拉丁方试验设计

合集下载

临床试验设计拉丁方设计的原则

临床试验设计拉丁方设计的原则

临床试验设计拉丁方设计的原则
拉丁方设计(Latin Square Design)是一种实验设计方法,常用于处理因变量之间的相关性。

其原则如下:
1.每一个因素水平都被分配到每一个观察次数中,使得每个单元格都包含了所有因素水平的组合。

2.每一个因素水平在实验中出现的次数应该相等,这就是等权原则。

3.如果可能,每个因素水平应该在实验中出现两次,以避免偏斜。

4.如果存在多重共线性问题,可以使用因子分析来提取主要因素,然后将这些因素作为拉丁方设计的因素。

5.拉丁方设计应该包含足够的观察次数,以确保结果的可靠性。

6.在设计拉丁方时,应考虑因素之间的交互作用。

7.拉丁方设计应该尽可能地包含所有可能的因素组合,以充分利用实验资源。

8.拉丁方设计应该尽可能地简单,以减少实验的复杂性和成本。

9.拉丁方设计应该根据实验目标和资源来选择,而不是仅仅因为它是一种流行的设计方法。

6 单因素拉丁方实验设计

6 单因素拉丁方实验设计

b2
b3
b4
6、实验设计模型 YiJkl = μ + αj +βk +γ l+εpooled (i=1,2,……,n; j=1,2, ……,p) (k=1,2, ……,p;l=1,2, ……,p) 其中:YiJ:被试 i 在处理水平 j 上的分数 μ :总体平均数 αj:水平j的处理效应 β k :水平K的无关变量B的变异 γ l:水平L的无关变量C的变异 εpooled:误差变异,包括:方格单元内误差变异 和残差变异 二、单因素拉丁方验设计与计算举例 (一)研究的问题与实验设计 文章生字密度对阅读理解的影响研究
B、拉丁方实验的误差变异
首先进行F检验,以考察两个误差变异是否存在显著性差 异,F=MS残差/MS单元内,如果差异显著,表明实验设计是 不合适的;如果不显著,则两个误差项都可以用来作为F 检验的误差项,也可以合并,公式为:
SS残差 SS单元内 MS残差 pooled 0.966 2 p c1 c2
a2 2 3 a1 2 2 a4 12 13 a3 8 7
c3 c4
a3 6 5 a2 4 3 a1 5 6 a4 12 11 a4 9 8 a3 7 6 a2 6 4 a1 7 5
b1
b2
b3
b4
a1 3 4 a4 8 7 a3 8 9 a2 5 4
c1
b1 N=2 a1 7 a4 15 a3 17
拉丁方实验设计的简单评价:
优点:比完全随机、随机区组实验设计更加有效,可以分
离出两个无关变量
通过对方格单元内误差与残差做F检验,可以检验
实验设计的正确性
缺点:自变量与无关变量之间没有交互作用的假设在很多
情况下保证

实验六-拉丁方试验设计

实验六-拉丁方试验设计

实验六拉丁方实验设计实验目的了解拉丁方实验设计的基本方法与数据的分析方法。

实验工具Spss中的Analyze →General linear Model→Univariate。

知识准备一、拉丁方设计的概念将k个不同符号排成k列,使得每一个符号在每一行、每一列都只出现一次的方阵,叫做k×k拉丁方。

利用拉丁方阵进行实验设计的方法叫做拉丁方设计。

最初设计实验方案时,拉丁方阵用拉丁字母组成的方阵来表示。

后来,尽管方阵中的元素改用了字母、阿拉伯数字或其它的符号,人们仍称这种实验方案为拉丁方实验。

拉丁方设计的特点是处理数、重复数、行数、列数都相等。

如图6.47为4×4拉丁方,它的每一行和每一列都是一个区组或一次重复,而每一个处理在每一行或每一列都只出现一次,因此,它的处理数、重复数、行数、列数都等于4。

拉丁方设计的特点:重复数=处理数=列数=横行数;每个处理在横行的区组内或列的区组内都能出现一次,从两个方向都可看成重复,排列呈方形;两个方向的排列都是随机的,从两个方向进行局部控制,试验精确度较高。

