福建省龙岩七年级上学期数学期末考试试卷
福建省龙岩七年级上学期期末数学试卷

福建省龙岩七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七上·余杭期末) 点A,B,C,D在数轴上的位置如图用示,点A,D表示的数是互为相反数,若点B所表示的数为a,,则点D所表示的数为()A .B .C .D .2. (2分)下列说法不正确的是()A . 0不是正数也不是负数B . 负数是带“—”的数,正数是带有“+”的数C . 非负数是正数或0D . 0是一个特殊的整数,它并不只是表示“没有”3. (2分)如图,直线c、b被直线a所截,则∠1与∠2是()A . 同位角B . 内错角C . 同旁内角D . 对顶角4. (2分)如果2x2y3与x2yn+1是同类项,那么n的值是()A . 1B . 2C . 3D . 45. (2分)若代数式x2y3与﹣3x2myn+1的和是﹣2x2y3 ,则m+2n的值是()A . 5B . 4C . 3D . 26. (2分) (2018七上·涟源期中) 的相反数是()A .B .C . 3D . -37. (2分)下列各式计算正确的是A . (a+b)2=a2+b2B . a2+a3=a5C . a8÷a2=a4D . a•a2=a38. (2分)(2017·商丘模拟) 如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A .B .C .D .9. (2分)若∠1和∠2互余,∠1与∠3互补,∠3=120°,则∠1与∠2的度数分别为()A . 50°、40°B . 60°、30°C . 50°、130°D . 60°、120°10. (2分)用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A . 104B . 108C . 24D . 28二、填空题 (共6题;共6分)11. (1分)巴西奥运会开幕式于2016年8月6日上午7时在里约热内卢马拉卡纳体育场举行,据悉,里约奥运会开幕式预算为2100万美元,将数据2100万用科学记数法表示为________万.12. (1分) (2017七上·厦门期中) 方程 x﹣3=13的解是________.13. (1分)(2017·新吴模拟) 已知直角平面坐标系内有两点,点P(4,2)与点Q(a,a+2),则PQ的最小值为________.14. (1分)某公园的成人单价是10元,儿童单价是4元.某旅行团有a名成人和b名儿童;旅行团的门票费用总和为________ 元.15. (1分) (2017七上·乐清月考) 当m为整数,代数式的值也是整数时,m的值为________16. (1分)根据图中数字的规律,在最后一个空格中填上适当的数字________ .三、解答题 (共9题;共54分)17. (5分)计算(1)8+(﹣15)﹣(﹣9)+(﹣10)(2)﹣24﹣6÷(﹣2)×|﹣|18. (5分) (2016七上·南昌期末) 解方程:.19. (5分) (2019八上·禅城期末) 计算:20. (5分) (2018七上·汉滨期中) 若有理数a、b互为倒数,求2ab-5的值.21. (5分) (2016七上·岳池期末) 如图,已知O为直线AB上一点,过点O向直线上方引三条射线QC、OD、OE,且OC平分∠AOD.∠2=3∠1,∠BOD=80°,求∠COE的度数.22. (5分)某蔬菜经营户,用160元从某蔬菜市场批发了茄子和豆角共50千克,茄子】豆角当天的批发价和零售价如下表所示:品名茄子豆角批发价(元/千克) 3.0 3.5零售价(元/千克) 4.5 5.2(1)这天该经营户批发了茄子和豆角各多少千克?(2)当天卖完这些茄子和豆角共可盈利多少元?23. (10分) (2019七上·遵义月考) 小明在一次测验中计算一个多项式M加上5ab﹣3bc+2ac时,不小心看成减去:5ab﹣3bc+2ac,结果计算出错误答案为2ab+6bc﹣4ac.(1)求多项式M;(2)试求出原题目的正确答案.24. (3分) (2017七上·鄞州月考) 有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式分别为:(1) ________;(2) ________;(3) ________﹒25. (11分) (2019七上·潮阳期末) 如图,已知∠AOB=60°,∠AOB的边OA上有一动点P ,从距离O点18cm的点M处出发,沿线段MO、射线OB运动,速度为2cm/s;动点Q从点O出发,沿射线OB运动,速度为lcm/s;P、Q同时出发,同时射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,设运动时间是t(s).(1)当点P在MO上运动时,PO=________cm(用含t的代数式表示);(2)当点P在线段MO上运动时,t为何值时,OP=OQ?此时射线OC是∠AOB的角平分线吗?如果是请说明理由.(3)在射线OB上是否存在P、Q相距2cm?若存在,请求出t的值并求出此时∠BOC的度数;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共54分)17-1、18-1、19-1、20-1、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、。
福建省龙岩七年级上学期数学期末考试试卷

福建省龙岩七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)如果向北走3m,记作+3m,那么﹣10m表示()A . 向东走10mB . 向南走10mC . 向西走10mD . 向北走10m2. (2分)(2019·黄冈模拟) 国家统计局统计资料显示,2018年第一季度我国国内生产总值为31355.55亿元,用科学记数法表示为()元.(用四舍五入法保留3个有效数字)A .B .C .D .3. (2分)(2013·义乌) 如图几何体的主视图是()A .B .C .D .4. (2分) (2017八下·沧州期末) 根据如图的程序,计算当输入值x=﹣2时,输出结果y为()A . 1B . 5C . 7D . 以上都有可能5. (2分) (2016七上·端州期末) 下列各组单项式中,为同类项的是()A . 与B . 与C . 与D . -3与-a6. (2分)元旦来临,各大商场都设计了促进消费增加利润的促销措施,“物美”商场把一类双肩背的书包按进价提高50%进行标价,然后再打出8折的优惠价,这样商场每卖出一个书包就可盈利8元.这种书包的进价是()元.A . 40B . 35C . 42D . 38二、填空题 (共10题;共10分)7. (1分)(2019·蒙自模拟) ________的相反数是﹣2019.8. (1分) (2019七上·灌阳期中) 如果|x+3|+(8-2y)2=0,那么 =________.9. (1分) (2020七上·德城期末) 建筑工人砌墙时,经常在两个墙角的位置分别插一根木桩,然后在两个木桩之间拉一条线,建筑工人沿着拉紧的这条直线砌墙,这个事实说明的原理是________.10. (1分) (2017七上·北京期中) 若a2mb3和﹣7a2b3是同类项,则m值为________.11. (1分)若已知x+y=3,xy=﹣4,则(1+3x)﹣(4xy﹣3y)的值为________12. (1分) (2016七上·六盘水期末) 如图,点A、O、B在一条直线上,且∠AOC=50°,OD平分∠AOC、,则图中∠BOD=________度.13. (1分) (2016七上·端州期末) 若x2+2x的值是8,则4x2﹣5+8x的值是________.14. (1分) (2019七上·黄冈期末) 如图,在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB=________°.15. (1分) (2018七上·萍乡期末) 如图所示,线段AB=14cm,C是AB上一点,且AC=9cm,O为AB的中点,线段OC的长度为________.16. (1分) (2019七上·天台月考) 我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设 =x,则x=0.3+ x,解得x= ,即 = .仿此方法,将化成分数是________.三、解答题 (共10题;共76分)17. (5分) (2018七上·安达期末) 24+(-14)+(-16)+818. (5分) (2018七上·仁寿期中) [(﹣1)2018 +(1﹣)× ]÷(﹣32+2)19. (5分)(2016七上·下城期中) 计算.(1)-9+6÷(-2)(2)(3)用简便方法计算:(4)20. (5分) (2019七上·丹东期末) 解方程:(1) 3(20-y)=6y-4(y-11);(2)21. (5分) (2019七上·沁阳期末) 解方程: .22. (5分)已知3xa+1yb-2与是同类项,求的值.23. (5分) (2018七上·深圳期中) 如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2) P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.24. (15分) (2015七上·宝安期末) 我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A落在A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD边与BA′重合,折痕为BE,如图2所示,求∠2和∠CBE的度数.(3)如果将图2中改变∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明.25. (10分) (2016八上·太原期末) 某小区有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前6天硬化的道路长y甲、y乙(米)与施工时间x(天)之间的函数图象根据图象解答下列问题:(1)直接写出y甲、y乙(米)与x(天)之间的函数关系式.①当0<x≤6时,y甲=________;②当0<x≤2时,y乙=________;当2<x≤6时,y乙=________;(2)求图中点M的坐标,并说明M的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工6天后,每天的施工速度提高到120米/天,预计两队将同时完成任务.两队还需要多少天完成任务?26. (16分) (2019七上·江阴期中) 已知数轴上点A、B分别表示的数是、 ,记A、B两点间的距离为AB(1)若a=6,b=4,则AB=________;若a=-6,b=4,则AB=________;(2)若A、B两点间的距离记为,试问和、有何数量关系?(3)写出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求所有这些整数的和.(4) |x-1|+|x+2|取得的值最小为________,|x-1|-|x+2|取得最大值为________.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共76分)17-1、18-1、19-1、19-2、19-3、19-4、20-1、20-2、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。
福建省龙岩市新罗区2022-2023学年七年级上学期期末质量监测数学试卷(含详细答案)

