2.4等腰三角形的判定定理
(等腰三角形的判定)ppt课件

方法三:“作BC边上的中线AD”可行吗? A
不行!
B
D
C
练习1
1.在△ABC中, 已知 ∠A=40°,∠B=70°,判断△ABC是什么 三角形,为什么? 2.一个三角形中,有两个角的度数分 别为20°和80°,那么这个三角形是 什么三角形,为什么?
练习2
如图,已知∠A=36°, ∠DBC=36°, ∠C=72°,则∠1= ,∠2= , 图中的等 腰三角形有 .
二、“等角对等边”是真命题吗? 怎样来证明“等角对等边” 方法:首先把命题写成 “已知…..,求证…….”的形式 ∠B=∠C, 已知: 在△ABC中, 求证: AB=AC
B
A
C
方法一:作BC边上的高AD .
A
D
∟
在△BAD和△CAD中, B ∵ ∠B=∠C, ∠ADB=∠ADC=900 AD=AD, ∴ △BAD≌△CAD (A.A.S.), ∴ AB=AC(全等三角形的对应边 相等)
C
方法二:作∠BAC的平分线AD.
在△BAD和△CAD中, ∵ ∠B=∠C, ∠1=∠2, AD=AD, ∴ △BAD≌△CAD (A.A.S.), ∴ AB=AC(全等三角形的对应 边相等
图 19.4.2
于是得到: 如果一个三角形有两个角相等,那么这两个角所 对的边也相等.(简写成“等角对等边”)
D
C
反馈检测
1.已知,如图,AB=AD ,∠ADC=∠ABC.
求证:CB=CD
D
A B C
练习2
已知:如图, AD ∥BC,BD平 分∠ABC。 求证:AB=AD B
A
D
C
证明: ∵ AD ∥BC
∴∠ADB=∠DBC
培优专题等腰三角形(含答案)

9、等腰三角形【知识精读】(-)等腰三角形的性质1. 有关定理及其推论定理:等腰三角形有两边相等;定理:等腰三角形的两个底角相等(简写成“等边对等角”)。
推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
推论2:等边三角形的各角都相等,并且每一个角都等于60°。
等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;2. 定理及其推论的作用等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。
等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。
(二)等腰三角形的判定1. 有关的定理及其推论定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。
)推论1:三个角都相等的三角形是等边三角形。
推论2:有一个角等于60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
2. 定理及其推论的作用。
等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。
3. 等腰三角形中常用的辅助线等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。
【分类解读】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
等腰三角形角平分线定理垂直平分线定理

如图,CA=CB,DF=DB,AE=AD,求∠A的度数
设∠A为x
∵CA=CB
∴ ∠A=∠B=x
E
∵DF=DB
∴∠F=∠B=x
∴ ∠A=∠B= ∠F =x
∴∠ADE=2x
∵AE=AD
∴∠AED=∠ADE=2x
∴ ∠A=180÷5=36°
△ABC是等边三角形,过AC边上的点D作 DG//BC,交AB于点G,在GD的延长线上取 一点E,使DE=DC,连接AE,BD。 (1)求证△AGE≌△DAB。
下列命题中真命题的个数是( B); ①等边三角形也是等腰三角形,任何一 边都可以作为底或腰; ②不等边三角形是遍都不相等的三角形 ; ③不等边三角形是三边不都相等的三角 形; ④三角形按边可分为不等边三角形、等 腰三角形、等边三角形。 A.1 B.2 C.3 D.4
已知一个三角形的边长为4cm,5cm,且第 三边长x为整数,问: (1)由4cm,5cm,xcm为边可组成多少个不同
∠CAD+∠C=90°, ∴∠BFD=∠CAD
又∵∠AFE=∠BFD
∴∠CAD=∠AFE, ∴EA=EF(等角对等边), ∴E在AF的垂直平分线上
谢谢!
谢谢!
如图,在△ABC中,∠BAC=90°,AB= AC,∠ABC的平分线交AC于D,过C作BD 垂线交BD的延长线于E,交BA的延长线于F
,求证:BD=2CE.