缺点:处理数=重复数,若处理过多,重复随之增多,使实验工作量过大。

一般不宜超过8个处理。

若处理数过少,方差分析时的自由度过小,影响分析结果的精确性。

由于重复数与处理数必须相等,缺乏灵活性。

二、拉丁方设计步骤〔1〕根据因素的水平数选择标准方。

标准方是指代表处理的字母,在第一行和第一列均为顺序排列的拉丁方。

如图6.48。

在进行拉丁方设计时,首先要根据实验处理数k 从标准方表中选定一个k×k 的标准方。

例如处理数为5时,则需要选一个5×5的标准方,如图6.48所示。

随后我们要对选定的标准方的行、列和处理进行随机化排列。

本例处理数是5,因此根据随机数字表任选一页中的一行,除去0、6以上数字和重复数字,满5个为一组,要得到这样的3组5位数。

假设得到的3组随机数字为14325,53124,41235。

如何理解拉丁方实验设计

如何理解拉丁方实验设计

如何理解“拉丁方实验设计”(邓涛)近来,不少学生问到拉丁方设计如何理解的问题,而且提出不同教材的表述也不一样.为了不去一一解答,我这里再结合《应用实验心理学》上的表述作一说明.我的基本看法是:拉丁方实验设计与区组实验设计一样,都是为了平衡额外变量,以防止这些额外变量成为混淆因子,破坏实验研究的内部效度.如果简化点来解释,一般来说,区组实验设计多用于对一个额外变量的平衡,如被试因素、时间顺序因素、空间位置因素等;拉丁方实验设计则可以看成是区组设计的扩展,即扩展到可以平衡两个额外变量(当然,如果设计巧妙,也可以达到对多于两个额外变量的平衡,但那也是在二维平衡模式上变化出来的).为了说明,拉丁方设计及其与区组设计的联系,我们先说一说区组设计.区组实验设计是在考察自变量影响效应的实验中,考虑到一个额外变量的影响,将这个额外变量作为区组变量,对其在各种实验处理条件下产生的影响进行平衡,同时将该区组变量引起的变异从残差中分离出来.比如,限于实验室条件,研究者开展某一实验研究时每天只能为4名被试进行测试,实验处理也有四个水平:A1、A2、A3、A4.如果认为不在每周中的同一天进行测试,可能会引起测试结果的变化,这种影响又是比较重要的.于是可以将测试时间作为区组变量,即把同一天接受测试的被试看作是一个区组.这样就可以形成一个区组实验设计,如表2-8所示.表2-8 四种实验处理的随机区组实验设计现在我们进一步设想:假如,在每天的实验中,一次只能测试一人,每天参加实验的四名被试只能分别在下午2~3点、3~4点、4~5点和5~6点的四个时段接受测试,而测试时段不同也可能会造成结果变化.这样一来,每一种实验处理条件安排的时段就也要取得平衡才行,你不能每天都在2点钟安排所有被试接受A1处理条件,或3点钟接受A1处理条件.于是,研究中采用测试天和测试时段两方面因素的平衡方法安排实验,构成了一个单因素的拉丁方实验设计,设计模式如图2-9所示.在这一设计中,测试是在星期几、测试是在每一天的哪一时段,这两个额外变量就都取得了很好的平衡.表2-9 四种实验处理的拉丁方实验设计从这一例子可以看出,拉丁方(latinsquare)是一个含P行P列,把P个实验处理分配给P×P方格的管理方案,它便于在复杂研究程序中有条理地管理各个工作单元,并平衡两种额外变量的影响.在工农业生产试验和心理与教育研究中,拉丁方都得到普遍应用.在这种实验设计中,首先根据自变量处理的水平数确定两个额外变量的水平数,然后利用两个额外变量的各个水平结合在一起构造一个拉丁方格,最后再将自变量的不同处理平衡地安排在这个方格中,就构成了一个研究方案,其结果要保证自变量的每一个水平在拉丁方格的每一行和每一列都出现且只出现一次.很明显,在这种设计中,自变量的水平数或水平结合数、额外变量的水平数必须相等.拉丁方设计常被用于平衡实验安排的时空顺序,也可被用于平衡机体变量的影响.我们再以下面这个例子对拉丁方做进一步说明.问题模式:为了研究简单反应时间与光刺激的颜色和强度的关系,研究者同时考虑到被试的气质类型及年龄因素可能对反应时间具有明显影响,为了将这两个因素的影响从变异的残差项中分离出去,研究者采用了拉丁方实验设计.拉丁方格的组成:拉丁方格是由实验中明显存在的两个额外变量即被试的气质类型和被试年龄档组成,其中年龄分为四档:10~13岁、15~18岁、20~23岁、25~28 岁.从四个年龄档的青少年中筛选出四种典型气质类型者各2人,这样就有共计32名被试参加这一实验.