微电阻率扫描成像测井
微电阻率扫描成像测井资料采集及处理解释的开题报告

微电阻率扫描成像测井资料采集及处理解释的开题报告一、研究背景微电阻率扫描成像测井技术是一种高分辨率的测井方法,可用于获取地下储层的细节结构信息和岩石物性参数。
该技术应用于石油勘探和开发领域,对于优化且有效管理储层资源具有重要的意义。
因此,本研究旨在研究微电阻率扫描成像测井资料的采集和处理方法,并对测井数据进行解释,以实现更可靠、高精度的地下储层结构和物性参数识别与评估。
二、研究内容1. 微电阻率扫描成像测井仪器,主要包括测井仪器原理、数据采集系统、影响因素等方面的探讨,以便对不同条件下的测量结果进行分析和处理。
2. 微电阻率扫描成像测井数据处理,主要包括预处理和后处理两个方面。
预处理环节主要包括数据校正、噪声滤波、质量控制等;后处理主要包括数据储存、可视化和分析等。
3. 微电阻率扫描成像测井资料的应用,主要包括储层结构和物性参数的评估、地层划分、比较分析等方面。
其中,储层结构和物性参数评估是重点,可以通过反演等方法对岩石类型、有效厚度、孔隙度、渗透率等参数进行分析和识别。
三、研究意义1. 为微电阻率扫描成像测井技术的开发和应用提供基础研究。
2. 可以从实验角度测试微电阻率扫描成像测井技术的适用性和局限性。
3. 通过对微电阻率扫描成像测井资料的采集和处理分析,提高储层结构和物性参数的分辨率。
4. 深入研究储层结构信息和岩石物性参数的变化规律,提高石油勘探和开发的效率和成果。
四、研究方法1. 理论研究:收集国内外微电阻率扫描成像测井领域的相关文献和资料,对其原理和方法进行综述和分析,探讨测井资料采集和处理的方法和技术。
2. 实验研究:首先进行模拟实验,模拟微电阻率扫描成像测井资料的采集和处理,进一步探讨影响测井资料精度和可靠性的因素和措施;然后进行现场实验,采集微电阻率扫描成像测井资料,进行数据处理和解释。
3. 数值计算:在软件中建立合理的地质模型,利用反演等方法进行储层结构和物性参数的评估和解释,探讨不同方法的优劣。
微电阻率测井

3 邻近侧向测井
微侧向测井探 测深度有些浅。
2 微侧向测井
(2)微侧向测井资料的应用
①划分薄层。
微侧向主电流层厚度较小,约为4.4cm,它的纵向分层能力较强,可划分 出h≈5cm的薄层。
②确定冲洗带电阻率Rxo
冲洗带电阻率是评价地层孔隙 度和含水饱和度的重要参数,可 利用右图确定Rxo。
虽然微侧向比微电极系受泥饼 的影响小一些,但泥饼对微侧向仍 有影响。从图可看出,当hmc=0时,Ra=Rxo,当泥饼存在时,Ra随hmc的增大 而降低。因此在知道泥饼厚度和泥饼电阻率的条件下,通过图可以确定冲洗 带电阻率。
饼中的电压降很小。 而微电极系测井时,供电电极流出
的电流中相当一部分通过泥饼,此时,
泥饼厚度及极板与井壁接触的好坏对Ra 影响就大。
故微侧向受泥饼影响小,能较好地反映冲洗带电阻率(Rxo)的值。
2 微侧向测井
(1)基本原理
测井时,给主电极A0供电I0,并保持电流I0恒定,对屏蔽电极A1供极性 相同的电流I1,用自动控制振荡器调节屏蔽电流I1,使M1和M2电极之间的电 位差为零。此时,主电流被聚焦成束状垂直于井壁方向流入地层(如图)。
曲线具有划分薄层和区分渗透和非渗透性岩层两大特点,所以利用它将油 气层中的非渗透性的致密薄夹层划分出来,并把其厚度从含油气层总厚度
中扣除油就气得层到有油效气厚层的度有是效指厚在度目。前经济技术条件下能够产出工业性油 气流的油气层实际厚度,即符合油气层标准的储集层厚度扣除不合 标准的夹层(如泥质夹层或致密夹层)剩下的厚度。