F A
E D
B
C
如图,在△ABC中,已知AB=AC, ∠BAC=90°,D是BC上一点,EC⊥BC, EC=BD,DF=FE. 求证:(1)△ABD≌△ACE;(2)AF⊥DE.
∵BP,CP分别是△ABC的外角平 分线
∴PE=PQ, PF=PQ ∴PE=PF ∵PE⊥AB,PF⊥AC ∴点P在∠A的平分线上
2.4等腰三角形的判定定理

D
2 1
36 72° °
答: ∠1= 72°, ∠2= 36°
△ABC、 △ABD、 △BDC是等腰三角形。 、 B
(2)
C
例:一次数学实践活动的内容是测量河宽,如图,即测 量A,B之间的距离.同学们想出了许多方法,其中小聪的 方法是:从点A出发,沿着与直线AB成60°角的AC方向
前进至C,在C处测得∠C=30°.量出AC的长,它就是河
2. 已知:如图,DE∥BC,∠1=∠2.
求证:BD=CE.
证明: ∵∠1=∠2(已知)
∴AD=AE(在同一个三角形中,等 角对等边) ∵DE∥BC(已知) ∴∠1=∠B,∠2=∠C ∴∠B=∠C B D 1
A
2 E
C
∴AB=AC(在同一个三角形中,等角对等边) ∴AB-AD=AE-AC
即 BD=CE
D
B
H
C F E
3:如图,AD平分△ABC的外角∠EAC,AD//BC,则 △ ABC是等腰三角形吗?说明你的理由。
证明:∵AD∥BC, ∴∠1=∠B(两直线平行,同位角相等) ∠2=∠C(两直线平行,内错角相等)
E
∵ ∠1=∠2, ∴∠B=∠C ∴AB=AC(等角对等边)
B
1 A 2 D
C
△ODE的周长=BC=16
O D E C
B
名 图 形 称 等 腰 三 角 形
A
概念
性
质
判 定 两边相等
有两边 两腰相等
相等的
三角形
B C
等边对等角 等角对等边 三线合一
是等腰
三角形
说能出你这节课的收获和体验让大家 与你分享吗?
2.已知:△ABC中,AB=AC,D是AB上一点, 延长AC至点E,使CE=BD,连结DE交BC于F。 A 求证:DF=EF
等腰三角形判定定理

八上《2.4等腰三角形的判定定理》教学设计象山县 象山港书院一、教材分析等腰三角形是一类特殊的三角形因而它比一般的三角形在理论和实际中的应用更为广泛。
教材专门设计一个单元的内容来研究它。
这个单元的重点之一就是等腰三角形的判定同时这也是本章的重点之一。
大纲对此的要求是“掌握等腰三角形的性质和判定等边三角形的性质和判定并能灵活应用它们进行论证和计算”“灵活应用”是大纲中“了解、理解、掌握、灵活应用”四个层次中的最高要求。
在学过等腰三角形的性质和判定后推理依据增多了学生所接触到的题目难度也会明显加大证明思路不再那么简单。
近几年的许多中考题目常以等腰三角形为命题背景结合四边形、相似形、圆、函数等相关知识点出一些综合性题目和压轴题目。
所以要求学生能掌握并灵活应用。
二、教学目标1、理解等腰三角形的判定定理的证明过程.2、通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.3、学生初步了解数学来源于实践,反过来又服务于实践的辨证唯物主义观点.三、教学重点等腰三角形的判定方法及其运用.四、教学难点等腰三角形判定方法证明中添加辅助线的思想方法以及等腰三角形性质与判定的区别. 五、教学流程(一)复习引入 A提问:1、 如图,在△ABC中,AB = A C,图中必有哪些角相等?为什么?2、 反过来,若∠B= ∠C,一定有AB=AC 吗?B C通过“纸制三角形实验”发现“等角对等边”的结论。
这个结论是否真实可靠,必须从理论上加以证明。
3、 等腰三角形判定定理的证明。
如果一个三角形有两个角相等,那么这两个角所对的边也相等。
已知:ΔABC中,∠B =∠C.求证:AB = A C.(学生思考:定理的证明方法。
按实验小组进行分组讨论,探讨证明的思路。
然后由一位学生口述,教师板书,学生评论,由此引出多种证法,再由学生归纳作辅助线的方法,教师总结。