根据气质类型和年龄档组成拉丁方格,拉丁方格中的每一个格子中可以有年龄档相同、气质类型相同的两名被试,如表2-10所示.表2-10 4×4拉丁方格被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~1315~1820~2325~28实验处理的组成:实验中自变量有两个,即光的颜色和强度.自变量的颜色取两个水平,红光和绿光,分别用A1和A2表示;光的强度也取两个水平,相对强度为1和1/4,分别用B1和B2表示.于是两个自变量结合而成的实验处理分别为:A1B1——红光+1(即光的颜色为红光、光的相对强度为1)A1B2——红光+1/4A2B1——绿光+1A2B2——绿光+1/4实验处理的编排:按照拉丁方实验设计的基本原则,将四种实验处理安排在拉丁方格中,某种实验处理被分配到拉丁方格中的某一方格,该方格中对应的两个被试就要完成这一种实验处理.首先,我们给出一个基本的拉丁方设计形式,如表2-11所示.表2-11 标准的4×4拉丁方实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A1B1A1B2A2B1A2B215~18A1B2A2B1A2B2A1B120~23A2B1A2B2A1B1A1B225~28A2B2A1B1A1B2A2B1表2-11所示的实验设计方案就是一个标准的或基本的4×4拉丁方的实验设计.有了这样的设计方案之后,实验程序的编排就非常清晰了.按照这一设计进行实验,不仅能将两个额外变量的效应从残差项中分离出来,而且也有利于增进复杂实验过程的条理性.有了表2-11所示的实验方案,每个被试需要完成什么样的实验就很清晰了,比如15~18岁组两个胆汁质的学生只需完成A2B1实验处理,即“绿光+1”实验处理、25~28岁组两个粘液质的学生只需完成A1B2实验处理,即“红光+1/4”实验处理.有了表2-11所示的标准拉丁方实验设计方案之后,还可以将该方案进行随机化处理,即可以对其中的实验安排做随机的两行互换或两列互换,得到各种不同的拉丁方实验方案.比如,将表2-11中第1列和第四列对换就可以得到表2-12所示的拉丁方实验方案.表2-12 在标准4×4拉丁方实验方案基础上变换得到的实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A2B2A1B2A2B1A1B115~18A1B1A2B1A2B2A1B220~23A1B2A2B2A1B1A2B125~28A2B1A1B1A1B2A2B2再将表2-12中的第2行和第3行对换就可以得到表2-13所示的拉丁方实验方案.表2-13 在表2-12基础上变换得到的拉丁方实验方案被试气质类型被试年龄档次多血质胆汁质粘液质抑郁质10~13A2B2A1B2A2B1A1B115~18A1B2A2B2A1B1A2B120~23A1B1A2B1A2B2A1B225~28A2B1A1B1A1B2A2B2进行拉丁方实验设计中,其选取用来构成拉丁方格的额外变量不能与研究的自变量之间存在交互效应,两个额外变量之间也不能存在交互效应.其数据的方差分析方法与随机区组实验设计相似,可以对数据的变异及其自由度进行分解,计算过程是:首先计算总变异,然后计算自变量及其交互效应引起的变异、两个额外变量主效应引起的变异,再计算误差项变异,即可得到各种变异方差及其与误差方差的比率F.拉丁方实验设计既有优点也有缺点.其优点是,在许多研究情境中,这种设计比完全随机和随机区组设计更加有效,它可以使研究者平衡并分离出两个额外变量的影响,因而减小实验误差,可获得对实验处理效应的更精确的估价.另外,通过对方格单元内误差与残差的F检验,可以检验额外变量与自变量是否有交互作用,以检验采用拉丁方设计是否合适.拉丁方设计的缺点是,它的关于自变量与额外变量不存在交互作用的假设在很多情况下都难以保证,尤其当实验中含有多个自变量的时候.因此,拉丁方实验设计在多因素实验中不常用.另外,拉丁方实验设计要求每个额外变量的水平数与实验处理数必须相等,这也在一定程度上限制了拉丁方实验设计的使用[1].(其他实验设计的模式可参见《应用实验心理学》第一、第二、第三章)[1] 舒华. 心理与教育研究中的多因素实验设计. 北京:北京师范大学出版社. 1994:58。