MCI微电阻率扫描测井仪及其实践应用探讨

MCI微电阻率扫描测井仪及其实践应用探讨摘要MCI测井仪器与常规测井不同,微电阻率成像测井可提供地层裂缝、孔洞的参数,能够有效划分薄互层、裂缝性储层,准确地评价复杂岩性油藏。
本文主要通过介绍微电阻率扫描成像仪器的测量原理、实践应用、质量控制和曲线分析几方面。
关键词微电阻率成像测井;测量原理;曲线分析0引言为了适应裂缝、薄层和各项异性等复杂油气藏的勘探与开发,兴起了成像测井。
目前为止,成像测井已占有测井市场的五个百分点。
长庆油田低孔低渗的复杂情形,开发难度较大,尤其需要成像测井。
与常规测井方法不同,成像测井的特点是非线性测量为重点,因而很大程度提高了采集资料的质量,对于长庆油气田的开发具有重大意义和作用,为油气田开发提供眼睛作用,面对长庆油田大开发形式,成像测井显得尤为重要。
所谓成像测井技术,是指在实际测量中,通过采用下井传感器来进行阵列扫描或者旋转扫描。
分别沿着井壁各个方向,径向、纵向等来采集大量的地层信息,将采集到的实际地层信息通过电缆传输,进而采用相关处理技术,以图像的形式展现出来,从而得到井壁信息的二维图示。
因而,成像测井技术相比常规测井方法,能够更加直观、准确的反应地层信息,从而为油气评价提供了更好的方法。
1微电阻率成像测井原理与仪器概况MCI测量是以欧姆定律为其理论基础。
实际测井作业中,通过交变电流作用,使得仪器极板紧贴井壁来完成信息的采集。
通过电成像仪器极板中部的各阵列电极向井壁不断发射电流,同时,为了能够使得阵列电极所发射的电流垂直地流入井壁,设计者在极板的推靠器件和极板的金属部件上加了相同的电位,这样,使得阵列电流能够聚焦发射。
因此,从纽扣电极发射流出的电流与流经地层所致的电导率成正比关系,从井下仪器外部和电成像仪器极板流出的电流与其所流经的电子电导率成正比关系。
在实际测井作业时,仪器通过分别采集各个纽扣所流出的电流和供电电流,仪器极板压力等,据此,通过不同颜色的色度来显示电阻率的变换。
第3讲微电阻率成像测井

z1.发展历程
z1.发展历程
微微梯梯度度电电极极系系 AA00..002255MM1100..002255MM22 电电极极距距::00..00337755mm 探探测测深深度度::4400mmmm
z3.仪器结构
XRMI™ Expanded Range Micro-Imager增强型 微电阻率成像仪
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
z3.仪器结构
参数
EMI
XRMI
极板及电极数 6个、150个 6个、150个
z3.仪器结构
z3.仪器结构
z探头:EMI仪器上下部位均采取了居中措施,优 化了六个极板在井壁四周的分布,在水平井和大 斜度井中作用尤为明显。 zEMI的六个臂彼此独立,任何一个臂的张开程度 与其它臂无关,适合各种情况的井眼条件。
z3.仪器结构
zXRMI™ Expanded Range Micro-Imager增强 型微电阻率成像仪 ; zXRMI™ 增强型电成像仪是专为提供岩心般高 精细地层成像而设计的; z其测量环境较之EMI拓宽了很多,主要是提高 了复杂的井眼适应能力(高矿化度井眼,高阻地 层)、成像质量。
EMI 图象定向
z4.采集的信息及用途
z倾 角 方 式 : 上 传 极板上的中心钮扣 电极的电阻率。
z成 像 方 式 : 记 录 所有钮扣电极的电 阻率曲线。