)教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B =∠C.,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A 点引出.再让学生回想等腰三角形中常添的辅助线,学生可找出作ΔABC的平分线AD或作BC边上的高AD等,证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.4、归纳总结:等腰三角形判定定理:如果一个三角形 有两个角相等,那么这个三角形是等腰三角形。
等腰三角形的判定(2)

等腰三角形的判定
1、等腰三角形的判定定理:等角 对等边。 2、推论: (1)三个角都相等的三角形是等 边三角形。 (2)有一个角为60度的等腰三角形 是等边三角形。
1、等腰三角形的判定定理 及其推论的内容是什么? 2、等腰三角形的判定方法有下列几 种: ①定义,②判定定理 。 3、等边三角形的判定方法有以下几 种: ①定义,②推论1, ③推论2。 。 4、等腰三角形的判定定理与性质定理 的区别是 条件和结论刚好相反。。 5、运用等腰三角形的判定定理时, 应注意 在同一个三角形中 。
例1。求证: 等腰三角形两底角平 分线的交点到底边的两端点距离 相等。
如图,C表示灯塔,轮船从A处 出发以每小时18海里的速度向正北 (AN方向)航行,2时后到达B处,测得C 在A的北偏西40°方向,并在B的北偏 西80°方向.求B处到灯塔C的距离. N 解∵ ∠A=40 °,∠1 =80 ° C 80º ∠1= ∠ A+ ∠ C 1 B ∴ ∠ A=∠ C=40° 在一个三角形中,等角对等边 ∴ AB=BC ( ) 40º ∵ AB=18×2=36, ∴ BC=36 A 答: B处到灯塔C的距离是36海里.
练习、上午8时,一条船从A处出发 以15海里/小时的速度向正北航行, 10时到达B地,从A、B望灯塔C, 测得C在B处北偏西84度,在A处北 偏西42度。求从B处到灯塔C的距 离。
例3。已知 ABC 是等边三角 形,DE//BC,交AB,AC于D,E
求证:ADE 是等边三角形
练习、如图,△ABC是等边三角 形,D为BC延长线 上一点,CE 平分∠ ACD, CE = BD。 求证:△ADE是等边三角形。
4、如图,△ABC是等边三角形,D为BC延长线 敬 上一点,CE平分∠ ห้องสมุดไป่ตู้CD, CE = BD。
2019届中考数学一轮复习讲义第27讲等腰三角形
2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
这个判定定理常用于证明同一个三角形中的边相等。
学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。
二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。
等腰三角形、平行四边形的性质定理和判定定理及其证明
等腰三角形的性质定理和判定定理及其证明平行四边形的性质定理和判定定理及其证明一、一周知识概述1、等腰三角形的性质定理等腰三角形的两个底角相等(简写为“等边对等角”).2、等腰三角形性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).推论2:等边三角形的各角都相等,并且每一个角都等于60°.3、等腰三角形的判定定理两个角相等的三角形是等腰三角形.4、等腰三角形判定定理的推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.5、直角三角形的性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.6、平行四边形的性质定理定理1:平行四边形的对边相等.定理2、平行四边形的对角相等.定理3、平行四边形的对角线互相平分.7、平行四边形的判定定理定理1:一组对边平行且相等的四边形是平行四边形.定理2:两组对边分别相等的四边形是平行四边形.定理3:对角线互相平分的四边形是平行四边形.