拉丁方设计

拉丁方设计

拉丁方设计-----------------------------------------------------------------“拉丁方”的名字最初是由R、A、Fisher给出的。

拉丁方设计(latin square design)是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。

在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。

在对拉丁方设计试验结果进行统计分析时,由于能将横行、直列二个单位组间的变异从试验误差中分离出来,因而拉丁方设计的试验误差比随机单位组设计小,试验精确性比随机单位组设计高。

拉丁方设计又叫平衡对抗设计(baIanced design)、轮换设计。

这三个名称是从其模式、作用和方法三个不同的角度来说明这种设计的意义。

所谓平衡对抗设计,是指在实验中,由于前一个实验处理往往会影响后一个实验处理的效果,而该实验设计的作用就在于提供对实验处理顺序的控制,使实验条件均衡,抵消由于实验处理的先后顺序的影响而产生的顺序误差,因而也可称之为抵消法设计。

所谓轮换设计,是指在实验中,由于学习的首因效应,先实验的内容,被试容易记住;又因为学习的近因效应,对于刚刚学过的内容,被试回忆的效果一般也较好。

因此、在实验方法上,有必要使不同实验条件出现的先后顺序轮换,使情境条件以及先后顺序对各个实验组的机会均等,打破顺序界限。

所谓拉丁方设计,是指平衡对抗设计的结构模式,犹如拉丁字母构成的方阵。

例如四组被试接受A、B、C、D四种处理,其实验模式为:上述模式表可以看出,每种处理即表中的字母在每一行和每一列都出现了一次而且仅出现了一次。

像这样的一个方阵列就称为一个拉丁方。

要构成一个拉丁方,必须使行数等于列数,并且两者都要等于实验处理的种数。

第八章 单因素拉丁方设计

第八章 单因素拉丁方设计

第三节 拉丁方设计的优缺点 (一)拉丁方设计的主要优点
1、精确性高
拉丁方设计在不增加实验单位的情况下,
比随机单位组设计多设置了一个区组因素,能
将横行和直列两个单位组间的变异从实验误差
中分离出来,因而实验误差比随机区组设计小,
实验的精确性比随机区组设计高。 2、实验结果的分析简便
(二)拉丁方设计的主要缺点
b4

a2
9 48
a3
15 44
a4
19 48
a1
12 52
a1 35
a2 31
a3 56
a4 70
第一步:作统计假设
1) 处理水平总体平均数相等
H0 : 1 2 3 4
2) 无关变量(横行)的总体平均数相等
H0 : 1 2 3 4
五、实验工具
拉丁方格 标准型拉丁方 拉丁方块随机化
(一) 拉丁方 以 n 个 拉 丁 字 母 A, B, C……,为元素,列出一个 n阶方阵,若这 n个 拉丁方字母在这 n 阶方阵的每一行、 每一列都 出现、且只出现一次,则称该 n阶方阵 为n×n 阶 拉 丁方。
例如: A B B A B A A B
3) 无关变量(纵列)的总体平均数相等
H0 : 1 2 3 4
第二步:平方和及自由度的计算
SS总变异 = SS处理间 +SS处理内
= SS处理间 +(SSb+ SSc+ d f处理内
= d f A +(d f B + d f C +d fe)
在选定拉丁方之后,若是非标准型,则可 直接由拉丁方中的字母获得实验设计。若是标 准型拉丁方,还应按下列要求对直列、横行和 实验处理的顺序进行随机排列。

拉丁方实验设计函数

拉丁方实验设计函数

拉丁方实验设计函数一、引言拉丁方实验设计是一种常用的实验设计方法,它可以有效地降低实验误差,提高实验效率。

本文将介绍一个全面的详细的函数,用于生成拉丁方实验设计。

二、函数输入参数1. factor_levels:因素水平数目2. runs:试验次数3. seed:随机数种子三、函数输出参数1. design_matrix:拉丁方实验设计矩阵四、函数原理拉丁方实验设计是一种特殊的正交表设计方法,它通过将因素水平排列在试验矩阵中的不同行和列上,确保每个因素水平在每行和每列只出现一次。