福建省龙岩市新罗区2022-2023学年七年级上学期期末质量监测数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.实数﹣2023的绝对值是( )A .2023B .﹣2023C .12023D .12023- 【答案】A【分析】根据绝对值的代数意义即可得出答案.【详解】解:因为负数的绝对值等于它的相反数,所以,﹣2023的绝对值等于2023.故选:A .【点睛】本题考查了绝对值的代数意义,熟练掌握知识点是本题的关键.2.为保障2022年北京冬奥会顺利举行,中国耗时5年,成功突破外国人工造雪技术的封锁,为滑雪等项目提供了有利条件.据造雪专家介绍,所有赛道的造雪面积约为125000平方米.数据125000用科学记数法表示为( )A .50.12510⨯B .61.2510⨯C .51.2510⨯D .412.510⨯3.下列各式中,与23xy 是同类项的是( )A .22x yB .22x yC .xyD .2xy - 【答案】D【分析】根据同类项的概念判断即可.【详解】A .22x y 与23xy 中x 的指数不同,因此不是同类项,故A 错误;B .22x y 与23xy 中x 、y 的指数不同,因此不是同类项,故B 错误;C .xy 与23xy 中y 的指数不同,因此不是同类项,故C 错误;D .2xy -与23xy 是同类项,故D 正确.故选:D .【点睛】本题主要考查了同类项的概念,解题的关键是抓住同类项概念中的两个相同:一是字母相同;二是相同字母的指数也相同.4.在实数27-,0,π 1.41中,有理数有( ) A .4个B .3个C .2个D .1个5.已知OP 平分AOB ∠,若32AOP ∠=︒,则AOB ∠的度数为( )A .16°B .32°C .64°D .68°【答案】C【分析】根据角平分线的定义解决此题.【详解】解:OP 平分AOB ∠,32AOP ∠=︒,264AOB AOP ∴∠=∠=︒. 故选:C .【点睛】本题主要考查角平分线,解题的关键是熟练掌握角平分线的定义.6.下列说法中,不正确的是( )A .23a bc -的系数是3-,次数是4B .13xy -是整式C .2631x x -+的项是26x ,3x -,1D .22R R ππ+是三次二项式【答案】D【分析】根据单项式的系数、次数,可判断A ,根据整式的定义,可判断B ,根据多项式的项是多项式中每个单项式,可判断C ,根据多项式的次数是多项式中次数最高项的单项式的次数,可判断D .7.洪水无情,人间有爱,很多最美逆行者奔赴抗洪第一线,与受灾群众一起共渡难关,“奋进”数学学习小组,送给逆行者的正方体六个面上都有一个汉字,如图所示是它的一种展开图,那么在原正方体中,与“最”字所在面的相对面上的汉字是( )A .的B .行C .人D .逆 【答案】C【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点可知,“美”与“逆”在相对面上,“的”与“行”在相对面上,“最”与“人”在相对面上,故选:C .【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.8.若代数式2325--=x x ,则代数式2202193+-x x 值是( )A .2000B .2006C .2035D .2042 【答案】A【分析】根据已知式子得到237x x -=,代入求值即可;【详解】∵2325x x --=,∴237x x -=,∵原式()22021332021372021212000x x =--=-⨯=-=. 故选C .【点睛】本题主要考查了代数式求值,准确计算是解题的关键.9.若关于x 的方程4163ax x a x -+-=-的解是整数..,则符合条件的整数..a 的和是( ) A .32-B .24-C .16-D .210.如图,长方形ABCD 中,4cm AB =,6cm AD =,动点M 从点A 出发,以1cm /秒的速度沿长方形ABCD 的边按→→→→→→AB BC CD DA AB BC 的顺序运动,动点N 从点C 出发,以3cm /秒的速度沿长方形ABCD 的边按→→→→→→CB BA AD DC CB BA 的顺序运动.若动点M 、N 同时从发,运动的时间设为t 秒,则动点M 、N 第十次相遇时,t 的值是( )A .27.5秒B .32.5秒C .37.5秒D .47.5秒【答案】D【分析】由题意得出规律:动点M 、N 第n (n 是正整数)次相遇时,()2.551t n =+-,从而得出结论.【详解】解:长方形ABCD 中,4DC AB ==cm ,6BC AB ==cm ,由题意动点M 、N二、填空题+米,那么向西走15米可记作_____米.11.如果向东走10米记作10-【答案】15【分析】明确“正”和“负”所表示的意义,再根据题意作答.+米,【详解】解:∵向东走10米记作10∵向西走15米记作15-米.-.故答案为:15【点睛】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.12.绵阳冬季某日的最高气温是3∵,最低气温为-1∵,那么当天的温差是__________∵.【答案】4【分析】求该日的温差就是作减法,用最高气温减去最低气温,列式计算.【详解】解:3-(-1)=4(∵)答:当天的温差是4∵.故答案为4.【点睛】本题主要考查了有理数的减法的应用,注意符号不要搞错.13.如图,在数轴上3-的倒数所对应的点是___________.【答案】C-的倒数,再在数轴上找对应点.【分析】先求得314.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50千米/小时,水流速度是a 千米/小时,3小时后甲船比乙船多航行______千米. 【答案】6a【分析】根据题意,可以用代数式表示出3小时后甲船比乙船多航行多少千米,本题得以解决.【详解】解:由题意可得,3小时后甲船比乙船多航行:3(50+a )-3(50-a )=150+3a -150+3a=6a (千米), 故答案为:6a .【点睛】本题考查了列代数式,解答本题的关键是明确题意,列出相应的代数式. 15.把一副三角板按如图所示方式拼在一起,并作ABE ∠的平分线BM ,则CBM ∠的度数是____.3016.把19-这9个数填入33⨯的方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),洛书是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则a b -的值为_________.【答案】7【分析】根据任意一行,任意一列及任意一条对角线上的数之和都相等,先求解对角线上的三个数之和为15,设第三行第三列的数字为x ,根据题意列出方程,求得x ,继而求得,a b 的值,从而可得答案.【详解】解:由对角线上的三个数之和为:456=15++,任意一行,任意一列及任意一条对角线上的数之和都相等,615a b ∴++=设第三行第三列的数字为x ,则6715x ++=,解得2x =515a x ∴++=8a ∴=91b a ∴=-=817a b ∴-=-=故答案为:7【点睛】本题考查的是有理数的加减运算,一元一次方程的应用,弄懂题意列式计算或列方程求解是解题的关键.三、解答题17.计算:(1)()()723---+-;(2)()()23121261-+-⨯--÷-. 【答案】(1)8-;(2)9-【分析】(1)由有理数的加减法则计算即可;(2)先算乘方、绝对值和乘除,再算加减即可.【详解】(1)解:原式723=-+-(2)解:原式966=--+9=-【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则及运算顺序是解题的关键,同时注意运算符号不要出错,如这里的239-=-,而不是9.18.解方程3157146y y ---=. 【答案】1y =-【分析】根据去分母,去括号,移项,合并,化系数为1的步骤求解即可.【详解】解:去分母得:93121014y y --=-,移项合并同类项得:1y -=,解得:1y =-.【点睛】本题主要考查了解一元一次方程,熟知解一元一次方程的方法是解题的关键.19.先化简,再求值:222233x x x x ⎛⎫+-- ⎪⎝⎭,其中12x =-.20.请按要求完成下列问题.如图:A 、B 、C 、D 四点在同一直线上,若AB CD =.(1)比较线段的大小:AC _______BD (填“>”、“=”或“<”);(2)若34AC BC =,且12cm AC =,则AD 的长.=)解:AB CDBC,)解:34AC BC=,AC,12cm,3⨯=9(cm)4=-AB AC BC21.某乳制品厂有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元,该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,剩余鲜牛奶直接销售;方案二:将一部分鲜牛奶制成奶粉,剩余的制成酸奶,并恰好4天完成.你认为哪种方案获利较多,为什么?【答案】第二种方案获利较多,理由见详解【分析】方案一:根据制成奶粉每天可加工1吨,求出4天加工的吨数,剩下的直接销售鲜牛奶,求出利润;方案二:设生产x天奶粉,(4-x)天酸奶,根据题意列出方程,求出方程的解得到x的值,进而求出利润,比较即可得到结果.【详解】解:第二种方案获利较多,理由如下:方案一:最多生产4吨奶粉,其余的鲜奶直接销售,则其利润为:4×2000+(10-4)×500=11000(元);方案二:设生产x天奶粉,则生产(4-x)天酸奶,根据题意得:x+3(4-x)=10,解得:x=1,∵3天生产酸奶,加工的鲜奶3×3=9吨,设生产1天奶粉,加工鲜奶1吨,则利润为:1×2000+3×3×1200=2000+10800=12800(元),∵12800-11000=1800.得到第二种方案可以多得1800元的利润.即第二种方案获利较多.【点睛】此题考查了一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.“囧”:是网络流行语,像一个人脸郁闷的神情,如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分)•设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当y=1,x=4时,求此时“囧”的面积;2[2S﹣8(S+bxy)]的(3)令“囧”的面积为S,正方形的边长为a,若代数式2S﹣12值与x、y无关,求此时b的值.23.一年一度的“双十一”全球购物节完美收官,来自全国各地的包裹陆续发到本地快递公司.一快递小哥骑三轮摩托车从公司P出发,在一条东西走向的大街上来回投递包裹,现在他一天中七次连续行驶的记录如表(我们约定向东为正,向西为负,单位:千米)(1)快递小哥最后一次投递包裹结束时他在公司P的哪个方向上?距离公司P多少千米?(2)在第_________次记录时快递小哥距公司P地最远;(3)如果每千米耗油0.08升,每升汽油需7.2元,那么快递小哥投递完所有包裹需要花汽油费多少元?24.已知120AOB ∠=︒,以射线OA 为起始边,按顺时针方向依次作射线OC 、OD ,使得60COD ∠=︒,设AOC θ∠=,0180θ︒<<︒.(1)如图1,当060θ︒<︒≤时,若83AOD ∠=︒,求BOC ∠的度数;(2)备用图∵,当60120θ︒<<︒时,试探索AOD ∠与BOC ∠的数量关系,并说明理由;(3)备用图∵,当120180θ︒≤<︒时,分别在AOC ∠内部和BOD ∠内部作射线OE ,OF ,使23AOE AOC ∠=∠,13DOF BOD ∠=∠,求EOF ∠的度数.【答案】(1)97BOC ∠=︒;(2)180AOD BOC ∠+∠=︒;理由见解析;(3)80EOF ∠=︒【分析】(1)根据图形可知BOD AOB AOD ∠=∠-∠,继而根据BOC COD BOD ∠=∠+∠,即可求解;(2)根据图形得出60BOC COD BOD BOD ∠=∠-∠=︒-∠,计算AOD BOC ∠+∠,即可得出结论;120θ时,射线时,如图4,射线,060θ︒<≤︒,内部,AOB ∠=83AOD =︒,120BOD AOD ∴∠==︒-COD ∠=60BOC BOD ∴∠==︒+(2)AOD ∠60θ︒<<∴射线OC AOD ∠=BOC ∠=∠AOD ∴∠+∠AOD ∴∠+(3)∵当120θ时,射线则120AOC AOB ∠∠=︒,∠2AOE ∠=COE ∴∠=COF ∠=EOF ∴∠=AOE ∠=COE ∴∠=BOF ∠=COF ∴∠25.已知,A 、B 在数轴上对应的数分别用a 、b 表示,且2(150)100+++=ab b ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)若点C 在线段OB 上,且8BC =,当数轴上有点P 满足3PC PB =时,求数轴上点P 表示的数;(3)动点P 从原点开始第一次向右移动1个单位长度,第二次向左移动3个单位长度,第三次向右移动5个单位长度,第四次向左移动7个单位长度,.点P 在移动过程中,能否与点A 或B 重合?若都不能...,请直接回答;若能,请直接指出,第几次移动与哪一点重合?【答案】(1)见解析,25AB =(2)P 点对应的数为14-或8-(3)当仅当10n =时,点10P 表示的数为10-,第10次移动点P 所得的对应点P 与点B 重合;当仅当15n =时,点15P 表示的数为15,第15次移动点P 所得的对应点P 与点A 重ab+)解:(150)+=,100,=,25得:点PC PB3=x∴∵当Px2--=P解得:P x-<∵当10∵当2-<P x 时,()1010P P PB x x =--=+,()22P P PC x x =--=+,PB PC >,∴此种情况不成立;∴综合∵∵∵得:P 点对应的数为14-或8-.(3)解:点P 能移动到与点A 或B 重合的位置,理由如下:第一次移动点P 所得的对应点1P 表示的数为011+=,第二次移动点P 所得的对应点2P 表示的数为132-=-,第三次移动点P 所得的对应点3P 表示的数为253-+=,第四次移动点P 所得的对应点4P 表示的数为374-=-,第五次移动点P 所得的对应点5P 表示的数为495-+=,第六次移动点P 所得的对应点6P 表示的数为5116-=-,第n 次移动点P 所得的对应点n P 表示的数为(1)n n --⋅,观察发现:当n 为奇数时,点P 对应的数为奇数n ;当n 为偶数时,点P 对应的数为偶数n -,为15A x =,10B x =-,∴当仅当10n =时,点10P 表示的数为10-,第10次移动点P 所得的对应点P 与点B 重合; 当仅当15n =时,点15P 表示的数为15,第15次移动点P 所得的对应点P 与点A 重合.【点睛】本题主要考查了数轴上两点之间的距离,数轴上的动点问题,解题的关键是熟练掌握数轴上两点间的距离公式,数形结合,注意进行分类讨论.。
