(江苏版)2018年高考数学一轮复习 专题4.6 正余弦定理(练)
2018版高考数学(江苏专用理科)专题复习:专题专题4 三角函数、解三角形 第28绬 Word版含解析

1.(2016·隆化期中)在△ABC 中,如果sin A ∶sin B ∶sin C =2∶3∶4,那么cos C =________.2.(2016·银川月考)如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点间的距离为______________m.3.(2016·安庆检测)在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-c 2=3bc ,sin B =23sin C ,则A =________.4.(2016·苏北四市一模)在△ABC 中,已知AB =3,A =120°,且△ABC 的面积为1534,那么边BC 的长为________.5.(2016·常州一模)在△ABC 中,已知内角A ,B ,C 的对边分别为a ,b ,c .若tan A=7tan B ,a 2-b 2c =3,则c =________.6.(2016·东营期中)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,S 表示△ABC 的面积,若a cos B +b cos A =c sin C ,S =14(b 2+c 2-a 2),则B =________.7.(2016·南京、盐城、徐州二模)如图,在△ABC 中,D 是BC 边上一点,已知∠B =60°,AD =2,AC =10,DC =2,那么AB =________.8.已知点O 是△ABC 的外接圆圆心,且AB =3,AC =4.若存在非零实数x ,y ,使得AO→=xAB →+yAC →,且x +2y =1,则cos ∠BAC 的值为________. 9.△ABC 中,A 、B 、C 是其内角,若sin2A +sin(A -C )-sin B =0,则△ABC 的形状是________________三角形.10.(2016·惠州二调)在△ABC 中,设角A ,B ,C 的对边分别是a ,b ,c ,且∠C =60°,c =3,则a +23cos A sin B=________. 11.(2016·佛山期中)如图,一艘船以每小时15km 的速度向东航行,船在A 处看到一灯塔M 在北偏东60°方向,行驶4h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________km.12.(2016·吉安期中)在△ABC 中,D 为BC 边上一点,若△ABD 是等边三角形,且AC =43,则△ADC 的面积的最大值为________.13.(2016·如东高级中学期中)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,a =8,b =10,△ABC 的面积为203,则△ABC 的最大角的正切值是________.14.(2016·南通二模)若一个钝角三角形的三个内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是________.答案精析1.-14 2.502 3.π6 4.7 5.46.45°解析 由正弦定理可知a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c sin C =2R sin C ·sin C ,∴sin C =1,C =90°.∴S =12ab =14(b 2+c 2-a 2),解得a =b ,因此B =45°. 7.263解析 在△ADC 中,AD =2,AC =10,DC =2,则cos ∠ADC =-22,所以∠ADC =135°,从而在△ABD 中,∠ADB =45°.又因为∠B =60°,由正弦定理得AD sin B =AB sin ∠ADB ,即232=AB 22,解得AB =263. 8.23解析 设线段AC 的中点为点D ,则直线OD ⊥AC .因为AO→=xAB →+yAC →,所以AO →=xAB →+2yAD →. 又x +2y =1,所以点O 、B 、D 三点共线,即点B 在线段AC 的中垂线上,则AB =BC =3.在△ABC 中,由余弦定理,得cos ∠BAC =32+42-322×3×4=23. 9.等腰或直角解析 因为sin2A +sin(A -C )-sin B=sin2A +sin(A -C )-sin(A +C )=2sin A cos A -2sin C cos A=2cos A (sin A -sin C )=0,所以cos A =0或sin A =sin C ,所以A =π2或A =C .故△ABC 为等腰或直角三角形.10.4解析 由正弦定理知a sin A =c sin C =2,所以a =2sin A ,代入得原式=2sin A +23cos A sin B=4·sin (A +60°)sin B =4.11.30 2解析 依题意有AB =15×4=60,∠MAB =30°,∠AMB =45°,在△AMB 中,由正弦定理得60sin45°=BM sin30°,解得BM =30 2.12.4 3解析 在△ACD 中,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-482AD ·DC =-12,整理得AD 2+DC 2=48-AD ·DC ≥2AD ·DC ,∴AD ·DC ≤16,当且仅当AD =CD 时等号成立,∴△ADC 的面积S =12AD ·DC ·sin ∠ADC =34AD ·DC ≤4 3.13.533解析 由题意得203=12×8×10×sin C ⇒sin C =32⇒C =π3或C =2π3(舍),由余弦定理得c 2=82+102-2×8×10×12=84,由三角形中大边对大角知角B 最大,则cos B =82+84-1022×8×84=384,所以tan B =533. 14.(2,+∞)解析 设A 为钝角,C 为最小角,则A +C =120°,C ∈(0°,30°),由正弦定理得m=a c =sin A sin C =sin (120°-C )sin C =32tan C +12.而0<tan C <33,∴1tan C >3,则m >2.。
【高三数学试题精选】2018届高考数学正弦定理、余弦定理的应用复习题及答案

2018届高考数学正弦定理、余弦定理的应用复习题及答案
5 c 高三数学(理)一轮复习教案第五编平面向量、解三角形总第25期
§55 正弦定理、余弦定理的应用
基础自测
1在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,c点的俯角为70°,则∠BAc=
答案130°
2从A处望B处的仰角为,从B处望A处的俯角为,则、的大小关系为
答案 =
3在△ABc中,若(a+b+c)(a+b-c)=3ab,且sinc=2sinAcsB,则△ABc是三角形
答案等边
4已知A、B两地的距离为10 ,B、c两地的距离为 =5,
∴AB= ()∴A、B之间的距离为
例2.沿一条小路前进,从A到B,方位角(从正北方向顺时针转到AB方向所成的角)是50°,距离是3 ,从B到c方位角是110°,距离是3 ,从c到D,方位角是140°,距离是(9+3 )试画出示意图,并计算出从A到D的方位角和距离(结果保留根号)解示意图如图所示,连接Ac,在△ABc中,
∠ABc=50°+(180°-110°)=1(70°+30°)=14cs
∴=S△Pc+S△PcD= ×1×2sin + (5-4cs )=2sin( - )+
∴当 - = ,即 = 时,ax=2+
所以四边形PDc面积的最大值为2+
巩固练习
1某观测站c在A城的南偏西60°)=sin cs60°-cs sin60°。