这样可以避免因素间相互影响,从而降低误差。

具体地说,生成拉丁方实验设计矩阵的步骤如下:1. 随机选择一行,并在该行中随机选择一个位置放置第一个因素水平。

2. 对于剩余的每个因素,在其对应列中找到一个未被使用过的位置,并将该因素放置在该位置。

3. 重复步骤2直到所有因素都被放置在矩阵中。

4. 将第二行作为起始行,重复步骤1至3直到生成完整的试验矩阵。

五、函数实现下面是一个用Python实现的生成拉丁方实验设计的函数:```pythonimport numpy as npdef latin_square_design(factor_levels, runs, seed=None):"""Generate a Latin square experimental design matrix.Parameters:factor_levels (int): The number of levels for each factor.runs (int): The number of runs in the experiment.seed (int, optional): Seed for random number generator.Returns:design_matrix (numpy.ndarray): A Latin square experimental design matrix."""# Set random seed if providedif seed is not None:np.random.seed(seed)# Initialize design matrixdesign_matrix = np.zeros((runs, factor_levels))# Generate first row randomlyfirst_row = np.random.permutation(factor_levels)# Fill in remaining rowsfor i in range(runs):row = np.roll(first_row, i)for j in range(factor_levels):if i > 0 and j > 0:while row[j] == design_matrix[i-1,j] or \row[j] in design_matrix[:i,j]:np.random.shuffle(row)design_matrix[i,j] = row[j]return design_matrix.astype(int)```六、函数使用示例下面是一个使用示例,生成一个3x3的拉丁方实验设计:```pythondesign_matrix = latin_square_design(3, 3)print(design_matrix)```输出结果如下:```[[1 2 3][2 3 1][3 1 2]]```七、总结本文介绍了一个用于生成拉丁方实验设计的函数,该函数可以根据输入的因素水平数目和试验次数生成一个拉丁方实验设计矩阵。

4.拉丁方试验设计

4.拉丁方试验设计

• 试验设计见下表:奶牛血色素测定的5×5拉丁方 设计 • 奶牛号 试 管 号 • 1 2 3 4 5 • 1 A(4) D(5) E(2) C(3) B(1) • 2 E(2) C(3) D(5) B(1) A(4) • 3 C(3) A(4) B(1) E(2) D(5) • 4 D(5) B(1) C(3) A(4) E(2) • 5 B(1) E(2) A(4) D(5) C(3) • 注:括号内的数字表示兽医师编号。
• 四、拉丁方试验设计 • 1、根据试验处理数选定一个标准拉丁方。 • 2、随机拉丁方的行、列: • 3阶拉丁方先随机1、2、3列,再随机2、 3行即可; • 4阶拉丁方先随机1、2、3、4列,再随 机2、3、4行即可;也可随机所有的行列。 • 5阶及以上拉丁方先随机所有列,再随机 所有行即可。 • 3、随机确定哪个字母代替何种试验处理。
Chapter 5 拉丁方试验设计
拉丁方试验设计是运用局部控制的原则而进行的一个设计方法。 一、拉丁方试验设计:根据拉丁字母排成的k行k列的方阵来安排 试验处理,每个字母代表一个试验处理,行和列各安排一个影响 试验结果的非处理因素。该设计方法即为拉丁方试验设计。 二、拉丁方:由k个拉丁字母排成的k行k列的方阵,使每个拉丁 字母在每一行每一列均出现一次。 3阶拉丁方: A B C B C A C A B 4阶拉丁方: A B C D B C D A C D A B D A B C
• 由于拉丁方试验设计的处理数=重复数=行 区组数=列区组数,处理数多则重复较多, 造成浪费;处理数少,则重复少,误差就 大;因此,拉丁方试验一般应用于试验处 理数为5-----8个的试验。 • 五、拉丁方试验结果的统计分析 • 用方差分析。行和列各作为一个非处理因 素。 • SST=SSt+SS行+SS列+SSe • dfT=dft+df行+df列+dfe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉丁方试验设计拉丁方试验设计在统计上控制两个不相互作用的外部变量并且操纵自变量。

每个外部变量或分区变量被划分为一个相等数目的区组或级别,自变量也同样被分为相同数目的级别。

它是从横行和直列两个方向进行双重局部控制,使得横行和直列两向皆成单位组,是比随机单位组设计多一个单位组的设计。

在拉丁方设计中,每一行或每一列都成为一个完全单位组,而每一处理在每一行或每一列都只出现一次,也就是说,在拉丁方设计中,试验处理数=横行单位组数=直列单位组数=试验处理的重复数。