英文
中文注解
EMI Image
EMI 图象
Pad One Azimuth (P1AZ)
微电阻率扫描成像测井

192条微电阻率曲线经过主副极板上四排电极的深度对齐、平衡 处理、加速度校正、标准化、坏电极处理、图象生成等一系列步骤 得到FMI图象。通常首先计算出微电阻率资料的频率直方图,然后 把它们分成42个等级,每个等级具有相同的数据点(这使得每种颜 色在最终图象上具有相同的面积),42个等级对应着42种颜色等级, 从白色(高电阻)到黄色,一直到黑色(低电阻)。或者由灰色变 化到褐色。FMI处理可提供三种图象:
主要认识:
FMI
经成像测井分析,洋
井 周 构 造 分 析 改 进 钻 井 设 计
渡3井栖二地层(井深 4875m)以上的地层倾角总 体上为北西倾,倾向在 307~345度之间,地层倾角 9~24度;从栖二到栖一A段, 地层倾向为127~170度之间 向南倾,倾角为5~17度, 最小仅2度,表明该段处于 洋渡溪构造轴线附近并开 始进入东南翼;钻进栖一B 地层(井深4902m)后,进 入了东南翼陡带,倾角随 井深增高到84度,倾向由
4)一套冲积扇、辫状河流相 沉积的砂泥岩、砂砾岩。
本井裂缝、气孔主要集中在流纹岩和凝灰岩中,而火山角砾岩、砂砾岩井段
则不发育裂缝。裂缝性质以一条贯穿整个井壁的高角度垂直裂缝为主,在这条主 裂缝的两侧伴有同生的小的垂直裂缝和斜交裂缝,部分井段呈网状交织在一起, 主裂缝面不规则,锋内部充填的阻凝灰和泥质,主裂缝缝面倾角达80度以上,缝 宽大小不均。气孔较发育,具有一定方向性,大小不均,分布具一定规律,多发 育在3521.0~3625.0m流纹面较高的流纹岩中。
3、精细描述裂缝,识别天然裂缝与钻井诱生裂缝,描述裂缝产 状、裂缝开度、裂缝孔隙度、裂缝有效性等,应用裂缝和其它构 造特征来分析现今和古应力场。
地球物理测井7微电阻率测井

7.1 微电极测井(ML)
7.1 微电极测井(ML)
曲线特点与普通电阻率测井类似
01
02
03
7.1 微电极测井(ML)
影响因素
泥浆侵入的影响(di、Ri)
当泥浆侵入不深时,其测量结果受过渡带及原状地层的影响。
影响因素
7.1 微电极测井(ML)
井眼的影响 (dh、Rm)
01
井眼的井壁不平,严重扩径时Rmc受泥浆的影响严重。
02
7 微电阻率测井
1
2
3
4
5
7 微电阻率测井
01
02
微电阻率测井方法的分类 :
微侧向测井(MLL) 邻近侧向测井(SPL) 微球形聚焦测井(MSFL)。
微电极测井(ML):微电位
微梯度
7 微电阻率测井
7.1 微电极测井(ML)
电极的结构
测井时,A、M1、M2构成微梯度,探测深度4~5cm;
02
7.1 微电极测井(ML)
影响因素
微电极测井资料的应用:
细分岩性剖面: 由于微电阻测井的探测范围小,分辨高所以 对岩性的变化反映灵敏。 各种岩性地层的RML值视地区及层位而不同。
7.1 微电极测井(ML)
微电阻率测井资料的应用:
1
确定岩层界面:
2
微电阻率曲线变化陡直,一般采用半幅点确定界面,其误差很小。
电极系及电流分布 主电流I分为两部分: I0—主要分布在冲冼带。 Ia——辅助电流,经泥饼回到辅助电极A1 I=I0+Ia
7.4 微球形聚焦测井(MSFL)
测量过程中△UM1M2=0,即I0主要分布在冲冼带 UM0M1=C
7.4 微球形聚焦测井(MSFL)
微电阻率扫描成像测井解释方法及应用研究