推荐下载 2018年高考数学一轮复习讲练测江苏版专题4-6 正余弦定理讲 含解析

【最新考纲解读】【考点深度剖析】综合近年的高考试卷可以看出:三角形中的三角函数问题已成为近几年的高考热点,经常稳定在解答题中出现,中等难度,故这部分知识应引起充分的重视. 【课前检测训练】(1)三角形中三边之比等于相应的三个内角之比。
( )解析 错误。
三角形中三边之比等于相应的三个内角的正弦值之比。
(2)在△ABC 中,若sin A >sin B ,则A >B 。
( ) 解析 正确。
(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素。
( ) 解析 错误。
如已知三角形的三个内角,则无法解三角形。
(4)正弦定理对钝角三角形不成立。
( ) 解析 错误。
正弦定理适用于所有三角形。
(5)在△ABC 中,若a 2+b 2<c 2,则△ABC 为钝角三角形。
( )解析 正确。
由a 2+b 2<c 2,得a 2+b 2-c 2<0,即cos C =a 2+b 2-c 22ab <0,又因为0<C <π,所以π2<C <π。
1.(2015·广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
若a =2,c =23,cos A =32且b <c ,则b =( )A .3B .2 2C .2D. 3解析 由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+12-2·b ·23×32,即b 2-6b +8=0,解得b =2或4。
又因为b <c ,所以b =2。
答案 C2.(2016·江西省宜春中学与新余一中高三联考)在△ABC 中,若a =18,b =24,∠A =45°,则符合条件的三角形的个数为( ) A .0 B .2 C .1 D .不确定答案 B3.(2016·江西省宜春中学与新余一中高三联考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332D .3 3解析 在△ABC 中,由已知条件及余弦定理可得c 2=(a -b )2+6=a 2+b 2-2ab cos π3,整理得ab =6,再由面积公式S =12ab sin C ,得S △ABC =12×6×sin π3=323。
江苏专用2018版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理余弦定理教师用书理

第四章三角函数、解三角形 4.6 正弦定理、余弦定理教师用书理苏教版1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC中,已知a、b和A时,解的情况如下(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形内切圆半径).【知识拓展】 1.三角形内角和定理 在△ABC 中,A +B +C =π; 变形:A +B 2=π2-C2. 2.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sinA +B2=cos C2;(4)cosA +B2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)三角形中三边之比等于相应的三个内角之比.( × ) (2)在△ABC 中,若sin A >sin B ,则A >B .( √ )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( × ) (4)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形.( × )(5)在△ABC 中,a sin A =a +b -csin A +sin B -sin C.( √ )(6)在三角形中,已知两边和一角就能求三角形的面积.( √ )1.(教材改编)在△ABC 中,a =2,A =30°,C =45°,则△ABC 的面积S △ABC = . 答案3+1解析 ∵b =a sin B sin A =2×sin 105°sin 30°=6+2,∴S △ABC =12ab sin C =(6+2)×22=3+1.2.(教材改编)在△ABC 中,A =60°,B =75°,a =10,则c = . 答案1063解析 由A +B +C =180°,知C =45°,由正弦定理得a sin A =c sin C ,即1032=c22,∴c =1063.3.(教材改编)在△ABC 中,A =60°,AC =2,BC =3,则AB = . 答案 1解析 方法一 在△ABC 中,根据余弦定理,即BC 2=AB 2+AC 2-2·AB ·AC ·cos 60°,得(3)2=AB 2+22-2AB ×2×cos 60°,整理得AB 2-2AB +1=0,解得AB =1. 方法二 在△ABC 中,根据正弦定理, 得ACsin B =BC sin A ,即2sin B =3sin 60°,解得sin B =1, 因为B ∈(0°,180°),所以B =90°, 所以AB =22- 3 2=1.4.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =120°,a =2,b =233,则B = .答案π6解析 ∵A =120°,a =2,b =233,∴由正弦定理a sin A =bsin B 可得,sin B =b a sin A =2332×32=12.∵A =120°,∴B =30°,即B =π6.5.(教材改编)在△ABC 中,已知CB =7,AC =8,AB =9,则AC 边上的中线长为 . 答案 7解析 由条件知cos A =AB 2+AC 2-BC 22AB ·AC=92+82-722×9×8=23, 设AC 边上的中线长为x ,由余弦定理知x 2=(AC 2)2+AB 2-2×AC2×AB cos A=42+92-2×4×9×23=49,∴x =7,故所求中线长为7.题型一 利用正弦定理、余弦定理解三角形例1 (1)(2016·南京、盐城调研)在△ABC 中,设a ,b ,c 分别为角A ,B ,C 的对边,若a =5,A =π4,cos B =35,则c = .答案 7解析 因为cos B =35,所以B ∈(0,π2),从而sin B =45,所以sin C =sin(A +B )=sin A cos B +cos A sin B =22×35+22×45=7210,又由正弦定理得asin A =c sin C ,即522=c7210,解得c =7. (2)(2016·四川)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a+cos B b=sin Cc. ①证明:sin A sin B =sin C ; ②若b 2+c 2-a 2=65bc ,求tan B .①证明 根据正弦定理,可设 a sin A =b sin B =csin C=k (k >0), 则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c中,有cos A k sin A +cos B k sin B =sin Ck sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C .所以sin A sin B =sin C . ②解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由①知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B .故tan B =sin B cos B=4.