七年级上册龙岩数学期末试卷测试卷(含答案解析)

七年级上册龙岩数学期末试卷测试卷(含答案解析)一、选择题1.如图,已知AOB ∠是直角,OM 平分AOC ∠,ON 平分BOC ∠,则MON ∠的度数是( )A .30°B .45°C .50°D .60° 2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( )A .B .C .D .3.方程去分母后正确的结果是( ) A .B .C .D . 4.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A .相等B .互余C .互补D .不确定 5.方程1502x --=的解为( ) A .4- B .6- C .8- D .10-6.-8的绝对值是( )A .8B .18C .-18D .-87.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个8.一个几何体的侧面展开图如图所示,则该几何体的底面是( )A .B .C .D .9.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 11.下列运算中,结果正确的是( ) A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=2 12.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m13.如图,已知正方形2134A A A A 的边长为1,若从某一点开始沿逆时针方向走点的下标数字的路程,则把这种走法成为一次“逆移”,如:在点3A 开始经过3412A A A A →→→为第一次“逆移”, 在点2A 开始经过2341A A A A →→→为第二次“逆移”.若从点1A 开始,经过2020次“逆移”,最终到达的位置是( )A .1AB .2AC .3AD .4A 14.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x -1)-2(2x +3)=6B .3(x -1)-2(2x +3)=1C .2(x -1)-3(2x +3)=6D .3(x -1)-2(2x +3)=315.一个长方形操场的长比宽长70米,根据需要将它扩建,把它的宽增加20米后,它的长就是宽的1.5倍.若设扩建前操场的宽为x 米,则下列方程正确的是( )A . 1.5(7020)x x =-+B .70 1.5(20)x x +=+C .70 1.5(20)x x +=-D .70 1.5(20)x x -=+二、填空题16.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .17.动点,A B 分别从数轴上表示10和2-的两点同时出发,以7个单位长度/秒和4个单位长度/秒的速度沿数轴向负方向匀速运动,__________秒后,点,A B 间的距离为3个单位长度.18.若4550a ∠=︒',则a ∠的余角为______.19.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.20.若一个多边形的内角和是900º,则这个多边形是 边形.21.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.22. 当m = __时,方程21x m x +=+的解为4x =-.23.若5x =是关于x 的方程2310x m +-=的解,则m 的值为______.24.如图,O 为模拟钟面圆心,M 、O 、N 在一条直线上,指针OA 、OB 分别从OM 、ON 同时出发,绕点O 按顺时针方向转动,OA 运动速度为每秒12°,OB 运动速度为每秒4°,当一根指针与起始位置重合时,转动停止,设转动的时间为t 秒,当t =______秒时,∠AOB=60°.25.6的绝对值是___.三、解答题26.计算下列各题:(1)1021(2)11-+--⨯(2)2019111(3)69--÷-⨯ 27.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .28.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.(请利用网格作图,画出的线请用铅笔描粗描黑)(1)过点C 画AB 的垂线,并标出垂线所过格点E ;(2)过点C 画AB 的平行线CF ,并标出平行线所过格点F ;(3)直线CE 与直线CF 的位置关系是 ;(4)连接AC ,BC ,则三角形ABC 的面积为 .29.列方程解应用题:《弟子规》的初中读本的主页共计96页。
福建省龙岩市七年级(上)期末数学试卷

七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.向北行驶3km,记作+3km,向南行驶2km记作()A. +2kmB. −2kmC. +3kmD. −3km2.一个几何体的展开图如图所示,这个几何体是()A. 三棱柱B. 三棱锥C. 四棱柱D. 四棱锥3.若使等式(-4)□(-6)=2成立,则□中应填入的运算符号是()A. +B. −C. ×D. ÷4.下列运算正确的是()A. 5a−3a=2B. 2a+3b=5abC. −(a−b)=b+aD. 2ab−ba=ab5.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为()A. 25×105B. 2.5×106C. 0.25×107D. 2.5×1076.如果以x=-5为方程的解构造一个一元一次方程,那么下列方程中不满足要求的是()A. x+5=0B. x−7=−12C. 2x+5=−5D. −x5=−17.如图,下面几何体,从左边看到的平面图形是()A.B.C.D.8.下列说法中正确的个数是()(1)-a表示负数;(2)多项式-3a2b+7a2b2-2ab+1的次数是3;(3)单项式-2xy29的系数为-2;(4)若|x|=-x,则x<0.A. 0个B. 1个C. 2个D. 3个9.张东同学想根据方程10x+6=12x-6编写一道应用题:“几个人共同种一批树苗,________,求参与种树的人数.”若设参与种树的有x人,那么横线部分的条件应描述为()A. 如果每人种10棵,那么缺6棵树苗;如果每人种12棵,那么剩下6棵树苗未种B. 如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,那么缺6棵树苗C. 如果每人种10棵,那么剩下6棵树苗未种;如果每人种12棵,也会剩下6棵树苗未种D. 如果每人种10棵,那么缺6棵树苗;如果每人种12棵,同样也是缺6棵树苗10.设A1,A2,A3,A4是数轴上的四个不同点,若|A1A3|=λ|A1A2|,|A1A4|=η|A1A2|,且1λ+1η=2,则称A3,A4调和分割A1,A2.已知平面上的点C,D调和分割点A,B,则()A. 点C可能是线段AB的中点B. 点D一定不是线段AB的中点C. 点C,D可能同时在线段AB上D. 点C,D可能同时在线段AB的延长线上二、填空题(本大题共6小题,共24.0分)11.-7的倒数是______.12.如图,直线AB,CD交于点O,我们知道∠1=∠2,那么其理由是______.13.如图,∠ABC=90°,∠CBD=40°,则∠ABD的度数是______.14.如果a和b互为相反数,c和d互为倒数,那么7cd-a-b=______.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是______元.16.将正整数按如图方式进行有规律的排列,第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,…,依此类推,第10行第2个数是______,第______行最后一个数是2020.三、计算题(本大题共2小题,共18.0分)17.计算:(1)(-12)-5+(-14)-(-39);(2)-32÷(-3)2+3×(-2)+|-4|.18.解方程:2x-3(2x-3)=x+4;四、解答题(本大题共7小题,共68.0分)19.根据语句画出图形:如图,已知A、B、C三点.①画线段AB;②画射线AC;③画直线BC;④取AB的中点P,连接PC.20.先化简,再求值:2(a2b+ab2)-2(a2b-1)-3ab2+2,其中a=-2,b=2.21.已知多项式A,B,其中A=x2-2x+1,小马在计算A+B时,由于粗心把A+B看成了A-B求得结果为-3x2-2x-1,请你帮小马算出A+B的正确结果.22.如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.23.某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买20盒、40盒乒乓球时,去哪家商店购买更合算?24.如图,点O为数轴原点,点A表示的数是4,将线段OA沿数轴移动,移动后的线段记为O′A′.(1)当点O′恰好是OA的中点时,数轴上点A′表示的数为______.(2)设点A的移动距离AA′=x.①当O′A=1时,求x的值;②D为线段AA′的中点,点E在线段OO′上,且OE=13OO′,当点D,E所表示的数互为相反数时,求x的值.25.点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=a,直接写出∠CON的度数(用含a的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM 在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON的度数之间的关系,写出你的结论,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.答案和解析1.【答案】B【解析】解:向北行驶3km,记作+3km,向南行驶2km记作-2km,故选:B.根据正数和负数表示相反意义的量,向北记为正,可得答案.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】A【解析】解:如图,考生可以发挥空间想象力可得出该几何体底面为一个三角形,由三条棱组成,故该几何体为三棱柱.故选:A.通过图片可以想象出该物体由三条棱组成,底面是三角形,符合这个条件的几何体是三棱柱.本题考查了由三视图确定几何体的形状,主要培养学生空间想象能力及动手操作能力.3.【答案】B【解析】解:根据题意得:(-4)-(-6)=-4+6=2,故选:B.利用运算法则计算即可确定出运算符号.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.4.【答案】D【解析】解:A、原式=2a,错误;B、原式不能合并,错误;C、原式=-a+b,错误;D、原式=ab,正确,故选D原式各项计算得到结果,即可作出判断.此题考查了整式的加减,去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:将2500000用科学记数法表示为2.5×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.