微电阻率扫描成像测井解释方法及应用研究成像测井技术自从引进我国后在沉积构造识别、薄层识别以及裂缝检测等物理属性成像方面取得了一定的进展,但是井下地层地质特征与成像图形的对应关系还需要进一步分析和探讨。
应该在实际测井工作中根据成像仪的特征特点建立地区相应关系,进一步研究成像解释方法。
标签:微电阻率扫描成像测井解释方法裂缝检测本文以全井眼微电阻率扫描成像测井仪为代表,主要介绍了电成像测井技术的仪器指标、仪器结构、基本原理、工作原理以及物理基础。
在对成像测井资料进行预处理的基础上,进一步对成像测井在岩心刻度成像、裂缝检测识别等方面的应用展开了探讨。
1微电阻率扫描成像测井的必要性由于油气地域构造复杂,采集资料品质差,构造形态作图存在较大的误差,油气储层存在严重的非均匀性且横向预测结果多样,导致影响了我国油气的开发效益和全局勘探。
我国的测井资料就目前而言还不能对其进行客观准确的解释和评价。
主要体现在两个方面:第一,华东油气田复杂多变的地质特征使得资料解释结果存在较大的偏差,需要进一步精细解释井旁构造形态,而且油田内储层岩石构造的非均匀性、碳酸盐高阻地层与砂泥岩低阻地层的复杂地质特征使常规测井难以精细解释井旁构造形态。
第二,华东油气田砂泥岩类裂缝储层、灰岩缝洞类储层的纵、横分布复杂且不均匀,裂缝产状伴随泥浆入侵裂缝性储层以及低孔等使得判别流体性质存在较大的难度。
因此有必要对微电阻率扫描成像测井的解释方法和应用进行深入的了解和探讨,提高我国油田开发勘探效率和经济效益。
2微电阻率扫描成像测井解释方法2.1仪器结构及测量原理本文以全井眼微电阻率扫描成像测井仪(英文全称为Fullbore Formation MicroImager,简称FMI)为代表,对电成像测井资料处理进行了简单的探讨。
全井眼微电阻率扫描成像测井仪的四个手臂分别有一个折页极板和一个主极板,这种状如手掌的结构使得极板增加,可以覆盖更加广泛的井壁范围。
成像测井方法简介

二、应用
1、探测深度和纵向分层能力 方位侧向LLHR的横向探测深度与深双侧向 接近;方位侧向LLHR的纵向分层能力与微球聚 焦测井接近。如图所示。
2、划分薄互层 如图所示
获取有关横波数据。
3、斯通利波方式 用低频脉冲激励单极发射器发射时,采集和
处理相应接收器接收到的单极波形数据,从而获
取斯通利波的有关数据。 4、纵波和横波方式 用高频脉冲激励单极发射器发射时,采集和处
理相应接收器接收到的单极波形数据,从而得出
纵波和横波时差。
5、首波检测方式
用高频脉冲激励单极发射器发射时,采集和处
分辨率地层倾角仪同样的结果,但提高了测井速
度。 3、测量环境 水基泥浆:泥浆电阻率小于50欧姆米,地层电 阻率与泥浆电阻率比值小于20000。 油基泥浆:当油基泥浆含水量大于30%-40%时, 也可以测井,但测井质量难于保证。
4、资料应用 (1)裂缝识别
电导率裂缝 的特点 电阻率低, 表现为暗色 可确定电 导率裂缝 的倾角及倾 向
偶极子声源 振动示意图
软地层 中的单 极子波 形
软地层中的偶 极子波形
偶极声源除产生纵波、横波外,还可以在井眼激
发挠曲波。此波具有频散性。高频传播速度低于低
频传播速度。低频时其传播速度与横波速度相同。
3、偶极声波测井仪的仪器结构
如图所示。
DSI井下仪结 构简图
1)、发射器的组成 由三个发射单元组成。单极子全方位陶瓷发射
2、划分裂缝带
1)、有效裂缝分析
当斯通利波遇到张开的裂缝时,由于裂缝
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FMI识别 裂缝发育方位 蝌蚪图 识别l裂缝发育方位 识别 裂缝发育方位—蝌蚪图