思维升华 应用正弦、余弦定理的解题技巧 (1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解. (2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化:如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.(1)△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba= .(2)在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=b ,且sin(A -C )=2cosA sin C ,则b = .答案 (1) 2 (2)2 解析 (1)(边化角)由a sin A sin B +b cos 2A =2a 及正弦定理,得 sin A sin A sinB +sin B cos 2A =2sin A ,即sin B =2sin A ,所以b a =sin Bsin A= 2.(2)(角化边)由题意,得sin A cos C -cos A sin C =2cos A sin C , 即sin A cos C =3cos A sin C , 由正弦、余弦定理,得a ·a 2+b 2-c 22ab =3c ·b 2+c 2-a 22bc,整理得2(a 2-c 2)=b 2, ①又a 2-c 2=b ,②联立①②得b =2.题型二 和三角形面积有关的问题例2 (2016·南通模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(a +b -c )(a +b +c )=ab . (1)求角C 的大小;(2)若c =2a cos B ,b =2,求△ABC 的面积. 解 (1)在△ABC 中,由(a +b -c )(a +b +c )=ab ,得a 2+b 2-c 22ab =-12,即cos C =-12.因为0<C <π,所以C =2π3.(2) 方法一 因为c =2a cos B ,由正弦定理,得 sin C =2sin A cos B .因为A +B +C =π,所以sin C =sin(A +B ), 所以sin(A +B )=2sin A cos B ,即sin A cos B -cos A sin B =0,即sin(A -B )=0, 又-π3<A -B <π3,所以A -B =0,即A =B ,所以a =b =2. 所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin2π3= 3. 方法二 由c =2a cos B 及余弦定理,得c =2a ×a 2+c 2-b 22ac,化简得a =b , 所以△ABC 的面积为S △ABC =12ab sin C =12×2×2×sin2π3= 3. 思维升华 (1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 . 答案332解析 ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6. ①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.题型三 正弦定理、余弦定理的简单应用 命题点1 判断三角形的形状例3 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC 的形状为 三角形.(2)设ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a,3sin A =5sin B ,则△ABC 的形状为 三角形. 答案 (1)钝角 (2)钝角解析 (1)由c b <cos A ,得sin Csin B<cos A ,所以sin C <sin B cos A , 即sin(A +B )<sin B cos A , 所以sin A cos B <0,因为在三角形中sin A >0,所以cos B <0, 即B 为钝角,所以△ABC 为钝角三角形. (2)由3sin A =5sin B 及正弦定理得3a =5b , 故a =53b ,c =73b .所以cos C =a 2+b 2-c 22ab =-12,即C =23π.从而△ABC 为钝角三角形.引申探究1.例3(2)中,若将条件变为2sin A cos B =sin C ,判断△ABC 的形状. 解 ∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos B sin A , ∴sin(A -B )=0, 又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.例3(2)中,若将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状.解 ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形. 命题点2 求解几何计算问题例4 (2016·连云港调研)如图,在梯形ABCD 中,已知AD ∥BC ,AD =1,BD =210,∠CAD =π4,tan∠ADC =-2.(1)求CD 的长; (2)求△BCD 的面积.解 (1)因为tan∠ADC =-2,且∠ADC ∈(0,π), 所以sin∠ADC =255,cos∠ADC =-55.所以sin∠ACD =sin(π-∠ADC -π4)=sin(∠ADC +π4)=sin∠ADC ·cos π4+cos∠ADC ·sin π4=1010, 在△ADC 中,由正弦定理得CD =AD ·sin∠DAC sin∠ACD= 5.(2)因为AD ∥BC ,所以cos∠BCD =-cos∠ADC =55,sin∠BCD =sin∠ADC =255. 在△BDC 中,由余弦定理得BD 2=BC 2+CD 2-2BC ·CD ·cos∠BCD ,得BC 2-2BC -35=0,解得BC =7,所以S △BCD =12BC ·CD ·sin∠BCD =12×7×5×255=7.思维升华 (1)判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论. (2)求解几何计算问题要注意①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.(1)如图,在△ABC 中,D 是BC 上的一点,已知∠B =60°,AD =2,AC =10,DC=2,则AB = .(2)(2015·课标全国Ⅰ)在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .答案 (1)263(2)(6-2,6+2)解析 (1)由题意得cos∠ADC =AD 2+CD 2-AC 22AD ·CD=4+2-102×2×2=-22, ∴sin∠ADC =22,∴sin∠ADB =sin(π-∠ADC )=22. 由正弦定理可得,AD sin 60°=ABsin∠ADB ,∴AB =232·22=263. (2)如图所示,延长BA 与CD 相交于点E ,过点C 作CF ∥AD 交AB 于点F ,则BF <AB <BE .在等腰三角形CBF 中,∠FCB =30°,CF =BC =2, ∴BF =22+22-2×2×2cos 30°=6- 2. 在等腰三角形ECB 中,∠CEB =30°,∠ECB =75°,BE =CE ,BC =2,BEsin 75°=2sin 30°,∴BE =212×6+24=6+ 2.∴6-2<AB <6+ 2.二审结论会转换典例 (14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b ,sin B =6sin C . (1)求cos A 的值; (2)求cos ⎝⎛⎭⎪⎫2A -π6的值.