【答案】D【解析】解:A、方程x+5=0的解为x=-5,故本选项不符合题意;B、方程x-7=-12的解为x=-5,故本选项不符合题意;C、方程2x+5=-5的解为x=-5,故本选项不符合题意;D、方程-=-1的解为x=5,故本选项符合题意;故选:D.求出每个方程的解,再判断即可.本题考查了解一元一次方程和一元一次方程的解,能求出每个方程的解是解此题的关键.7.【答案】C【解析】解:已知条件可知,左视图有2列,每列小正方形数目分别为3,1.故选:C.根据由已知条件可知,左视图有2列,每列小正方形数目分别为3,1,据此即可判断.本题主要考查了画实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.8.【答案】A【解析】解:(1)小于0的数是负数,故(1)说法错误;(2)多项式-3a2b+7a2b2-2ab+1的次数是4,故(2)说法错误;(3)单项式-的系数为-,故(3)说法错误;(4)若|x|=-x,x≤0,故(4)说法错误,故选:A.根据小于0的数是负数,可判断(1),根据多项式的次数,可判断(2),根据单项式的系数,可判断(3),根据绝对值,可判断(4).本题考查了多项式,根据定义求解是解题关键.9.【答案】B【解析】解:∵列出的方程为10x+6=12x-6,∴方程的左、右两边均为这批树苗的棵数,∴方程的左边为如果每人种10棵,那么剩下6棵树苗未种;方程的右边为如果每人种12棵,那么缺6棵树苗.故选:B.分析方程可知选用的等量关系是该批树苗的棵数不变,再分析方程的左、右两边的意义,即可得出结论.本题考查了一元一次方程的应用,分析方程找准等量关系是解题的关键.10.【答案】B【解析】解:由已知不妨设A(0,0)、B(1,0)、C(c,0)、D(d,0),则(c,0)=λ(1,0),(d,0)=μ(1,0),∴λ=c,μ=d;代入+=2得:(1),若C是线段AB的中点,则c=,代入(1),d不存在,故C不可能是线段AB 的中点,A错误;同理D不可能是线段AB的中点,故B正确;若C,D同时在线段AB上,则0≤c≤1,0≤d≤1,代入(1)得c=d=1,此时C和D 点重合,与条件矛盾,故C错误.若C,D同时在线段AB的延长线上时,则λ>1.μ>1,∴与+=2矛盾,∴C、D不可能同时在线段AB的延长线上,D错误.故选:B.由题意可设A(0,0)、B(1,0)、C(c,0)、D(d,0),结合条件,根据题意考查方程的解的情况,用排除法选出正确的答案即可.本题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.11.【答案】-17【解析】解:-7的倒数为:1÷(-7)=-.故答案为:-.此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以-7的倒数为1÷(-7).此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以-7的倒数为1÷(-7).12.【答案】同角的补角相等【解析】解:∵直线AB,CD交于点O,∴∠1+∠3=180°,∠2+∠3=180°,∴∠1=∠2(同角的补角相等),故答案为:同角的补角相等.依据∠1+∠3=180°,∠2+∠3=180°,即可得到∠1=∠2,依据为同角的补角相等.本题主要考查了对顶角、邻补角,解题时注意:同角的补角相等.13.【答案】50°【解析】解:∠ABD=∠ABC-CBD=90°-40°=50°,故答案为:50°.由图可得∠ABD=∠ABC-CBD,即可解答.本题考查了余角的定义,解决本题的关键是得到∠ABD=∠ABC-CBD.14.【答案】7【解析】解:根据题意知a+b=0,cd=1,则7cd-a-b=7cd-(a+b)=7×1-0=7,故答案为:7.根据相反数和倒数的定义得到a+b=0,c+d=1,然后利用整体代入的方法计算代数式的值.本题考查了代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.也考查了整体代入的方法.15.【答案】100【解析】解:根据题意:设这件商品的进价为x元,可得:x(1+20%)(1-20%)=x-4解得:x=100.故答案为:100.根据题意列式即可.“有一个商店把某件商品按进价加20%作为定价”中可设这件商品的进价为x,即可得:定价=x(1+20%).“后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元”,可得根据题意可得关于x的方程式,求解得出答案.此题主要考查了一元一次方程的应用,根据题意理清思路,列出一元一次方程是解题关键.16.【答案】11 674【解析】解:∵第2行第2个数是3,第3行第2个数是4,第4行第2个数是5,∴第n行第2个数是n+1,∴第10行第2个数是11;∵第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,∴第n行最后一个数是3n-2,令3n-2=2020,解得n=674.故答案为11,674.根据第2行第2个数是3,第3行第2个数是4,第4行第2个数是5,发现规律:第n行第2个数是n+1,依此求出第10行第2个数;根据第2行最后一个数是4,第3行最后一个数是7,第4行最后一个数是10,发现规律:第n行最后一个数是3n-2,依此规律即可得出结论.本题考查了规律型:数字的变化类,解题的关键是找出两个规律:第n行第2个数是n+1,第n行最后一个数是3n-2,进而利用规律解题.17.【答案】解:(1)原式=-12-5-14+39=-31+39=8;(2)原式=-9÷9-6+4=-1-6+4=-7+4=-3.【解析】(1)先化简运算,再利用有理数的加减混合运算的运算法则计算;(2)先算乘方再算乘除最后算加减.本题主要考查有理数的混合运算,注意混合运算的顺序是解题的关键.18.【答案】解:2x-6x+9=x+4,2x-6x-x=-9+4,-5x=-5,x=1.【解析】根据一元一次方程的解法即可求出答案.本题考查一元一次,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.19.【答案】解:如图.【解析】根据直线、线段、射线的画法,可得答案.本题考查了直线、射线、线段,正确区分直线、线段、射线是解题关键.20.【答案】解:原式=2a2b+2ab2-2a2b+2-3ab2+2=-ab2+4,当a=-2,b=2时,原式=8+4=12.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.【答案】解:根据题意得:B=(x2-2x+1)-(-3x2-2x-1)=x2-2x+1+3x2+2x+1=4x2+2,则A+B=x2-2x+1+4x2+2=5x2-2x+3.【解析】根据A-B的差,求出B,即可确定出A+B.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.【答案】解:(1)∵OE⊥AB,∴∠AOE=90°,∵∠EOD=20°,∴∠AOC=180°-90°-20°=70°;(2)设∠AOC=x,则∠BOC=2x,∵∠AOC+∠BOC=180°,∴x+2x=180°,解得:x=60°,∴∠AOC=60°,∴∠BOD=60°,∴∠EOD=180°-90°-60°=30°.【解析】(1)利用垂直的定义,∠AOE=90°,即可得出结果;(2)利用邻补角的定义,解得∠AOC=60°,有对顶角的定义,得∠BOD=60°,解得∠EOD.本题主要考查了垂直的定义,邻补角的定义,对顶角的性质,熟练掌握垂直的定义,邻补角的定义是解决此题的关键.23.【答案】解:(1)设该班购买乒乓球x盒,则甲:100×5+(x-5)×25=25x+375,乙:0.9×100×5+0.9x×25=22.5x+450,当甲=乙,25x+375=22.5x+450,解得x=30.答:当购买乒乓球30盒时,两种优惠办法付款一样;(2)买20盒时:甲25×20+375=875元,乙22.5×20+450=900元,选甲;买40盒时:甲25×40+375=1375元,乙22.5×40+450=1350元,选乙.【解析】(1)设该班购买乒乓球x盒,根据乒乓球拍每副定价100元,乒乓球每盒定价25元,经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.此题考查的知识点是一元一次方程的应用,解决本题的关键是理解两家商店的优惠条件,能用代数式表示甲店的费用即乙店的费用.24.【答案】6【解析】解:(1)因为OA=4,所以线段OA的中点O′表示的数为2,O′A′=2+4=6,故答案为:6.(2)①如图1,当点O′在点A的左侧时,O′A=OA-OO′,即1=4-x,解得x=3;如图2,当点O′在点A的右侧时,OA′=OO′-OA,即1=x-4,解得x=5,所以x=3或5;②因为点D,E所表示的数互为相反数,所以OA只能向左运动.如图3,当OA向左移动时,点D表示的数为4-x,点E表示的数为-x,由题意可得方程:4-x-x=0,解得x=.(1)OA=4,故中点为2,O右移2个单位,故A也右移2个单位;(2)①分点O′在点A的左右两侧来考虑,根据O′A=OA-OO′或OA′=OO′-OA 求解;②点D,E所表示的数互为相反数,OA只能向左运动,表示出点D、E的数字,根据互为相反数的和等于0求解.主要考查了数轴的应用以及一元一次方程的应用,根据移动前后对应点的位置不同进行分类讨论得出是解题关键.25.【答案】解:(1)由已知得∠BOM=180°-∠AOM=150°,又∠MON是直角,OC平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×150°=15°;(2)由已知得∠BOM=180°-∠AOM=180°-α,又∠MON是直角,OC平分∠BOM,所以∠CON=∠MON-12∠BOM=90°-12×(180°-α)=12a;(3)设∠AOM=a,则∠BOM=180°-a,①∠AOM=2∠CON,理由如下:∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°-α)=90°-12α,∵∠MON=90°∴∠CON=∠MON-∠MOC=90°-(90°-12α)=12α,∴∠CON=12∠AOM,②由①知∠BON=∠MON-∠BOM=90°-(180°-α)=α-90°,∠AOC=∠AOM+∠MOC=α+90°-12α=90°+90°+12α,∵∠AOC=3∠BON,∴90°+12α=3(α-90°),解得α=144°,∴∠AOM=144°.【解析】(1)根据角平分线的定义和余角的性质即可得到结论;(2)根据角平分线的定义和余角的性质即可得到结论;(3)设∠AOM=a,则∠BOM=180°-a,①根据角平分线的定义得到∠MOC=∠BOM=(180°-α)=90°-,根据余角的性质得到∠CON=∠MON-∠MOC=90°-(90°-α)=α,于是得到结论;②由①知∠BON=∠MON-∠BOM=90°-(180°-α)=α-90°,∠AOC=∠AOM+∠MOC=α+90°-α=90°+α,列方程即可得到结论.本题主要考查的是余角与补角,角的计算、角平分线的定义的运用,正确的理解题意是解题的关键.解题时注意方程思想的运用.。
福建省龙岩市七年级上册期末数学试卷与答案

