-1,-2,-1];>> c=filter2(h,b);>> subplot(1,2,2);imshow(c);>> title('均值滤波处理后图像');1.4图像中值滤波 1.4.1图像中值滤波原理中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术, 中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个临域中各点值的中值代替, 让周围 的像素值接近的值, 从而消除孤立的噪声点。

方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。

二维中值滤波输出为g (x,y ) =med{f(x-k,y-l),(k,l € W)},其中,f(x,y), g(x,y)分别为原始图像和处理后图像。

W 为二维模板,通常为 2*2 , 3*3区域,也可以是不同的的形状,如线状,方形,圆形,十 字形,圆环形,菱形等。

1.4.2图像中值滤波的 matlab 实现刘.jpg');>> b=im2double(I);灰度團像是均值浪波虹理后團像原皓團像 期人椒盐嗓声后的圍像1.5图像模板卷积 1.5.1图像模板卷积原理模板可以是一幅小图像,也可以是一个滤波器,或者说是一个窗口,通常用矩阵来表示。

每个模板都有一个原点, 对称模板的原点一般取模板中心点, 非对称模板的原点可根据使用目的选取。

模板卷积是数字图像处理中常用的一种邻域运算方式,它是指模板与图像进行类似于卷积或相关(尽管卷积与相关形式上不同,但由于它们之间的相似性,数字图像处理中常 认为它们都是卷积)的运算。

模板卷积可实现图像平滑、图像锐化、边缘检测等功能。

模板 卷积中的模板又称为卷积核, 卷积核中的元素称为卷积系数或模板系数或加权系数,其大小及排列顺序决定了对图像进行邻域处理的类型。

模板卷积的基本步骤如下:(1) 模板在输入图像上移动,让模板原点依次与输入图像中的每个像素重合; (2) 模板系数与跟模板重合的输入图像的对应像素相乘,再将乘积相加;>> b=rgb2gray(l);>> b2=imnoise(b,'salt',0.02); >> b3=medfilt2(b2); >> b4=wiener2(b2);>> subplot(2,2,1);imshow(b);title(' >> subplot(2,2,2);imshow(b2);title(' >> subplot(2,2,3);imshow(b3);title(' >> subplot(2,2,4);imshow(b4);title(' 结果原始图像');加入椒盐噪声后的图像'); 进行中值滤波后的图像'); 进行自适应滤波后的图像');是进行中值滤遊后的團像 进行自适应滤遍后的團像(3) 把结果赋予输出图像,其像素位置与模板原点在输入图像上的位置一致。

假设模板h有m个加权系数,模板系数hi对应的图像像素为pi,则模板卷积可表示为1.5.2图像模板卷积matlab实现>> 刘.jpg');>> a=rgb2gray(l);>> subplot(1,3,1);imshow (a);>>title('灰度图像');>> b=medfilt2(a,[3 3]);>> subplot(1,3,2);imshow(b);>> title('3*3 模板');>> c=medfilt2(a,[7 7]);>> subplot(1,3,3);imshow(c);>> title('7*7 模板');结果为灰度團像弓专模板7咋模板1.6拉普拉斯增强滤高频波1.6.1拉普拉斯增强滤高频波原理图像锐化处理的作用是使灰度反差增强,从而使模糊图像变得更加清晰。

图像模糊的实质就是图像受到平均运算或积分运算,因此可以对图像进行逆运算,如微分运算以突出图像细节使图像变得更为清晰。

由于拉普拉斯是一种微分算子,它的应用可增强图像中灰度突变的区域,减弱灰度的慢变化区域。

因此,锐化处理可选择拉普拉斯算子对原图像进行处理产生描述灰度突变的图像,再将拉普拉斯图像与原始图像叠加而产生锐化图像162拉普拉斯高频增强滤波的matlab实现刘jpg');I仁rgb2gray(l);imshow(ll);J=double(l1);k=size(J);L=zeros(k(1,1),k(1,2));for x=2:k(1,1)-1for y=2:k(1,2)-1L(x,y)=(-J(x+1,y)~J(*1,y)-J(x,y+1)J(xy1)+4*J(x,y));endendimshow(L);结果是:数字图像处理作业《图像增强与几何变换》数字图像处理作业《图像增强与几何变换》2图像几何变换2.1图像平移2.1.1图像平移变换原理图像平移是将一幅图像中所有的点都按照指定的平移量在水平、垂直方向移动,平移后的图像与原图像相同。

相关文档
最新文档