(1)求cos A ―――――→根据余弦定理求三边a ,b ,c 的长或长度问题 ――――――→已有a -c =66b利用正弦定理将sin B =6sin C 化为b =6c (2)求cos ⎝ ⎛⎭⎪⎫2A -π6―→求cos 2A ,sin 2A ―→求sin A ,cos A ――――→第 1 问已求出cos A根据同角关系求sin A 规范解答解 (1)在△ABC 中,由b sin B =csin C 及sin B =6sin C ,可得b =6c ,[2分]又由a -c =66b ,有a =2c , [4分] 所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c2=64.[7分](2)在△ABC 中,由cos A =64, 可得sin A =104.[9分]于是,cos 2A =2cos 2A -1=-14,[10分] sin 2A =2sin A ·cos A =154.[11分]所以cos ⎝ ⎛⎭⎪⎫2A -π6=cos 2A cos π6+sin 2A sin π6 =⎝ ⎛⎭⎪⎫-14×32+154×12=15-38.[14分]1.(教材改编)若△ABC 中,a =1,b =2,cos C =14,则S △ABC = .答案154解析 由cos C =14,得sin C =154,∴S △ABC =12ab sin C =154.2.(2016·全国乙卷改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b = .答案 3解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去.3.(2016·盐城模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为 三角形. 答案 等腰直角解析 由b cos C +c cos B =a sin A ,得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A ,在三角形中sin A ≠0, ∴sin A =1,∴A =90°, 由sin 2B =sin 2C ,知b =c ,综上可知,△ABC 为等腰直角三角形.4.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是有 解.(填0,1,2) 答案 0解析 由正弦定理得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A 2=b +c 2c,则△ABC 的形状是 三角形. 答案 直角解析 在△ABC 中,∵cos 2A 2=b +c 2c, ∴1+cos A 2=b 2c +12,∴cos A =bc, ∴由余弦定理知cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =b c,∴b 2+c 2-a 2=2b 2.即a 2+b 2=c 2.故△ABC 是直角三角形.6.(2016·连云港模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C=π4,则△ABC 的面积为 . 答案3+1解析 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-(π6+π4)=712π,∴sin A =sin(π4+π3)=sin π4cos π3+cos π4sin π3=2+64. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.7.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b = .答案2113解析 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113. 8.如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连结EC ,ED ,则sin∠CED = .答案1010解析 由题意得EB =EA +AB =2,则在Rt△EBC 中,EC =EB 2+BC 2=4+1= 5. 在△EDC 中,∠EDC =∠EDA +∠ADC =π4+π2=3π4,由正弦定理得sin∠CED sin∠EDC =DC EC =15=55,所以sin∠CED =55·sin∠EDC =55·sin 3π4=1010. 9.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为 .答案 8解析 ∵cos A =-14,0<A <π,∴sin A =154,S △ABC =12bc sin A =12bc ×154=315,∴bc =24, 又b -c =2,∴b 2-2bc +c 2=4,b 2+c 2=52, 由余弦定理得a 2=b 2+c 2-2bc cos A =52-2×24×⎝ ⎛⎭⎪⎫-14=64, ∴a =8.*10.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为 . 答案 12解析 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A =(b +c )2-3bc ≥(b +c )2-3(b +c2)2,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.11.(2016·苏锡常镇一调)若一个钝角三角形的三内角成等差数列,且最大边与最小边之比为m ,则实数m 的取值范围是 .答案 (2,+∞)解析 由三角形的三个内角成等差数列,得中间角为60°.设最小角为α,则最大角为120°-α,其中0°<α<30°.由正弦定理得m =sin 120°-α sin α=32·1tan α+12>32×3+12=2.12.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若∠B =∠C 且7a 2+b 2+c 2=43,则△ABC 的面积的最大值为 . 答案55解析 由∠B =∠C ,得b =c ,代入7a 2+b 2+c 2=43, 得7a 2+2b 2=43,即2b 2=43-7a 2,由余弦定理,得cos C =a 2+b 2-c 22ab =a2b,所以sin C =1-cos 2C =4b 2-a22b=83-15a 22b ,则△ABC 的面积S =12ab sin C =12ab ×83-15a 22b =14a 83-15a 2=14a 2 83-15a 2=14×115 15a 2 83-15a 2 ≤14×115×15a 2+83-15a 22 =14×115×43=55, 当且仅当15a 2=83-15a 2时取等号,此时a 2=4315.所以△ABC 的面积的最大值为55. 13.四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;(2)求四边形ABCD 的面积.解 (1)由题设A 与C 互补及余弦定理得BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C , ① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .②由①②得cos C =12,BD =7,因为C 是三角形内角,故C =60°. (2)四边形ABCD 的面积S =12AB ·DA sin A +12BC ·CD sin C=⎝ ⎛⎭⎪⎫12×1×2+12×3×2si n 60° =2 3.14.