福建省龙岩市七年级上册期末数学试卷一、选择题(每小题4分,共40分)1.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )A .三棱柱B .正方体C .圆柱D . 圆锥2.华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个3.下列计算正确的是( )A .2325a a a +=B .2233a a -=C .325235a a a +=D .2222a b a b a b -+=4.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是( )A .青B .春C .梦D .想5.下列判断正确的是( )A .23a b 与2ba 不是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式6.已知3a b -=-,2c d +=,则()()b c a d +--的值为( )A .1B .5C .5-D .1-7.某店家为迎接“双十一”抢购活动,在甲批发市场以每件a 元的价格进了40件童装,又在乙批发市场以每件b 元()a b >的价格进了同样的60件童装.如果店家以每件2a b +元的价格卖出这款童装,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定8.实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b ->-B .66a b >C .a b ->-D .0a b ->9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 10.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10)⋯和“正方形数”(如1,4,9,16)⋯,在小于200的数中,设最大的“三角形数”为m ,最大的“正方形数”为n ,则m n +的值为( )A .33B .301C .386D .571二、填空(本大题共6题,每题4分,共24分)11.3-的相反数是 .12.比较大小:47- 57-.(填“<”,“ =”或“>” ) 13.已知关于x 的方程250x a ++=的解是1x =,则a 的值为 .14.已知一个角的补角比这个角的一半多30︒,则这个角的度数为 .15.已知1a b +=,3b c +=,6a c +=,则a b c ++= .16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 .三、解答题(本大题共9小题,共86分)17.(8分)解方程:(1)201921|3(2)|----.(2)221146x x +--= 18.(8分)先化简,再求值:22222()3(1)24a b ab a b ab +----,其中2019a =,12019b =. 19.(8分)如图,已知四点A 、B 、C 、D ,用圆规和无刻度的直尺,按下列要求与步骤画出图形:(1)画直线AB ;(2)画射线DC ;(3)延长线段DA 至点E ,使AE AB =(保留作图痕迹).20.(8分)若||3a =,||8b =,且||a b b a -=-.求a b +的值;21.(8分)如图B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 的中点,8CD =,求MC的长.22.(10分)阅读材料:我们知道,42(421)3x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则4()2()()(421)()3()a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把2()a b -看成一个整体,合并2223()6()2()a b a b a b ---+-的结果是 .(2)已知224x y -=,求23621x y --的值;拓广探索:(3)已知23a b -=,25b c -=-,10c d -=,求()(2)(2)a c b d b c -+---的值.23.(10分)在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?24.(12分)如图,AOB ∠的边OA 上有一动点P ,从距离O 点18cm 的点M 处出发, 沿线段MO ,射线OB 运动, 速度为2/cm s ;动点Q 从点O 出发, 沿射线OB 运动, 速度为1/cm s .P 、Q 同时出发, 设运动时间是()t s .(1) 当点P 在MO 上运动时,PO = cm (用 含t 的代数式表示) ;(2) 当点P 在MO 上运动时,t 为何值, 能使OP OQ =?(3) 若点Q 运动到距离O 点16cm 的点N 处停止, 在点Q 停止运动前, 点P 能否追上点Q ?如果能, 求出t 的值;如果不能, 请说出理由 .25.(14分)学习千万条,思考第一条.请你用本学期所学知识探究以下问题:Ⅰ.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并在MON ∠内部作射线OC .(1)如图1,三角板的一边ON 与射线OB 重合,且150AOC ∠=︒,若以点O 为观察中心,射线OM 表示正北方向,求射线OC 表示的方向;(2)如图2,将三角板放置到如图位置,使OC 恰好平分MOB ∠,且2BON NOC ∠=∠,求AOM ∠的度数.Ⅱ.已知点A 、O 、B 不在同一条直线上,AOB α∠=,BOC β∠=,OM 平分AOB ∠,ON 平分BOC ∠,用含α,β的式子表示MON ∠的大小.参考答案一、选择题(每小题4分,共40分)1.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )A .三棱柱B .正方体C .圆柱D . 圆锥【考点】1U :简单几何体的三视图【专题】55F :投影与视图;64:几何直观【分析】从正面看是主视图,从左面看是左视图,利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【解答】解:A 、左视图和主视图虽然都是长方形,但是左视图的长方形的宽与主视图的长方形的宽不相等,所以A 选项符合题意;B 、左视图和主视图都是相同的正方形,所以B 选项不合题意;C 、左视图和主视图都是相同的长方形,所以C 选项不合题意;D 、左视图和主视图都是相同的等腰三角形,所以D 选项不合题意.故选:A .【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.2.华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个【考点】1I :科学记数法-表示较大的数【专题】511:实数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:120亿个用科学记数法可表示为:101.210⨯个.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.下列计算正确的是( )A .2325a a a +=B .2233a a -=C .325235a a a +=D .2222a b a b a b -+=【考点】35:合并同类项【专题】512:整式【分析】根据合并同类项求解即可.【解答】解:A 、325a a a +=,故A 不符合题意; B 、22232a a a -=,故B 不符合题意;C 、不是同类项不能合并,故C 不符合题意;D 、2222a b a b a b -+=,故D 符合题意;故选:D .【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.4.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是( )A .青B .春C .梦D .想【考点】8I :专题:正方体相对两个面上的文字【专题】556:矩形 菱形 正方形【分析】根据正方体展开z 字型和I 型找对面的方法即可求解;【解答】解:展开图中“点”与“春”是对面,“亮”与“想”是对面,“青”与“梦”是对面;故选:B .【点评】本题考查正方体的展开图;熟练掌握正方体展开图找对面的方法是解题的关键.5.下列判断正确的是( )A .23a b 与2ba 不是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式【考点】34:同类项;41:整式;43:多项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A 、23a b 与2ba 是同类项,故本选项错误; B 、25m n 是整式,故本选项错误; C 、单项式32x y -的系数是1-,故本选项正确;D 、2235x y xy -+是三次三项式,故本选项错误.故选:C .【点评】本题考查单项式、多项式、整式及同类项的定义,注意掌握单项式是数或字母的积组成的式子;单项式和多项式统称为整式.6.已知3a b -=-,2c d +=,则()()b c a d +--的值为( )A .1B .5C .5-D .1-【考点】36:去括号与添括号【专题】11:计算题【分析】先把括号去掉,重新组合后再添括号.【解答】解:因为()()()()()()b c a d b c a d b a c d a b c d +--=+-+=-++=--++⋯(1), 所以把3a b -=-、2c d +=代入(1)得:原式(3)25=--+=.故选:B .【点评】(1)括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去括号;(2)添括号后,括号前是“+”,括号里的各项都不改变符号;添括号后,括号前是“-”,括号里的各项都改变符号.运用这一法则添括号.7.某店家为迎接“双十一”抢购活动,在甲批发市场以每件a 元的价格进了40件童装,又在乙批发市场以每件b 元()a b >的价格进了同样的60件童装.如果店家以每件2a b +元的价格卖出这款童装,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定【考点】32:列代数式【专题】512:整式 【分析】根据题意列出商店在甲批发市场童装的利润,以及商店在乙批发市场童装的利润,将两利润相加表示出总利润,根据a 大于b 判断出其结果大于0,可得出这家商店盈利了.【解答】解:根据题意列得:在甲批发市场童装的利润为40()20()4020202a b a a b a a b +-=+-=-; 在乙批发市场童装的利润为60()30()6030302a b b a b b a b +-=+-=-, ∴该商店的总利润为20203030101010()b a a b a b a b -+-=-=-,a b >,0a b ∴->,即10()0a b ->,则这家商店盈利了.故选:A .【点评】此题考查了整式加减运算的应用,解题的关键是理解利润=(售价-进价)⨯数量.8.实数a 、b 在数轴上的对应点的位置如图所示,下列关系式不成立的是( )A .55a b ->-B .66a b >C .a b ->-D .0a b ->【考点】29:实数与数轴【专题】27:图表型【分析】根据数轴判断出a 、b 的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,0b a <<,且||||b a <,55a b ∴->-,66a b >,a b -<-,0a b ->,∴关系式不成立的是选项C .故选:C .【点评】本题考查了实数与数轴,实数的大小比较,利用了两个负数相比较,绝度值大的反而小.9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x人,所列方程正确的是()A.54573x x-=-B.54573x x+=+C.45357x x++=D.45357x x--=【考点】89:由实际问题抽象出一元一次方程【专题】34:方程思想;521:一次方程(组)及应用【分析】设合伙人数为x人,根据羊的总价钱不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设合伙人数为x人,依题意,得:54573x x+=+.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.10.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10)⋯和“正方形数”(如1,4,9,16)⋯,在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m n+的值为()A.33B.301C.386D.571【考点】37:规律型:数字的变化类【专题】2A:规律型;51:数与式【分析】由图形知第n个三角形数为(1)1232n nn++++⋯+=,第n个正方形数为2n,据此得出最大的三角形数和正方形数即可得.【解答】解:由图形知第n个三角形数为(1)1232n nn++++⋯+=,第n个正方形数为2n,当19n=时,(1)1902002n n+=<,当20n=时,(1)2102002n n+=>,所以最大的三角形数190m =;当14n =时,2196200n =<,当15n =时,2225200n =>,所以最大的正方形数196n =,则386m n +=,故选:C .【点评】本题主要考查数字的变化规律,解题的关键是由图形得出第n 个三角形数为(1)1232n n n ++++⋯+=,第n 个正方形数为2n . 二、填空(本大题共6题,每题4分,共24分)11.3-的相反数是 3 .【考点】14:相反数【分析】一个数的相反数就是在这个数前面添上“-”号.【解答】解:(3)3--=,故3-的相反数是3.故答案为:3.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易把相反数的意义与倒数的意义混淆.12.比较大小:47- > 57-.