定理4:两组对角分别相等的四边形是平行四边形.8、三角形中位线的性质定理三角形的中位线平行于第三边,并且等于它的一半.二、重难点知识1、要说明一个命题的正确性,需用已学过的公理或定理进行证明,命题证明的步骤:先画图,写出已知、求证,给出严格的证明.2、等腰三角形的性质定理和判定定理及其应用、平行四边形的性质定理和判定定理及其应用是重点也是难点.三、典型例题讲解例1、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点F,过点F作DE∥BC交AB于D,交AC于E.求证:BD+EC=DE.分析:因为DE=DF+FE,即结论为BD+EC=DF+FE,分别证明BD=DF,CE=FE即可,于是运用“在同一个三角形中,等角对等边”,易证结论成立.证明:∵DE∥BC(已知),∴∠3=∠2(两直线平行,内错角相等).又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴DB=DF(等角对等边).同理可证EF=CE.∴BD+EC=DF+EF,即BD+EC=DE.小结:过一个角的平分线上的一点作一边的平行线与另一边相交,所构成的三角形是一个等腰三角形,这是一个常见的构图,应熟练掌握.例2、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.小结:本题证法中运用了等腰三角形的性质定理及其推论、三角形内角和定理、三角形外角的性质等知识,要注意灵活运用与牢固掌握相结合.例3、如图,在△ABC 中,AB=AC=CB ,AE=CD ,AD 、BE 相交于P ,BQ ⊥AD 于Q .求证:BP=2PQ 。
2.4等腰三角形的判定定理(共15张PPT)
第二页,编辑于星期二:二十点 六分。
如下图,量出AC的长,就可 知道河的宽度AB,你知道 为什么吗?
第三页,编辑于星期二:二十点 六分。
v 1.如图:ΔABC中,AB=AC,
A
v 图中有哪些角相等?
B
C
∠ B= ∠ C. 在三角形中等边对等角.
2.反过来:
在ΔABC中, ∠ B= ∠ C, AB=AC成立吗?
2.4 等腰三角形的判定定理
第一页,编辑于星期二:二十点 六分。
复习引入
等腰三角形有哪些特征呢?
1.等腰三角形的两腰相等;
A
2.等腰三角形的两个底角相等, 〔简称“等边对等角〞〕;
3.等腰三角形顶角的平分线、
底边上的中线和底边上的高互 相重合。〔简称“三线形是轴对称图形,对称轴是 顶角的平分线所在的直线.
那么∠1= ,∠2= ,
图中的等腰三角形
有
.
1
B
A
2
D
C
第九页,编辑于星期二:二十点 六分。
例 一次数学实践活动的内容是测量河宽,如图,
即测量A,B之间的距离。同学们想出了许多方法,其 中小聪的方法是:从点A出发,沿着与直线AB成60 角 的AC方向前进至C,在C处测得 C=30 , 量出AC的 长,它就是河的宽度(即A,B之间的距离).这个方法 正确吗?请说明理由.
有两边相 等的三角 形是等腰 三角形.
2.等边对等角.
2.等角对等边.
3. 三线合一.
B
C
4.是轴对称图形.
第十三页,编辑于星期二:二十点 六分。
开启 智慧
思考1:如图,在△ABC中,∠ABC=∠ACB,BF平分 ∠ABC,CF平分∠ACB,请想想看,由以上条件,你能推 导出什么结论?并说明理由.
等腰三角形的判定
等腰三角形的判定
极客数学帮老师提醒:本节重点是等腰三角形的判定定理及其推论,难点是运用等腰三角形的判定定理证明线段的相等关系.
知识点精析与应用
1、等腰三角形的判定定理
如果一个三角形中有两个角相等,那幺这两个角所对的边也相等(简写成“等角对等边”).
(1)该定理的作用:是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.
(2)注意:该定理不能叙述为:如果一个三角形有两个底角相等,那幺它的两腰也相等。
因为在没有判定出它是等腰三角形以前,不能用“底角”,“腰”这些名词,只有等腰三角形才有“底角”、“腰”.
(3)等腰三角形的性质定理和判定定理是互逆定理.