(2015·湖南)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A . (1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .(1)证明 由正弦定理知a sin A =b sin B =csin C =2R ,∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得 sin A =sin B ·sin Acos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)解 由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6.sin B =32,B =2π3,∴C =π-(A +B )=π6. 15.(2015·陕西)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ;(2)若a =7,b =2,求△ABC 的面积.解 (1)因为m ∥n ,所以a sin B -3b cos A =0, 由正弦定理,得sin A sin B -3sin B cos A =0, 又sin B ≠0,从而tan A =3, 由于0<A <π,所以A =π3.(2)方法一 由余弦定理,得a 2=b 2+c 2-2bc cos A , 而由a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0,因为c >0,所以c =3,故△ABC 的面积为S =12bc sin A =332.方法二 由正弦定理,得7sinπ3=2sin B , 从而sin B =217, 又由a >b ,知A >B ,所以cos B =277,故sin C =sin(A +B )=sin ⎝⎛⎭⎪⎫B +π3=sin B cos π3+cos B sin π3=32114.所以△ABC 的面积为S =12ab sin C =332.。
高考数学一轮复习 第四章 三角函数、解三角形 4.6 正弦定理、余弦定理教学案 苏教版-苏教版高三全

第六节 正弦定理、余弦定理[最新考纲] 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.1.正弦、余弦定理在△ABC 中,假设角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 的外接圆半径,那么 定理正弦定理余弦定理内容a sin A =b sin B =csin C=2R .a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)a ∶b ∶c =sin A ∶sin B ∶sin C ;(3)a +b +c sin A +sin B +sin C =asin A=2R .cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).[常用结论]1.在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ; c =b cos A +a cos B .3.内角和公式的变形(1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C . 4.角平分线定理:在△ABC 中,假设AD 是角A 的平分线,如图,那么AB AC =BDDC.一、思考辨析(正确的打“√〞,错误的打“×〞) (1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,假设sin A >sin B ,那么A >B .( ) (3)在△ABC 的六个元素中,任意三个元素可求其他元素. ( )(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )[答案](1)× (2)√ (3)× (4)× 二、教材改编1.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,假设A =π6,B =π4,a =1,那么b=( )A .2B .1 C. 3D. 2D [由a sin A =b sin B 得b =a sin B sin A =sinπ4sinπ6=22×2= 2.]2.在△ABC 中,假设a =18,b =24,A =45°,那么此三角形有( ) A .无解 B .两解C .一解D .解的个数不确定B [∵b sin A =24sin 45°=122, ∴122<18<24,即b sin A <a <b . ∴此三角形有两解.]3.在△ABC 中,a cos A =b cos B ,那么这个三角形的形状为.等腰三角形或直角三角形 [由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B , 所以2A =2B 或2A =π-2B , 即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形.]4.在△ABC 中,A =60°,AC =4,BC =23,那么△ABC 的面积等于. 23 [因为23sin 60°=4sin B,所以sin B =1,所以 B =90°,所以AB =2,所以S △ABC =12×2×23=2 3.]考点1 利用正、余弦定理解三角形问题 解三角形的常见题型及求解方法(1)两角A ,B 与一边a ,由A +B +C =π及a sin A =b sin B =csin C,可先求出角C 及b ,再求出c .(2)两边b ,c 及其夹角A ,由a 2=b 2+c 2-2bc cos A ,先求出a ,再求出角B ,C . (3)三边a ,b ,c ,由余弦定理可求出角A ,B ,C . (4)两边a ,b 及其中一边的对角A ,由正弦定理a sin A =bsin B可求出另一边b 的对角B ,由C =π-(A +B ),可求出角C ,再由a sin A =c sin C 可求出c ,而通过a sin A =bsin B 求角B 时,可能有一解或两解或无解的情况.(1)(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A -b sinB =4c sinC ,cos A =-14,那么bc =( )A .6B .5C .4D .3(2)(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sinB sinC .①求A ;②假设2a +b =2c ,求sin C . (1)A [∵a sin A -b sin B =4c sin C , ∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2.由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-4c 2+b 22bc =-3c 22bc =-14,∴bc=6.应选A.](2)[解] ①由得sin 2B +sin 2C -sin 2A =sinB sinC ,故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°.②由①知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C ,即62+32cos C +12sin C =2sin C ,可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60° =6+24. 解三角形问题,关键是利用正、余弦定理实施边和角的转化,三角变换的相关公式如两角和与差的正、余弦公式,二倍角公式等,作为化简变形的重要依据.