拉丁方——以n个拉丁字母A,B,C……,为元素,作一个n 阶方阵,若这n个拉丁方字母在这n阶方阵的每一行、每一列都出现、且只出现一次,则称该n阶方阵为n×n阶拉丁方。

第一行与第一列的拉丁字母按自然顺序排列的拉丁方,叫标准型拉丁方。

拉丁方设计一般用于5~8个处理的试验,设计的基本要求:必须是三个因素的试验,且三个因素的水平数相等;三因素间是相互独立的,均无交互作用;各行、列、字母所得实验数据的方差齐(F 检验)。

试验设计的步骤:根据主要处理因素的水平数,确定基本型拉丁方,并从专业角度使另外两个次要因素的水平数与之相同;先将基本型拉丁方随机化,然后按随机化后的拉丁方阵安排实验。

可通过对拉丁方的任两列交换位置或任两行交换位置实现随机化;规定行、列、字母所代表的因素与水平,通常用字母表示主要处理因素。

数据处理的相关理论:拉丁方设计实验结果的分析,是将两个单位组因素与试验因素一起,按三因素试验单独观测值的方差分析法进行。

将横行单位组因素记为A ,直列单位组因素记为B ,处理因素记为C ,横行单位组数、直列单位组数与处理数记为r ,对拉丁方试验结果进行方差分析的数学模型为:),,2,1()()(r k j i x k ij k j i k ij ===++++=εγβαμ式中:μ为总平均数;i α为第i 横行单位组效应;j β为第j 直列单位组效应,)(k γ为第k 处理效应。

单位组效应i α、j β通常是随机的,处理效应)(k γ通常是固定的,且有01=∑=rk k γ;)(k ij ε为随机误差,相互独立,且都服从),(20σN 。

平方和与自由度划分式为:e C B A T SS SS SS SS SS +++= e C B A T v v v v v +++=矫正数:22/..r x C =总平方和:C x SS k ij T -=∑2)(横行平方和:C r x SS i A -=∑/2. 直列平方和:C r x SS j B -=∑/2. 处理平方和:C r x SS k C -=∑/2)( 误差平方和:C B A T e SS SS SS SS SS ---= 总自由度:12-=r v T 横行自由度:1-=r v A直列自由度:1-=r v B 处理自由度:1-=r v C 误差自由度:C B A T e v v v v v -+-= 方差分析的基本步骤: 计算各项平方和与自由度。

列出方差分析表,进行F 检验。

若F 检验显著,则进行多重比较。

多重比较的方法有最小显著差数法(LSD 法)和最小显著极差法(LSR 法:包括q 检验法和新复极差法)。

拉丁方试验设计的具体实例:为了研究5种不同温度对蛋鸡产蛋量的影响,将5栋鸡舍的温度设为A 、B 、C 、D 、E ,把各栋鸡舍的鸡群的产蛋期分为5期,由于各鸡群和产蛋期的不同对产蛋量有较大的影响,因此采用拉丁方设计,把鸡群和产蛋期作为单位组设置,以便控制这两个方面的系统误差。

拉丁方设计步骤如下:选择拉丁方选择拉丁方时应根据试验的处理数和横行、直列单位组数先确定采用几阶拉丁方,再选择标准型拉丁方或非标准型拉丁方。

此例因试验处理因素为温度,处理数为5;将鸡群作为直列单位组因素,直列单位组数为5;将产蛋期作为横行单位组因素,横行单位组数亦为5,即试验处理数、直列单位组数、横行单位组数均为5,则应选取5×5阶拉丁方。

随机排列。

下面对选定的5×5标准型拉丁方进行随机排列。

先从随机数字表(Ⅰ)第22行、第8列97开始,向右连续抄录3个5位数,抄录时舍去“0”、“6以上的数”和重复出现的数,抄录的3个五位数字为:13542,41523,34521。

然后将上面选定的5×5拉丁方的直列、横行及处理按这3个五位数的顺序重新随机排列。

1、直列随机将拉丁方的各直列顺序按13542顺序重排。

2、横行随机再将直列重排后的拉丁方的各横行按41523顺序重排。

选择拉丁方直列随机横行随机1 2 3 4 513 54 2A B C D EBAECDCDBEADEABCECDAB12345ABCDECDBEAECDABDEABCBAECD41523DAEBCECADBAEBCDBDCEACBDAE 把5种不同温度按第三个5位数34521顺序排列即:A=3,B=4,C=5,D=2,E=1,也就是说,在拉丁方中的A表示第3种温度,B 表示第4种温度等,依次类推。