(填“<”,“ =”或“>” ) 【考点】18:有理数大小比较【专题】11:计算题【分析】两个负数,比较它们的绝对值大小,绝对值大的反而小. 【解答】解:44||77-=,55||77-= 而4577< 4577∴->- 故答案为“>”.【点评】本题考查的是两个负数的大小比较,对两个负数绝对值进行大小比较是重点.13.已知关于x 的方程250x a ++=的解是1x =,则a 的值为 7- .【考点】85:一元一次方程的解【分析】把1x =代入方程计算即可求出a 的值.【解答】解:把1x =代入方程得:250a ++=,解得:7a =-,故答案为:7-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.已知一个角的补角比这个角的一半多30︒,则这个角的度数为 100︒ .【考点】IL :余角和补角【专题】551:线段、角、相交线与平行线;66:运算能力【分析】设这个角的度数为x ︒,则这个角的补角为180x ︒-︒,然后根据一个角的补角比这个角的一半多30︒列出方程即可.【解答】解:设这个角的度数为x ︒,则这个角的补角为180x ︒-︒, 根据题意,得1180302x x -=+, 解得100x =.故答案为:100︒【点评】本题考查了补角,如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.掌握定义是解题的关键.15.已知1a b +=,3b c +=,6a c +=,则a b c ++= 5 .【考点】44:整式的加减【专题】11:计算题;512:整式【分析】已知等式左右两边相加,即可求出所求.【解答】解:1a b +=,3b c +=,6a c +=,136a b b c a c ∴+++++=++,即2()10a b c ++=, 则5a b c ++=,故答案为:5【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是 9 .【考点】37:规律型:数字的变化类【专题】1:常规题型【分析】设报4的人心想的数是x ,则可以分别表示报1,3,5,2的人心想的数,最后通过平均数列出方程,解方程即可.【解答】解:设报4的人心想的数是x ,报1的人心想的数是10x -,报3的人心想的数是6x -,报5的人心想的数是14x -,报2的人心想的数是12x -,所以有1223x x -+=⨯,解得9x =.故答案为9.【点评】本题属于阅读理解和探索规律题,考查的知识点有平均数的相关计算及方程思想的运用.规律与趋势:这道题的解决方法有点奥数题的思维,题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且,多设几个未知数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决.本题还可以根据报2的人心想的数可以是6x -,从而列出方程126x x -=-求解.三、解答题(本大题共9小题,共86分)17.(8分)解方程:(1)201921|3(2)|----.(2)221146x x +--= 【考点】1G :有理数的混合运算;86:解一元一次方程【专题】66:运算能力;521:一次方程(组)及应用【分析】(1)原式利用乘方的意义,绝对值的代数意义计算即可求出值;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)原式112=--=-;(2)去分母得:3(2)2(21)12x x +--=,去括号得:364212x x +-+=,移项合并得:4x -=,解得:4x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:22222()3(1)24a b ab a b ab +----,其中2019a =,12019b =. 【考点】45:整式的加减-化简求值【专题】66:运算能力;512:整式【分析】原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式222222233241a b ab a b ab a b =+-+--=--,当2019a =,12019b =时,原式201912020=--=-. 【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.19.(8分)如图,已知四点A 、B 、C 、D ,用圆规和无刻度的直尺,按下列要求与步骤画出图形:(1)画直线AB ;(2)画射线DC ;(3)延长线段DA 至点E ,使AE AB =(保留作图痕迹).【考点】IA :直线、射线、线段;ID :两点间的距离;3N :作图-复杂作图【专题】13:作图题【分析】根据直线,射线,线段的定义画出图形即可.【解答】解:(1)直线AB 如图所示.(2)射线DC 如图所示.(3)线段AE 如图所示.【点评】本题考查作图-复杂作图,两点间距离,直线、射线、线段等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(8分)若||3a =,||8b =,且||a b b a -=-.求a b +的值;【考点】33:代数式求值;15:绝对值【专题】512:整式;66:运算能力【分析】首先根据||3a =,||8b =,可得:3a =±,8b =±;然后根据||a b b a -=-,可得:0a b -<,所以3a =±,8b =,据此求出a b +的值是多少即可.【解答】解:||3a =,||8b =,3a ∴=±,8b =±,||a b b a -=-,0a b ∴-<,3a ∴=±,8b =,3811a b ∴+=+=,或 385a b +=-+=.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.21.(8分)如图B 、C 两点把线段AD 分成2:3:4三部分,M 是AD 的中点,8CD =,求MC的长.【考点】IE :比较线段的长短【专题】11:计算题【分析】设AB 为2x ,则48CD x ==,得出2x =,再利用MC MD CD =-求解.【解答】解:设2AB x =,3BC x =,4CD x =,9AD x ∴=,92MD x =, 则48CD x ==,2x =,911421222MC MD CD x x x =-=-==⨯=. 【点评】本题考查了线段长短的比较,利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.22.(10分)阅读材料:我们知道,42(421)3x x x x x -+=-+=,类似地,我们把()a b +看成一个整体,则4()2()()(421)()3()a b a b a b a b a b +-+++=-++=+.“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把2()a b -看成一个整体,合并2223()6()2()a b a b a b ---+-的结果是 2()a b -- .(2)已知224x y -=,求23621x y --的值;拓广探索:(3)已知23a b -=,25b c -=-,10c d -=,求()(2)(2)a c b d b c -+---的值.【考点】45:整式的加减-化简求值【专题】512:整式【分析】(1)利用整体思想,把2()a b -看成一个整体,合并2223()6()2()a b a b a b ---+-即可得到结果;(2)原式可化为23(2)21x y --,把224x y -=整体代入即可;(3)依据23a b -=,25b c -=-,10c d -=,即可得到2a c -=-,25b d -=,整体代入进行计算即可.【解答】解:(1)222223()6()2()(362)()()a b a b a b a b a b ---+-=-+-=--; 故答案为:2()a b --;(2)224x y -=,∴原式23(2)2112219x y =--=-=-;(3)23a b -=,25b c -=-,10c d -=,2a c ∴-=-,25b d -=,∴原式25(5)8=-+--=.【点评】本题主要考查了整式的化简求值问题,整体代入法是解决代数式求值问题的常用方法.23.(10分)在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?【考点】8A :一元一次方程的应用【分析】(1)设七年级(2)班有女生x 人,则男生(2)x -人,根据全班共有44人建立方程求出其解即可;(2)设分配a 人生产筒身,(44)a -人生产筒底,由筒身与筒底的数量关系建立方程求出其解即可.【解答】解:(1)设七年级(2)班有女生x 人,则男生(2)x -人,由题意,得(2)44x x +-=,解得:23x =,∴男生有:442321-=人.答:七年级(2)班有女生23人,则男生21人;(2)设分配a 人生产筒身,(44)a -人生产筒底,由题意,得502120(44)a a ⨯=-,解得:24a =.∴生产筒底的有20人.答:分配24人生产筒身,20人生产筒底.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,解答时分别总人数为44人和筒底与筒身的数量关系建立方程是关键.24.(12分)如图,AOB ∠的边OA 上有一动点P ,从距离O 点18cm 的点M 处出发, 沿线段MO ,射线OB 运动, 速度为2/cm s ;动点Q 从点O 出发, 沿射线OB 运动, 速度为1/cm s .P 、Q 同时出发, 设运动时间是()t s .(1) 当点P 在MO 上运动时,PO = (182)t - cm (用 含t 的代数式表示) ;(2) 当点P 在MO 上运动时,t 为何值, 能使OP OQ =?(3) 若点Q 运动到距离O 点16cm 的点N 处停止, 在点Q 停止运动前, 点P 能否追上点Q ?如果能, 求出t 的值;如果不能, 请说出理由 .【考点】8A :一元一次方程的应用【专题】122 :几何动点问题【分析】(1) 利用P 点运动速度以及OM 的距离进而得出答案;(2) 利用OP OQ =列出方程求出即可;(3) 利用假设追上时, 求出所用时间, 进而得出答案 .【解答】解: (1)P 点运动速度为2/cm s ,18MO cm =,∴当点P 在MO 上运动时,(182)PO t cm =-,故答案为:(182)t -;(2) 当OP OQ =时, 则有182t t -=,解这个方程, 得6t =,即6t =时, 能使OP OQ =;(3) 不能 . 理由如下:设当t 秒时点P 追上点Q ,则218t t =+,解这个方程, 得18t =,即点P 追上点Q 需要18s ,此时点Q 已经停止运动 .【点评】此题主要考查了一元一次方程的应用以及动点问题, 注意点的运动速度与方向是解题关键 .25.(14分)学习千万条,思考第一条.请你用本学期所学知识探究以下问题:Ⅰ.已知点O 为直线AB 上一点,将直角三角板MON 的直角顶点放在点O 处,并在MON ∠内部作射线OC .(1)如图1,三角板的一边ON 与射线OB 重合,且150AOC ∠=︒,若以点O 为观察中心,射线OM 表示正北方向,求射线OC 表示的方向;(2)如图2,将三角板放置到如图位置,使OC 恰好平分MOB ∠,且2BON NOC ∠=∠,求AOM ∠的度数.Ⅱ.已知点A 、O 、B 不在同一条直线上,AOB α∠=,BOC β∠=,OM 平分AOB ∠,ON 平分BOC ∠,用含α,β的式子表示MON ∠的大小.【考点】IJ :角平分线的定义;IL :余角和补角【专题】66:运算能力;551:线段、角、相交线与平行线【分析】(1)根据MOC AOC AOM ∠=∠-∠代入数据计算,即得出射线OC 表示的方向;(2)根据角的倍分关系以及角平分线的定义即可求解;(3)画出图形,根据角平分线的定义分类解答即可.【解答】解:(1)1509060MOC AOC AOM ∠=∠-∠=︒-︒=︒, ∴射线OC 表示的方向为北偏东60︒;(2)2BON NOC ∠=∠,OC 平分MOB ∠,3MOC BOC NOC ∴∠=∠=∠,90MOC NOC MON ∠+∠=∠=︒,390NOC NOC ∴∠+∠=︒,490NOC ∴∠=︒,245BON NOC ∴∠=∠=︒,180AOM MON BON ∴∠=︒-∠-∠1809045=︒-︒-︒45=︒;(3)如图1:AOB α∠=,BOC β∠=9030120AOC AOB BOC ∴∠=∠+∠=︒+︒=︒ OM 平分AOB ∠,ON 平分BOC ∠, 1122AOM BOM AOB α∴∠=∠=∠=,1122CON BON COB β∠=∠=∠=, 2MON BOM CON αβ+∴∠=∠+∠=,如图2,2MON BOM BON αβ-∠=∠-∠=;如图3,第21页(共21页) 2MON BON BOM βα-∠=∠-∠=,MON ∴∠为2a β+或2αβ-或2βα-. 【点评】此题考查了角的计算,余角和补角,本题难度较大,关键是熟练掌握角的和差倍分关系.。