[教师备选例题](2018·某某高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .b sin A =a cos ⎝⎛⎭⎪⎫B -π6.(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解](1)在△ABC 中,由正弦定理a sin A =bsin B ,可得b sin A =a sin B ,又由b sin A =a cos ⎝⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6, 可得tan B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17,所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.1.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .b sin A +a cosB =0,那么B =.3π4 [∵b sin A +a cos B =0,∴a sin A =b-cos B.由正弦定理,得-cos B =sin B ,∴tan B =-1.又B ∈(0,π),∴B =3π4.] 2.在△ABC 中,AB =4,AC =7,BC 边上中线AD =72,那么BC =.9 [设BD =DC =x ,∠ADC =α,∠ADB =π-α,在△ADC 中,72=x 2+⎝ ⎛⎭⎪⎫722-2x ×72cos α,①在△ABD 中,42=x 2+⎝ ⎛⎭⎪⎫722-2x ×72cos(π-α),②①+②得x =92,∴BC =9.]3.(2019·某某模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°.(1)求边长a ;(2)求AB 边上的高CD 的长.[解](1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos 120°=a 2+a +22-a +422a a +2,即a 2-a -6=0,所以a =3或a =-2(舍去),所以a =3.(2)法一:由(1)知a =3,b =5,c =7, 由三角形的面积公式得 12ab sin∠ACB =12c ×CD , 所以CD =ab sin∠ACBc =3×5×327=15314,即AB 边上的高CD =15314.法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin∠ACB =7sin 120°,即sin A =3314,在Rt△ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.考点2 与三角形面积有关的问题 三角形面积公式的应用原那么(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .sin A +3cos A =0,a =27,b =2.(1)求c ;(2)[一题多解]设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积.[解](1)由条件可得tan A =-3,A ∈(0,π),所以A =2π3,在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3,即c 2+2c -24=0,解得c =-6(舍去),或c =4.(2)法一:如图,由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6, 故△ABD 面积与△ACD 面积的比值为12AB ·AD ·sin π612AC ·AD =1,又△ABC 的面积为12×4×2sin∠BAC =23,所以△ABD 的面积为 3. 法二:由余弦定理得cos C =27, 在Rt△ACD 中,cos C =ACCD,所以CD =7,所以AD =3,DB =CD =7, 所以S △ABD =S △ACD =12×2×7×sin C =7×37= 3.法三:∠BAD =π6,由余弦定理得cos C =27,所以CD =7,所以AD =3,所以S △ABD =12×4×3×sin∠DAB = 3.(1)假设一个角(角的大小或该角的正弦值、余弦值),一般结合题意求夹这个角的两边或两边之积,再代入公式求解;(2)假设三边,可先求一个角的余弦值,再求正弦值,最后代入公式得面积;(3)假设求面积的最值,一般表示为一个内角的三角函数,利用三角函数的性质求解,也可结合基本不等式求解.[教师备选例题]△ABC 的面积为33,AC =23,BC =6,延长BC 至D ,使∠ADC =45°. (1)求AB 的长; (2)求△ACD 的面积.[解](1)因为S △ABC =12×6×23×sin∠ACB =33,所以sin∠ACB =12,∠ACB =30°或150°,又∠ACB >∠ADC ,且∠ADC =45°,所以∠ACB =150°,在△ABC 中,由余弦定理得AB 2=12+36-2×23×6cos 150°=84,所以AB =84=221.(2)在△ACD 中,因为∠ACB =150°,∠ADC =45°, 所以∠CAD =105°,由正弦定理得CD sin∠CAD =ACsin∠ADC , 所以CD =3+3,又∠ACD =180°-150°=30°,所以S △ACD =12AC ·CD ·sin∠ACD =12×23×(3+3)×12=33+12. 1.(2019·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .假设b =6,a =2c ,B =π3,那么△ABC 的面积为.63 [法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以△ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3. 法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以△ABC的面积S =12×23×6=6 3.]2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .b +c =2a cos B . (1)证明:A =2B ;(2)假设△ABC 的面积S =a 24,求角A 的大小.[解](1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)由S =a 24,得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π).所以C =π2±B . 当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.考点3 判断三角形的形状 判断三角形形状的2种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. (2)化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,假设b cos C +c cos B =a sinA ,那么△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定B [由正弦定理得sin B cosC +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin(π-A )=sin 2A ,sin A =sin 2A . ∵A ∈(0,π),∴sin A >0,∴sin A =1, 即A =π2,∴△ABC 为直角三角形.][母题探究]1.