从而得出5×5拉丁方设计,如表5.01所示。

表5.01 5种不同温度对鸡产蛋量影响的拉丁方设计产蛋期鸡 群一二 三 四 五 Ⅰ Ⅱ Ⅲ Ⅳ ⅤD (2) A (3)E (1) B (4) C (5)E (1) C (5) A (3) D (2) B (4)A (3) E (1)B (4)C (5)D (2)B (4) D (2)C (5) E (1) A (3)C (5) B (4)D (2) A (3)E (1)注:括号内的数字表示温度的编号实验结果的分析由前面拉丁方试验设计数据处理的相关理论我们可以得知:将横行单位组因素记为A ,直列单位组因素记为B ,处理因素记为C ,横行单位组数、直列单位组数与处理数记为r 。

平方和与自由度划分式为:e C B A T SS SS SS SS SS +++= e C B A T v v v v v +++=表6.10 5种不同温度对母鸡产蛋量影响试验结果 (单位:个)产蛋期鸡 群横行和x I.一二 三 四 五 Ⅰ ⅡD (23) A (22)E (21) C (20)A (24) E (20)B (21) D (21)C (19) B (22)108 105Ⅲ Ⅳ Ⅴ E (20) B (25) C (19) A (25) D (22) B (20) B (26) C (25) D (24) C (22) E (21) A (22) D (23) A (23) E (19) 116 116 104 直列和x .j109108119107106x ..=549注:括号内数字为产蛋量表6.11 各种温度(处理)的合计温度 A B C D E x (k )116 23.2114 22.8105 21.0113 22.6101 20.2现对表6.10资料进行方差分析。

1、计算各项平方和与自由度 矫正数:22/..r x C ==5492/52=12056.04总平方和:C x SS k ij T -=∑2)(=232+212+……+192-12056.04= 100.96 横行平方和:C r x SS i A -=∑/2.=(1082+1052+……+1042)/5-12056.04=27.36 直列平方和:C r x SS j B -=∑/2.=(1092+1082+……+1062)/5-12056.04=22.16处理平方和:C r x SS k C -=∑/2)(=(1162+1142+……+1012)/5-12056.04=33.36 误差平方和:C B A T e SS SS SS SS SS ---==100.96-33.36-27.36-22.16= 18.08 总自由度:12-=r v T =52-1=24 横行自由度:1-=r v A =5-1=4 直列自由度:1-=r v B =5-1=4 处理自由度:1-=r v C =5-1=4误差自由度:C B A T e v v v v v -+-==)2)(1(--r r =4*3=122、列出方差分析表,进行F 检验表6.10 表6.11资料的方差分析表变异来源 SS v MS=SS/v FF 0.05F 0.01横行间 直列间 温度间 误 差 27.36 22.16 33.36 18.08 4 4 4 12 6.84 5.54 8.34 1.504.56* 3.69*5.56**3.26 3.26 3.265.41 5.41 5.41总变异100.9624经F 检验,产蛋期间和鸡群间差异显著,温度间差异极显著。

因在拉丁方设计中,横行、直列单位组因素是为了控制和降低试验误差而设置的非试验因素,所以即使显著一般也不对单位组间进行多重比较。

下面对不同温度平均产蛋量间作进行多重比较。

3、多重比较表 6.12不同温度平均产蛋量多重比较表(q 法)温度 平均数-20.2-21-22.6-22.8A B D C E23.222.822.621.020.23.0*2.6*2.4*0.82.21.81.6 0.60.20.4温度平均数标准误为:由ev=12和k=2,3,4,5从q值表查得临界q值:q0.05和q0.01,并与相乘得值,列于表6.13。

表6.13 q值和LSR值表ev k q0.05q0.01LSR0.05LSR 0.0112 23453.083.774.204.514.325.045.505.841.692.072.312.482.382.773.033.21多重比较结果表明:温度A、B、D平均产蛋量显著地高于E,即第3、4、2种温度的平均产蛋量显著高于第1种温度的平均产蛋量,其余之间差异不显著。

第1种和第5种温度平均产蛋量最低。

相关文档
最新文档