2.等腰三角形判定定理的推论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
D
C
1.如图,GF⊥AF于F,且AB=BC=CD=DE=EF=FG, 求∠A的度数。
E C G
A
B
D
F
2.已知:△ABC中,AB=AC,D是AB上一点, 延长AC至点E,使CE=BD,连结DE交BC于F。 A 求证:DF=EF
D
B
H
F
C E
3,如图,AD平分△ABC的外角∠EAC,AD//BC, 则△ ABC是等腰三角形吗?说明你的理由。
义务教育课程标准实验教科书 浙江版《数学》八年级上册
2.4 等腰三角形的判定 定理
复习回顾:
等腰三角形的知识: 1、等腰三角形的两腰相等. 2、等腰三角形的两个底角相等. (在同一个三角形中,等边对等角) 3、等腰三角形三线合一 顶角平分线、底边上的中线 和底边上的高
等腰三角形的判定方法:
1、有两边相等的三角形是等腰三角形。(定义)
如图,BD是∠ ABC的角平分线,DE∥BC,交AB于点 E。判断△ BDE是不是等腰三角源自,并说明理由。AA
E
D
E
D
B
C
B
C
一变:如图,BD是等腰三角形ABC的底角∠ ABC
的角平分线,DE∥BC,交AB于点E。判断△ BDE 是不是等腰三角形,并说明理由。
二变:在△ABC中,已知 AB =AC ,BO平分∠ABC,
C
A
2
B
∵∠1=∠2 ∴ DC=BC (等角对等边)
错,因为都不是在同一个三角形中。
1.在△ABC中, 已知∠A=40°,∠B=70°,判断△ABC是什 么三角形,为什么?
答:等腰三角形。
∵∠C=180°- ∠A- ∠B=180°-40°-70°=70° ∴ ∠B= ∠C ∴ △ABC是等腰三角形 2、已知:如图(2),∠A=36°, ∠DBC=36°, ∠C=72°,计算∠1和 ∠2的度数,并说明图中有哪些是等腰 三角形。 A
36°
D
2 1
36 ° 72°
答: ∠1= 72°, ∠2= 36°
△ABC、 △ABD、 、 △BDC是等腰三角形。 B
(2)
C
例:一次数学实践活动的内容是测量河宽,如图,即测 量A,B之间的距离.同学们想出了许多方法,其中小聪的 方法是:从点A出发,沿着与直线AB成60°角的AC方向
前进至C,在C处测得∠C=30°.量出AC的长,它就是河
∴∠C=∠B=60° (在同一个三角形中,等角对等边) ∴∠A=60°(三角形内角和定理). ∴∠A=∠B =∠C=60°. B
60°
A
C
∴△ABC是等边三角形(三个角都相等的三角形是等边三角形)
第二种情况:顶角是60°; 已知:如图,在△ABC中,AB=AC,∠A=60°.
求证:△ABC是等边三角形.
1、有两边相等的三角形是等腰三角形。 2、如果一个三角形有两个角相等,那么这个三 角形是等腰三角形. “在同一个三角形中,等角对等边。” 判定 辨一辨: 性质 “在同一个三角形中, 等边对等角。”
在同一个三角形中, 等角对等边
问:如图,下列推理正确吗? A
1 2
C
D
1
B
D ∵∠1=∠2 ∴ BD=DC (等角对等边)
练一练:如图,已知DE∥BC,∠1=∠2.
求证:BD=CE.
证明: ∵∠1=∠2(已知)
∴AD=AE(在同一个三角形中,等 D 角对等边) ∵DE∥BC(已知) B ∴∠1=∠B,∠2=∠C ∴∠B=∠C 1
A
2 E
C
∴AB=AC(在同一个三角形中,等角对等边) ∴AB-AD=AE-AC
即 BD=CE
即AC的长就是河宽。
30 60
O
A D
C
做一做:
1、如图,上午8时,一条船从A处出发,以15海里/小
时的速度向正北方向航行,9时30分到达B处。从A处
测得灯塔C在北偏向26°方向,从B处测得灯塔C在北
偏西52°方向,求B处到灯塔C的距离。
C
N
52° 26°
北
B
A
三条边都相等的三角形是等边三角形.