七年级上册龙岩实验中学数学期末试卷测试卷附答案

七年级上册龙岩实验中学数学期末试卷测试卷附答案一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)问题发现:如图 1,已知点 F,G 分别在直线 AB,CD 上,且 AB∥CD,若∠BFE=40°,∠CGE=130°,则∠GEF 的度数为________;(2)拓展探究:∠GEF,∠BFE,∠CGE 之间有怎样的数量关系?写出结论并给出证明;答:∠GEF=▲ .证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(▲),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(▲),∴∠HEG=180°-∠CGE(▲),∴∠FEG=∠HFG+∠FEH=▲ .(3)深入探究:如图 2,∠BFE 的平分线 FQ 所在直线与∠CGE 的平分线相交于点 P,试探究∠GPQ 与∠GEF 之间的数量关系,请直接写出你的结论.【答案】(1)90°(2)解:∠GEF=∠BFE+180°−∠CGE,证明:过点 E 作 EH∥AB,∴∠FEH=∠BFE(两直线平行,内错角相等),∵AB∥CD,EH∥AB,(辅助线的作法)∴EH∥CD(平行线的迁移性),∴∠HEG=180°-∠CGE(两直线平行,同旁内角互补),∴∠FEG=∠HFG+∠FEH=∠BFE+180°−∠CGE ,故答案为:∠BFE+180°−∠CGE;两直线平行,内错角相等;平行线的迁移性;两直线平行,同旁内角互补;∠BFE+180°−∠CGE;(3)解:∠GPQ+∠GEF=90°,理由是:如图2,∵FQ平分∠BFE,GP平分∠CGE,∴∠BFQ=∠BFE,∠CGP=∠CGE,在△PMF中,∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,∴∠GPQ+∠GEF=∠CGE− ∠BFE+∠GEF= ×180°=90°.即∠GPQ+∠GEF=90°.【解析】【解答】(1)解:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠HEF=∠BFE=40°,∠HEG+∠CGE=180°,∵∠CGE=130°,∴∠HEG=50°,∴∠GEF=∠HEF+∠HEG=40°+50°=90°;故答案为:90°;【分析】(1)如图1,过E作EH∥AB,根据平行线的性质可得∠HEF=∠BFE=40 ,∠HEG=50 ,相加可得结论;(2)由①知:∠HEF=∠BFE,∠HEG+∠CGE=180°,则∠HEG=180°−∠CGE,两式相加可得∠GEF=∠BFE+180°−∠CGE;(3)如图2,根据角平分线的定义得:∠BFQ=∠BFE,∠CGP=∠CGE,由三角形的外角的性质得:∠GPQ=∠GMF−∠PFM=∠CGP−∠BFQ,计算∠GPQ+∠GEF并结合②的结论可得结果.2.如图,以直线AB上一点O为端点作射线OC,使∠BOC=70°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________°;(2)如图②,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OC恰好平分∠BOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O转动,如果OD始终在∠BOC的内部,试猜想∠BOD和∠COE有怎样的数量关系?并说明理由.【答案】(1)20(2)解:如图②,∵OC平分∠EOB,∠BOC=70°,∴∠EOB=2∠BOC=140°,∵∠DOE=90°,∴∠BOD=∠BOE-∠DOE=50°,∵∠BOC=70°,∴∠COD=∠BOC-∠BOD=20°(3)解:∠COE-∠BOD=20°,理由是:如图③,∵∠BOD+∠COD=∠BOC=70°,∠COE+∠COD=∠DOE=90°,∴(∠COE+∠COD)-(∠BOD+∠COD)=∠COE+∠COD-∠BOD-∠COD=∠COE-∠BOD=90°-70°=20°,即∠COE-∠BOD=20°【解析】【解答】⑴如图①,∠COE=∠DOE-∠BOC=90°-70°=20°;【分析】(1)根据角度的换算可知∠COE和∠BOC互余,那么根据∠COB=70°可得∠COE=20°;(2)根据角平分线和∠BOC可得∠BOE=140°,∠COE=∠BOC=90°,所以它的余角∠COD=20°;(3)一个是直角∠EOD,,一个是70°∠BOC,这两个角里都包含了同一个角∠COD,那么大家都减去这个∠COD的度数,剩下的两角差与原两角差是一致的,所以可得出结论∠COE-∠BOD=20°。
2023-2024学年福建省龙岩市永定区七年级(上)期末数学试卷(含答案)

永定区2023~2024学年度第一学期初中阶段期末质量监测七年级数学试题(答题时间:120分钟,满分:150分)注意:1.本试题分为第Ⅰ卷和第Ⅱ卷两部分.2.请把所有答案填涂或书写到答题卡上!在本试题上答题无效.第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填涂在答题卡的相应位置.1.2024的相反数是()A .2024B .C .D .2.中国人民解放军海军福建舰(舷号:18,简称福建舰),是中国完全自主设计建造的首艘弹射型航空母舰,采用平直通长飞行甲板,配置电磁弹射和阻拦装置, 满载排水量8万余吨.将数字8万用科学记数法表示为()A .B .C .D .3.下列运算正确的是()A .B .C .D .4.若,则下列变形错误的是()A .B .C .D .5.若与是同类项,则的值为()A .B .C .D .6.如图,方格纸上每个小正方形的边长都相同,若剪掉一个小正方形阴影部分能折叠成一个正方体,则剪掉的小正方 形不可以是()A .①B .②C .③D .④1202412024-50.810⨯38010⨯4810⨯5810⨯232a a a -=(2)2a a --=--3(1)31a a -=-325a a a +=m n =22m n +=+1122m n -=-22m n-=22m n =--3m x y -2n x y 2024m n +20272021405140452024-第6题图①②③④7.小咏用现金买了8支相同的签字笔,找回了()元,有下列两种说法: 说法Ⅰ:若小咏原有现金50元,则每支签字笔元; 说法Ⅱ:若每支签字笔元,则小咏原有现金元. 则下面判断正确的是()A .Ⅰ对Ⅱ错B .Ⅰ错Ⅱ对C .Ⅰ与Ⅱ都对D .Ⅰ与Ⅱ都错8.某网店店家为迎接“庆元旦·迎新春”促销活动,在A 批发市场以每件元的价 格进了40件童装,又在B 批发市场以每件元()的价格进了同样的60件童装.如果店家以每件元的价格卖出这款童装,卖完后,这家商店( )A .盈利了B .亏损了C .不赢不亏D .盈亏不能确定9.如图,棋盘上有黑、白两色棋子若干,找出所有“三 颗颜色相同的棋子在同一直线上”的直线,这样的直 线共有()A .2条B .3条C .4条D .5条10.如图,甲、乙两动点分别从正方形的顶点,同时沿正方形的边开始匀速运动.甲按逆时针方向运动,乙按顺时针方向运动,若乙的速度是甲的3倍, 那么它们第一次相遇在边上,请问它们第2024次相遇在( )A .边上B .边上C .边上D .边上第Ⅱ卷二、填空题:本大题共6小题,每小题4分.把答案书写在答题卡的相应位置.11.据介绍,我国计划2030年前实现中国人首次登陆月球,开展月球科学考察及相关技术试验.月球表面没有大气层保温,昼夜温差非常大.面对太阳的一面温度可以达到零上127℃,记作℃,背向太阳的一面温度可以达到零下183℃,记作℃.12.如图,把一块直角三角板()的直角顶点放在直线上,若,则的度数为.508a -a 2a 508a +a b a b >2a b+ABCD A C AB AB BC CD AD 127+ABC 90ACB ∠=︒C l 130∠=︒2∠BCD第10题图第9题图12ABCl 第12题图13.下列生活、生产现象: ①把弯曲的公路改直,就能缩短路程; ②用两颗钉子就可以把一根木条固定在墙上; ③从到铺设水管,总是尽可能沿线段铺设;④植树时,只要栽下两棵树,就可以把同一行树栽在同一直线上.可用“两点之间,线段最短”来解释的现象有.14.有一个数值转换器,原理如图所示,若开始输入的值是1,可发现第1次输出的结果是4,第2次输出的结果是2,第3次输出的结果是1,…,依次继续下去,第2024次输出的结果 .15.如图,一个盖着盖的容器里装着一些水,根据图中标明的数据可计算该容器的容积是 cm 3.16.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“永定土楼”这四个字表示的数之和 .A B AB x y =第16题图6-05x -4-31x -+永定土楼第15题图瓶底面积20cm 2第14题图三、解答题:本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.把答案书写在答题卡的相应位置.17.(本题满分8分)计算:.18.(本题满分8分)解方程:.19.(本题满分8分)先化简,再求值:,其中.20.(本题满分8分)我国古代名著《增删算法统宗》中有一题:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.其大意是:“牧童们在树下拿着竹竿高兴的玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”请用列方程的方法求出这个问题中的牧童人数.21.(本题满分8分)如图,点是线段的中点,点为线段延长线上一点,且.(1)用尺规作图将图形补充完整(保留作图痕迹,不写做法);(2)当时,求线段的长.202431|25|16(2)-+--÷-132146x x+-=-225[2(31)4]m m m m ---+2m =C AB D AB 2CD AB =2BC =AD AC B第21题图给出如下定义:我们把有序实数对(,,)叫做关于的二次多项式的附属系数对,把关于的二次多项式叫做有序实数对(,,)的附属多项式.(1)关于的二次多项式的附属系数对为 ;(2)有序实数对(,,)的附属多项式与有序实数对(,,)的附属多项式的差中不含二次项,求的值.23.(本题满分10分)已知关于的一元一次方程,其中为常数.(1)若是该方程的解,求的值;(2)若该方程的解为正整数,求满足条件的所有整数的值.24.(本题满分12分)在数学兴趣小组中,同学们从书上学到了很多有趣的数学知识.其中有一个数学知识引起了同学们的兴趣.根据,知道,可以求的值.如果知道,可以求的值吗?他们为此进行了研究,规定:若,那么(,).例如:,则(3,27).(1)填空:(2,4) ,(4,64) ;(2)计算:(,81)(5,125);(3)若(,)5,(4,)3,求(,)的值.a b c x 2ax bx c ++x 2ax bx c ++a b c x 223x x -+a 21-3-2-4a x (2023)202472025(1)k x x --=-+k 1x =-k k n a b =a n b a b n n a b =f a b n =3327=f 3=f =f =f 3--f f a 32-=f b =f a b将一副三角板(含有角的直角三角板和含有角的直角三角板)按如图-1摆放在直线上,平分,平分. (1)求的度数;(2)如图-2,将三角板绕着点以每秒的速度顺时针旋转,设旋转时间为秒(),平分. ①在旋转过程中,的度数是否发生改变?若不变,求出的度数,若改变,请说明理由;②在旋转过程中,是否存在某个时刻,与中,其中一个角是另一个角的两倍?若存在,求出所有满足题意的值,若不存在,请说明理由.45︒ABC 30︒EBD MN BF CBN ∠BG DBN ∠FBG ∠ABC B 5︒t 027t <<BH DBC ∠FBH ∠FBH ∠GBH ∠GBF ∠t N FCDB A (E )M G 图-1HNFCD B EM GA图-2第25题图永定区2023~2024学年度第一学期初中阶段期末质量监测七年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号12345678910答案BCDCADCABD二、填空题(本大题共6小题,每小题4分)11. ﹣183 . 