FMI多井识别裂缝发育方向分布图 多井识别裂缝发育方向分布图
主要认识:
FMI识别岩性与沉积相
1)一套滨浅湖沼泽相沉积。 2)一套多期爆发相火山角砾 岩为主的沉积序列, 3)三套火山溢流相的流纹岩。 第一套为风化变异流纹岩,第二 套流纹面清晰,第三套流纹面倾 角较高,成像图上有“似结核” 状流动构造显示,气孔,杏仁构 造发育,局部具风化变异特征。 4)一套冲积扇、辫状河流相 沉积的砂泥岩、砂砾岩。
FMI识别层面构造应用实例 浪成波痕 识别层面构造应用实例—浪成波痕 识别层面构造应用实例
FMI识别层面构造应用实例 冲刷面 识别层面构造应用实例—冲刷面 识别层面构造应用实例
FMI识别变形构造应用实例 负载构造 识别变形构造应用实例—负载构造 识别变形构造应用实例
FMI识别层面构造应用实例 冲刷面 识别层面构造应用实例—冲刷面 识别层面构造应用实例
FMI识别层理应用实例 水平层理、包卷层理 识别层理应用实例—水平层理 识别层理应用实例 水平层理、
FMI识别层理应用实例 交错层理 识别层理应用实例—交错层理 识别层理应用实例
FMI识别层理应用实例 透镜层理 识别层理应用实例—透镜层理 识别层理应用实例
FMI识别层理应用实例 波状层理 识别层理应用实例—波状层理 识别层理应用实例
FMI识别裂缝应用实例 钻井诱生缝(黑色 识别裂缝应用实例—钻井诱生缝 黑色180度对称分布) 度对称分布) 识别裂缝应用实例 钻井诱生缝( 度对称分布
FMI识别裂缝应用实例 断层 识别裂缝应用实例—断层 识别裂缝应用实例
FMI识别裂缝应用实例 断层带 识别裂缝应用实例—断层带 识别裂缝应用实例
本井裂缝、气孔主要集中在流纹岩和凝灰岩中,而火山角砾岩、砂砾岩井段 则不发育裂缝。裂缝性质以一条贯穿整个井壁的高角度垂直裂缝为主,在这条主 裂缝的两侧伴有同生的小的垂直裂缝和斜交裂缝,部分井段呈网状交织在一起, 主裂缝面不规则,锋内部充填的阻凝灰和泥质,主裂缝缝面倾角达80度以上,缝 宽大小不均。气孔较发育,具有一定方向性,大小不均,分布具一定规律,多发 育在3521.0~3625.0m流纹面较高的流纹岩中。
192条微电阻率曲线经过主副极板上四排电极的深度对齐、平衡 条微电阻率曲线经过主副极板上四排电极的深度对齐、 条微电阻率曲线经过主副极板上四排电极的深度对齐 处理、加速度校正、标准化、坏电极处理、 处理、加速度校正、标准化、坏电极处理、图象生成等一系列步骤 得到FMI图象。通常首先计算出微电阻率资料的频率直方图,然后 图象。 得到 图象 通常首先计算出微电阻率资料的频率直方图, 把它们分成42个等级 每个等级具有相同的数据点( 个等级, 把它们分成 个等级,每个等级具有相同的数据点(这使得每种颜 色在最终图象上具有相同的面积) 个等级对应着42种颜色等级 色在最终图象上具有相同的面积),42个等级对应着 种颜色等级, 个等级对应着 种颜色等级, 从白色(高电阻)到黄色,一直到黑色(低电阻)。或者由灰色变 从白色(高电阻)到黄色,一直到黑色(低电阻) 化到褐色。 处理可提供三种图象: 化到褐色。FMI处理可提供三种图象: 处理可提供三种图象 1)静态平衡图象, 该类图象全井段统一配色, 每种颜色代表着 ) 静态平衡图象,该类图象全井段统一配色, 固定的电阻率范围,因此反映了整个测量井段的相对电阻率变化。 固定的电阻率范围,因此反映了整个测量井段的相对电阻率变化。 