(1)一个三角形还满足什么条件时会成为等边三角形? ①三个角都相等的三角形是等边三角形. ②有一个角等于60°的等腰三角形是等边三角形. 点拨: 有一个角是60°,在等腰三角形中有两种情况:(1)这 个角是底角;(2)这个角是顶角.
证明:三个角都相等的三角形是等边三角形. 已知:△ABC中,∠A=∠B=∠C. 求证:△ABC是等边三角形.
CO平分∠ACB
①则△ OBC是 等腰
三角形
个等腰三角形。
②过点O作DE∥BC,则图中有 5
③猜想线段DE和线段DB,EC之间的关系?并说明理由。
A
DE=DB+CE
D
O
E
C
B
也可 得:DE=2DB=2CE
三变:如果△ ABC不是等腰三角形, ∠ABC和
∠ACB的角平分线相交于点O, DE∥BC。 ① 则图中等腰三角形共有
两个角相等的三角形会是等腰三角形吗?
合作学习:
如图,在ΔABC中,∠B=∠C,判断AB和AC是否 相等,并说明理由。 证明:过点A作AD⊥BC于点D 在ΔABD和ΔACD中 ∠B=∠C ∠ADB=∠ADC=90° AD=AD
B D C A
∴ΔABD≌ΔACD(AAS) ∴AB=AC
等腰三角形的判定方法:
证明:∵AD∥BC, ∴∠1=∠B(两直线平行,同位角相等) ∠2=∠C(两直线平行,内错角相等)
E
∵ ∠1=∠2, ∴∠B=∠C ∴AB=AC(等角对等边)
B
1 A 2 D
C
证明:∵∠A=∠B,
∴BC=AC (在同一个三角形中,等角对等边).
A
又∵∠A=∠C,
∴BC=AB (在同一个三角形中,等角对等边). ∴AB=BC=CA, 即△ABC是等边三角形.
B
C
第一种情况:有一个底角是60°; 已知:如图,在△ABC中,AB=AC,∠B=60°.
求证:△ABC是等边三角形. 证明:∵AB=AC,∠B=60°(已知),
证明:∵AB=AC,∠A=60°(已知), A
60°
∴∠C=∠B=60°(在同一个三角形
中,等角对等边)
∴∠A=∠B=∠C =60°,
∴△ABC是等边三角形(三个角都相 等的三角形是等边三角形).
B
C
等边三角形的判定定理:
①有一角是60°的等腰三角形是等边三角形.
②三个角都相等的三角形是等边三角形。
宽(即A,B之间的距离).这个方法正确吗?请说明理
由.
解: ∵ ∠ DAC= ∠ ACB+ ∠ ABC ∴ ∠ ABC= ∠ DAC -∠ ACB
B
说明线段相等的方法 ∠ DAC=60°,∠:ACB=30°
=60 °- 30 ° =30 °
O
1、说明线段所在的两个三角形全等。 2 、说明在同一个三角形中,线段所对的 ∴ ∠ ABC= ∠ ACB 两个角相等。 ∴ AB=AC(在同一个三角形中,等角对等边)
2
( A)
个。
② 在图中,可得线段关系是
A、 DO+EO=BD+EC B、 DO+EO>BD+EC C、 DO+EO<BD+EC D、 无法确定
A
D
O
E
B ③ 若BC=3,作OF∥AB,OG∥AC,
则△ OFG的周长=
F
G
C
3
。
1.等腰三角形△ABC中,∠A的外角是110°,则 ∠B= 70°或 55° . 2.如图,AB=AC,BD平分∠ABC,且∠C=2∠A, 则图中等腰三角形共有 3 个. 3.AB=AC,BF 平分∠ABC交AC于F,CE平 分∠ACB交AB于E,BF和BE交于点D,且 EF∥BC,则图中有 6 个等腰三角形.