12. 120° . 13. ① ③ .14.2. 15.170. 16.20.三、解答题(本大题共9小题,共86分)17.(8分)解:原式;18.(8分)解:, ,, ,.19.(8分)解:原式.当时,原式.20.(8分)解:设这个问题中的牧童人数为,根据题意,得 解得 .答:这个问题中的牧童人数为7.21.(8分)解:(1)图形补充完整如图所示;1|3|16(8)=-+--÷-132=-++4=3(1)122(32)x x +=--331264x x +=-+341263x x -=--3x -=3x =-225(624)m m m m =--++225624m m m m =-+--252m m =+-2m =22522=+⨯-4102=+-12=x 6148x x +=7x =………………………………………………………………………… 6分……………………………… 4分………………………………………………………………………… 8分………………………………………………………………… 8分………………………………………………………………… 2分………………………………………………………………… 4分………………………………………………………………… 6分…………………………………………………………………………… 8分…………………………………………………………………………… 5分……………………………………………………… 4分……………………………………………………… 7分……………………………………………………… 8分……………………………………………………… 1分A CB 第21题图D(2)因为点是线段的中点, 所以,, 因为, 所以,所以.22.(10分)解:(1) (1,,3) ; (2)依题意,得.因为差中不含二次项, 所以,解得 .23.(10分)解:(1)因为, 所以,,因为是该方程的解, 所以, 解得 ;(2)由(1)可知,因为方程的解为正整数,的值为整数,所以 ,或2或3或6,解得 或0或1或4.24.(12分)解:(1) 2 , 3 . (2)因为, 所以(,81), 因为,所以(5,125), 所以原式. (3)因为,所以,因为,所以,所以(,)(,64),因为,所以(,64).C AB 24AB BC ==2AC BC ==2CD AB =248CD =⨯=2810AD AC CD =+=+=2-22(21)(324)ax x x x +----+2221324ax x x x =+-++-2(3)45a x x =++-30a +=3a =-(2023)202472025(1)k x x --=-+20232024720252025kx x x --=--20232025720252024kx x x -+=-+(2)6k x +=1x =-(2)6k -+=8k =-(2)6k x +=k 62x k =+21k +=1k =-4(3)81-=f 3-4=35125=f 3=431-=5(2)32-=-2a =-3464=64b =f a b =f 2-6(2)64-=f 2-6=…………………………………………………………… 3分………………………………………………………… 4分………………………………………………………… 8分………………………………………………………… 12分…………………………………………………………… 8分…………………………………………………………… 7分…………………………………………………………… 9分…………………………………………………………… 10分…………………………………………………………… 5分…………………………………………………………… 10分25.(14分)解:(1)由题意可知:,, 所以,, 因为平分,平分, 所以,,所以; (2)①不变,理由如下:由题意可知:,所以 ,,因为平分,平分,所以,,所以; ②由①可知: ,,1)当时(如图-2-1),,解得, 2)当时(如图-2-2),,解得,综上所述,满足题意的值为7或17.45ABC ∠=︒30EBD ∠=︒135CBN ∠=︒150DBN ∠=︒BF CBN ∠BG DBN ∠1113567.522FBN CBN ∠=∠=⨯︒=︒111507522GBN DBN ∠=∠=⨯︒=︒7567.57.5FBG GBN FBN ∠=∠-∠=︒-︒=︒5EBA t ∠=︒DBC EBA ABC EBD ∠=∠+∠-∠54530(515)t t =︒+︒-︒=+︒180CBN EAB ABC∠=︒-∠-∠180545(1355)t t =︒-︒-︒=-︒BH DBC ∠BF CBN ∠1515()22t CBH DBH DBC +∠=∠=∠=︒11355()22tCBF FBN CBN -∠=∠=∠=︒FBH CBH CBF∠=∠+∠5151355()22t t +-=+︒5151355(2t t++-=︒75=︒GBH DBG DBH ∠=∠-∠515135575()()22t t+-=︒-︒=︒GBF GBN FBN∠=∠-∠135551575()()22t t -+=︒-︒=︒2GBH GBF ∠=∠13555152(22t t -+=7t =2GBF GBH ∠=∠51513552(22t t+-=17t =t NFCDB A (E )M G图-1H NFCDB EM GA图-2HNFCD B EM GA图-2-1HNFCDB EM G A图-2-2………………………………………… 4分………………………………………… 8分…………… 14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省龙岩七年级上学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2020七上·仙居月考) 仙居杨梅开始上市啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()
A . 19.7千克
B . 19.9千克
C . 20.1千克
D . 20.3千克
2. (2分) (2020七上·宁夏期中) 下列说法正确的是()
A . 0不是有理数
B . 0没有相反数
C . 0的倒数是0
D . 0是绝对值最小的数
3. (2分) 5月18 日,新平社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实观了可燃冰(即天然气水合物)的安全可控开采.据介绍,“蓝鲸1号”拥有27354台设备,约40000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米.其中准确数是()
A . 27354
B . 40000
C . 50000
D . 1200
4. (2分) (2020七上·港南期末) 下列去括号中,正确的是()
A .
B . .
C .
D .
5. (2分)据报道,北京市今年开工及建设启动的8条轨道交通线路,总投资约82 000 000 000元.将82 000 000 000 用科学记数法表示为()
A . 0.82×1011
B . 8.2×1010
C . 8.2×109
D . 82×109
6. (2分) (2019七上·惠山期末) 如图,将长方形ABCD沿线段OG折叠到OB'C'G的位置,∠OGC'等于100°,则∠DGC'的度数为()
A . 20°
B . 25°
C . 30°
D . 40°
7. (2分)下列四个数中最大的数是()
A .
B .
C .
D .
8. (2分)某商品进价为1530元,按商品标价的九折出售时,利润率是12%,若设商品的标价为x元,可列方程得()
A . 9x=1530(1+12%)
B . 0.9x=1530×12%
C . 0.9x=1530(1+12%)
D . 0.9x=1530×0.9(1+12%)
二、填空题 (共6题;共6分)
9. (1分)(2017·南宁) 计算:|﹣6|=________.
10. (1分) (2018八上·盐城期中) 如图是某天下午小明在镜中看到身后墙上的时钟情况,则实际时间大约是________.
11. (1分) (2018七上·江门期中) 若x=2是方程8-2x=ax的解,则a=________.
12. (1分) (2019八上·北京期中) 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=________
13. (1分) (2019七上·武汉月考) 已知有理数a,b满足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,则
的值为________.
14. (1分) (2019七上·杭锦后旗期中) 有一列数,,,…,,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差,若,则 ________.
三、解答题 (共10题;共63分)
15. (5分) (2018七上·新乡期末) 计算
(1) ;
【答案】解:原式= ,
= ,
=
(1);
(2) .
16. (5分)(数字问题)一个两位数个位数字与十位数字的和为10,如果将个位数字与十位数字交换位置,得到的新的两位数字比原来的两位数大18,求原来的两位数?
17. (5分) (2020七上·陈仓期末) 解方程
(1);
(2) .
18. (5分)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.
19. (5分) (2017七下·肇源期末) 如图①,已知线段AB=12cm,点C为线段AB上的一动点,点D,E分别是AC和BC中点.
(1)若点C恰好是AB的中点,则DE=________cm;
(2)若AC=4cm,求DE的长;
(3)试说明无论AC取何值(不超过12cm),DE的长不变;
(4)如图②,已知∠AOB=120°,过角的内部任一点C画射线OC.若OD,OE分别平分∠AOC和∠BOC.试说明∠DOE的度数与射线OC的位置无关.
20. (6分) (2018七上·运城月考) 如图是一张铁皮.
(1)计算该铁皮的面积.
(2)它能否做成一个长方体盒子?若能,画出它的几何图形,并计算它的体积;若不能,说明理由.
21. (6分)根据下列语句,画出图形.
如图,已知平面内有四个点A,B,C,D,其中任意三点都不在同一直线上.
①画直线BC;
②连接AC、BD,相交于点E;
③画射线BA、CD,交于点F.
22. (6分) (2019七下·南海期末) 如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.
(1)试说明:CE∥AD.
(2)若∠C=25°,求∠B的度数.
23. (5分)小明想从“天猫”某网店购买计算器,经査询,某品牌A号计算器的单价比B型号计算器的单价多10元,5台A型号的计算器与7台B型号的计算器的价钱相同,问A、B两种型号计算器的单价分别是多少?
24. (15分) (2020七上·泰兴期中) 对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x y.
例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}
(1)若点A表示-3,a=3,直接写出点A的3关联数.
(2)①若点A表示-1,G(A,a)={-5,y},求y的值.
②若G(A,a)={-2,7},求a的值和点A表示的数.
(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.
参考答案一、单选题 (共8题;共16分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、
考点:
解析:
二、填空题 (共6题;共6分)答案:9-1、
考点:
解析:
答案:10-1、
考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、
考点:
解析:
三、解答题 (共10题;共63分)答案:15-1、
答案:15-2、考点:
解析:
答案:16-1、考点:
解析:
答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、答案:19-2、答案:19-3、
答案:19-4、考点:
解析:
答案:20-1、答案:20-2、
考点:
解析:
答案:21-1、考点:
解析:
答案:22-1、
答案:22-2、考点:
解析:
答案:23-1、考点:
解析:
答案:24-1、答案:24-2、答案:24-3、
考点:解析:。