2)标定到浅侧向的静态图象 , 它是专门为了计算裂缝宽度等参 ) 标定到浅侧向的静态图象, 数设计的,标定后的静态图象不仅反映井段微电阻率变化(不是相 数设计的,标定后的静态图象不仅反映井段微电阻率变化( 对变化) 而且与浅侧向测井值对应,可用于岩相分析和地层划分。 对变化),而且与浅侧向测井值对应,可用于岩相分析和地层划分。 3)动态加强图象, 它是一种在用户选定的滑动深度窗口内 ( 通 ) 动态加强图象,它是一种在用户选定的滑动深度窗口内( 常不超过3英尺 英尺) 重新进行颜色刻度,突出局部井段电阻率变化, 常不超过 英尺) , 重新进行颜色刻度 ,突出局部井段电阻率变化 , 使得图象显示更详细的局部静态(全井段内动态)的图象显示方法。 使得图象显示更详细的局部静态(全井段内动态)的图象显示方法。 此时颜色更能揭示各种地质事件,如结构、构造、裂缝、结核、粒 此时颜色更能揭示各种地质事件,如结构、构造、裂缝、结核、 序变化、层理等,但此时颜色不再与电阻率具有一一对应关系, 序变化、层理等,但此时颜色不再与电阻率具有一一对应关系,解 释时需特别注意。 释时需特别注意。
FMI识别裂缝应用实例 与缝合线相交的垂直缝 识别裂缝应用实例—与缝合线相交的垂直缝 识别裂缝应用实例
FMI识别裂缝应用实例 闭合缝(浅色正弦线) 识别裂缝应用实例—闭合缝 浅色正弦线) 识别裂缝应用实例 闭合缝(
FMI识别裂缝应用实例 高角度闭合缝(出现光晕的正弦线) 识别裂缝应用实例—高角度闭合缝 出现光晕的正弦线) 识别裂缝应用实例 高角度闭合缝(
FMI识别岩性应用实例 角砾状灰岩 识别岩性应用实例—角砾状灰岩 识别岩性应用实例
FMI识别裂缝应用实例 开启缝与收缩说缝 识别裂缝应用实例—开启缝与收缩说缝 识别裂缝应用实例
FMI识别裂缝应用实例 缝合线 识别裂缝应用实例—缝合线 识别裂缝应用实例
FMI识别裂缝应用实例 局部切割井眼的开启缝 识别裂缝应用实例—局部切割井眼的开启缝 识别裂缝应用实例
主要认识:
FMI 井 周 构 造 分 析 改 进 钻 井层(井深 4875m)以上的地层倾角总 体上为北西倾,倾向在 307~345度之间,地层倾角 9~24度;从栖二到栖一A段, 地层倾向为127~170度之间 向南倾,倾角为5~17度, 最小仅2度,表明该段处于 洋渡 南 ; 栖一B 地层(井深4902m) , 南 ,倾角 井深 到84度,倾向 的北西向 为南 向 ( 2) 明 洋 渡 的 南 ,
它有三种工作方式,分别是全井眼方式、 它有三种工作方式,分别是全井眼方式、四极板方式和 倾角方式: 倾角方式: 1)全井眼方式下,192个电极全部工作,可测得 个电极全部工作, )全井眼方式下, 个电极全部工作 可测得192条微 条微 电阻率曲线, 极板和 极板井径曲线, 极板和2-4极板井径曲线 电阻率曲线,1-3极板和 极板井径曲线,井斜角和井眼 倾斜方位曲线,1号极板方位角和相对方位角曲线,自然 倾斜方位曲线, 号极板方位角和相对方位角曲线, 号极板方位角和相对方位角曲线 伽马曲线,仪器加速度曲线等。 伽马曲线,仪器加速度曲线等。 2)四极板方式下,4个主极板工作,4个副极板不工作, )四极板方式下, 个主极板工作 个主极板工作, 个副极板不工作 个副极板不工作, 与早期的FMS类似。 类似。 与早期的 类似 3)倾角方式下,只采用8个钮扣电极工作,形成失量图 )倾角方式下,只采用 个钮扣电极工作 个钮扣电极工作, 类似。 与SHDT类似。 类似
地层微电阻率扫描测井及应用
孙建孟