(变条件)本例中,假设将条件变为2sin A cos B =sin C ,判断△ABC 的形状. [解]∵2sin A cos B =sin C =sin(A +B ), ∴2sin A cos B =sin A cos B +cos A sin B , ∴sin(A -B )=0. 又A ,B 为△ABC 的内角. ∴A =B ,∴△ABC 为等腰三角形.2.(变条件)本例中,假设将条件变为a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,判断△ABC 的形状.[解] ∵a 2+b 2-c 2=ab ,∴cos C =a 2+b 2-c 22ab =12,又0<C <π,∴C =π3,又由2cos A sin B =sin C 得sin(B -A )=0,∴A =B , 故△ABC 为等边三角形.在判断三角形的形状时,一定要注意解是否唯一,并注重挖掘隐含条件.另外,在变形过程中要注意角A ,B ,C 的X 围对三角函数值的影响,在等式变形中,一般两边不要约去公因式,应提取公因式,以免漏解.1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,假设sin A sin B =ac ,(b +c +a )(b+c -a )=3bc ,那么△ABC 的形状是( )A .直角三角形B .等腰非等边三角形word- 11 - / 11 C .等边三角形 D .钝角三角形C [因为sin A sin B =a c ,所以a b =a c.所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3.所以△ABC 是等边三角形.]2.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,假设a sin B +bsin A=2c ,那么△ABC 的形状是( )A .等边三角形B .锐角三角形C .等腰直角三角形D .钝角三角形 C [因为a sin B +b sin A =2c ,所以由正弦定理可得sin A sin B +sin B sin A =2sin C ,而sin A sin B+sin B sin A ≥2sin A sin B ·sin B sin A=2,当且仅当sin A =sin B 时取等号.所以2sin C ≥2,即sin C ≥1.又sin C ≤1,故可得sin C =1,所以C =90°.又因为sin A =sin B ,所以A =B .故三角形为等腰直角三角形.应选C.]。
【高考数学】2018最新高三数学课标一轮复习课件:4.6 正弦定理和余弦定理(专题拔高配套PPT课件)

; ;
cos C=
2ac 2 a +b 2 -c 2 2ab
第四章
知识梳理 双击自测
4.6 正弦定理和余弦定理
考情概览 知识梳理 核心考点 学科素养
-4-
正弦定理 解三 角形 类型 (1)已知两角和任一边,求其他两边 和一角; (2)已知两边和其中一边的对角,求 另一边和其他两角
余弦定理 (1)已知三边,求三个 角; (2)已知两边和它们的 夹角,求第三边和其他 两角
由余弦定理得 5=b2+4-2×b×2× 3, 解得 b=3 或 b=-3(舍去). 3
解析
1
关闭
2
答案
第四章
知识梳理 双击自测
4.6 正弦定理和余弦定理
考情概览 知识梳理 核心考点 学科素养
为内切圆半径).
������������������
第四章
知识梳理 双击自测
4.6 正弦定理和余弦定理
考情概览 知识梳理 核心考点 学科素养
-7-
1.在△ABC中,已知a=5,b=2 3 ,C=30° ,则c=
.
关闭
由余弦定理得 c2=a2+b2-2abcos C=52+(2 3)2-2×5×2 3cos 30°=7, 所以 c= 7. 关闭 7
解析
������ 2 +������ 2 -������ 2 2 ������������
������
������
������
<0, 所以 C 为钝角, 所以该三角形为钝角三
关闭
答案
第四章
知识梳理 双击自测
4.6 正弦定理和余弦定理
考情概览 知识梳理 核心考点 学科素养
2018届高三高考数学复习练习:4-6正弦定理、余弦定理

4-61.(2018·石家庄二检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则“sin A >sinB ”是“a >b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】 设△ABC 外接圆的半径为R ,若sin A >sin B ,则2R sin A >2R sin B ,即a >b ;若a >b ,则a 2R >b2R ,即sin A >sin B ,所以在△ABC 中,“sin A >sin B ”是“a >b ”的充要条件,故选C.【答案】 C2.(2016·全国乙卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b 等于( )A. 2B. 3 C .2D .3【解析】 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝ ⎛⎭⎪⎫b =-13舍去,故选D.【答案】 D3.(2018·西安模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,且sin 2B =sin 2C ,则△ABC 的形状为( )A .等腰三角形B .锐角三角形C .直角三角形D .等腰直角三角形【解析】 由b cos C +c cos B =a sin A , 得sin B cos C +sin C cos B =sin 2A , ∴sin(B +C )=sin 2A ,即sin A =sin 2A ,在三角形中sin A ≠0, ∴sin A =1,∴A =90°, 由sin 2B =sin 2C ,知b =c , 综上可知△ABC 为等腰直角三角形. 【答案】 D4.设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,若b +c =2a ,3sin A =5sin B ,则角C 等于( )A.2π3 B.π3 C.3π4D.5π6【解析】 因为3sin A =5sin B ,所以由正弦定理可得3a =5b .因为b +c =2a ,所以c =2a -35a =75a .令a =5,b =3,c =7,则由余弦定理c 2=a 2+b 2-2ab cos C ,得49=25+9-2×3×5cos C ,解得cos C =-12,所以C =2π3.【答案】 A5.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin Asin C +sin B,则B 等于( )A.π6 B.π4 C.π3D.3π4【解析】 根据正弦定理a sin A =b sin B =csin C =2R ,得c -b c -a =sin A sin C +sin B =ac +b, 即a 2+c 2-b 2=ac ,得cos B =a 2+c 2-b 22ac =12,故B =π3,故选C.【答案】 C6.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC的面积为( )A .23+2 B.3+1 C .23-2D.3-1【解析】 ∵b =2,B =π6,C =π4.由正弦定理b sin B =csin C,得c =b sin Csin B =2×2212=22,A =π-⎝ ⎛⎭⎪⎫π6+π4=712π,∴sin A =sin ⎝ ⎛⎭⎪⎫π4+π3=sin π4cos π3+cos π4sin π3=6+24. 则S △ABC =12bc ·sin A =12×2×22×6+24=3+1.【答案】 B7.