石油大学(华东) 石油大学(华东)地球资源与信息学院
FMI是斯仑贝谢(Schlumberger)MAXIS 500C成象测井 是斯仑贝谢( 是斯仑贝谢 ) 成象测井 系列中的电阻率成象测井仪。 系列中的电阻率成象测井仪。 它由四个主极板和四个负极板组成, 它由四个主极板和四个负极板组成 , 每个极板上有两排 电极,每排有12个电极 上下两排电极之间距离0.3英寸 个电极, 英寸, 电极, 每排有 个电极, 上下两排电极之间距离 英寸, 电极之间的横向间隔0.1英寸 英寸, 电极之间的横向间隔 英寸, 主极板和副极板之间的垂 向距离为5.7英寸 英寸。 向距离为 英寸。 测井采样间距为0.1英寸 纵向分辨率为0.2英寸 英寸, 英寸。 测井采样间距为 英寸,纵向分辨率为 英寸。共计 个测量钮扣电极。 有4×2×2×12=192个测量钮扣电极。直接记录每个电极 × × × 个测量钮扣电极 的电流强度及所施加的电压, 的电流强度及所施加的电压 , 再由仪器系数换算出反映 井壁四周的地层微电阻率。 井壁四周的地层微电阻率 。 FMI传感器测量的电流有三 传感器测量的电流有三 个分量,高频分量反映微电阻率、 低频分量探测深度与 个分量, 高频分量反映微电阻率 、
FMI识别岩性应用实例 泥岩、砂岩 识别岩性应用实例—泥岩 识别岩性应用实例 泥岩、
FMI识别岩性应用实例 砾岩 识别岩性应用实例—砾岩 识别岩性应用实例
FMI识别岩性应用实例 火山角砾岩 识别岩性应用实例—火山角砾岩 识别岩性应用实例
FMI识别岩性应用实例 白云岩 识别岩性应用实例—白云岩 识别岩性应用实例
浅侧向相当,直流分量被滤掉。 浅侧向相当,直流分量被滤掉。
早期的FMS分别是由两极板 个电极 、 四极板 个电 分别是由两极板54个电极 四极板96个电 早期的 分别是由两极板 个电极、 极组成。 英寸井眼中得出的微电阻率成像图, 极组成。在8.5英寸井眼中得出的微电阻率成像图, 其井 英寸井眼中得出的微电阻率成像图 眼覆盖率分别为20%和 40%。 FMI的井眼覆盖率则接近 眼覆盖率分别为 和 。 的井眼覆盖率则接近 80%。 。
FMI主要应用 主要应用 1、识别岩性(泥岩、砂岩、砾岩、火山碎屑岩、碳酸盐岩、侵 、识别岩性(泥岩、砂岩、砾岩、火山碎屑岩、碳酸盐岩、 入岩和喷出岩等,确定储集层的位置、厚度和方位等) 入岩和喷出岩等,确定储集层的位置、厚度和方位等) 2、识别沉积构造, 1)断裂构造,如断层、裂缝(包括开启裂缝、 、识别沉积构造, )断裂构造,如断层、裂缝(包括开启裂缝、 闭合裂缝、收缩裂缝和钻井诱生裂缝); )层理构造,如水平 闭合裂缝、收缩裂缝和钻井诱生裂缝);2)层理构造, ); 层理、交错层理、波状层理等等; )层面构造,如波痕、 层理、交错层理、波状层理等等;3)层面构造,如波痕、冲刷 面等;变形构造,如褶皱、包卷层理、滑塌等; 4) 面等;变形构造,如褶皱、包卷层理、滑塌等; 4)生物成因构 造;5)化学成因构造等等。 )化学成因构造等等。 3、精细描述裂缝,识别天然裂缝与钻井诱生裂缝,描述裂缝产 、精细描述裂缝,识别天然裂缝与钻井诱生裂缝, 裂缝开度、裂缝孔隙度、裂缝有效性等, 状、裂缝开度、裂缝孔隙度、裂缝有效性等,应用裂缝和其它构 造特征来分析现今和古应力场。 造特征来分析现今和古应力场。 4、储集层综合评价(性质、成分、结构、沉积环境、区域展布) 、储集层综合评价(性质、成分、结构、沉积环境、区域展布) 5、沉积环境分析; 、沉积环境分析; 6、评价薄层 、