(2016·全国甲卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cosC =513,a =1,则b =________.【解析】 在△ABC 中,由cos A =45,cos C =513,可得sin A =35,sin C =1213,sin B=sin(A +C )=sin A cos C +cos A ·sin C =6365,由正弦定理得b =a sin B sin A =2113.【答案】 21138.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若(a 2+c 2-b 2)tan B =3ac ,则角B 的值为________.【解析】 由余弦定理,得a 2+c 2-b 22ac=cos B ,结合已知等式得cos B ·tan B =32, ∴sin B =32,∴B =π3或2π3. 【答案】 π3或2π39.(2018·昆明检测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,若cos B =45,a =10,△ABC 的面积为42,则b +asin A的值等于________. 【解析】 依题可得sin B =35,又S △ABC =12ac sin B =42,则c =14.故b =a 2+c 2-2ac cos B =62, 所以b +a sin A =b +bsin B =16 2.【答案】 16 210.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________.【解析】 由正弦定理a sin A =bsin B,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A. 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝ ⎛⎭⎪⎫b +c 22,则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12. 【答案】 1211. (2017·全国Ⅱ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .【解析】 (1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),或cos B =1517.故cos B =1517.(2)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4.所以b =2.12.(2018·云南二检)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 对的边,b = 3. (1)若C =5π6,△ABC 的面积为32,求c ;(2)若B =π3,求2a -c 的取值范围.【解析】 (1)∵C =5π6,△ABC 的面积为32,b =3,∴12ab sin C =12×a ×3×12=32. ∴a =2.由余弦定理得c 2=a 2+b 2-2ab cos C =4+3-2×2×3×⎝ ⎛⎭⎪⎫-32=13. ∴c =13.(2)由正弦定理得a sin A =b sin B =csin C ,∴a =b sin A sin B =2sin A ,c =b sin Csin B=2sin C . ∴2a -c =4sin A -2sin C =4sin ⎝ ⎛⎭⎪⎫2π3-C -2sin C=4⎝ ⎛⎭⎪⎫sin 2π3cos C -cos 2π3sin C -2sin C=23cos C . ∵B =π3,∴0<C <2π3,∴-12<cos C <1,∴-3<23cos C <23,∴2a -c 的取值范围为(-3,23).。
2018版高考数学(理)一轮复习题库:第四章第6讲正弦定理和余弦定理含解析

第6讲正弦定理和余弦定理一、选择题1.在△ABC中,C=60°,AB=错误!,BC=错误!,那么A等于( ).A.135° B.105° C.45° D.75°解析由正弦定理知错误!=错误!,即错误!=错误!,所以sin A=错误!,又由题知,BC<AB,∴A=45°.答案C2.已知a,b,c是△ABC三边之长,若满足等式(a+b-c)(a+b+c)=ab,则角C的大小为().A.60° B.90° C.120° D.150°解析由(a+b-c)(a+b+c)=ab,得(a+b)2-c2=ab,∴c2=a2+b2+ab=a2+b2-2ab cos C,∴cos C=-错误!,∴C=120°。
答案C3.在△ABC中,角A,B,C所对应的边分别为a,b,c,若角A,B,C依次成等差数列,且a=1,b=错误!,则S△ABC=( ).A.错误!B.错误!C。
错误!D.2解析∵A,B,C成等差数列,∴A+C=2B,∴B=60°。
又a=1,b=错误!,∴错误!=错误!,∴sin A=错误!=错误!×错误!=错误!,∴A=30°,∴C=90°.∴S△ABC=错误!×1×错误!=错误!。
答案C4.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于().A.错误!B。
错误!C。
错误! D.错误!解析设AB=c,BC边上的高为h.由余弦定理,得AC2=c2+BC2-2BC·c cos 60°,即7=c2+4-4c cos 60°,即c2-2c-3=0,∴c=3(负值舍去).又h=c·sin 60°=3×错误!=错误!,故选B.答案B5.在△ABC中,角A、B、C的对边分别为a、b、c,且a=λ,b=错误!λ(λ〉0),A=45°,则满足此条件的三角形个数是()A.0 B.1C.2 D.无数个解析直接根据正弦定理可得错误!=错误!,可得sin B=错误!=错误!=错误!〉1,没有意义,故满足条件的三角形的个数为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4.6 正余弦定理
【基础巩固】
一、填空题
1.(2017·哈尔滨模拟)在△ABC 中,AB =3,AC =1,B =30°,△ABC 的面积为3
2
,则C
=________. 【答案】60°
2.在△ABC 中,角A ,B ,C 对应的边分别为a ,b ,c ,若A =2π3,a =2,b =23
3,则B =________.
【答案】π
6
【解析】∵A =2π3,a =2,b =23
3,
∴由正弦定理a sin A =b
sin B 可得, sin B =b a sin A =2332×32=1
2.
∵A =2π3,∴B =π
6
.
3.(2017·海门中学月考)如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观
察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与B 的距离为________ km.
【答案】3a
【解析】由题图可知,∠ACB =120°,由余弦定理,
得AB 2=AC 2+BC 2-2AC ·BC ·cos∠ACB =a 2+a 2-2·a ·a ·⎝ ⎛⎭
⎪⎫-12=3a 2
,解得AB =3a (km).
4.(2017·盐城诊断)在△ABC 中,cos 2B 2=a +c 2c
(a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为________. 【答案】直角三角形
5.(2016·山东卷改编)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2
=2b 2
(1-sin A ),则A =________. 【答案】π
4
【解析】在△ABC 中,由b =c ,得cos A =b 2+c 2-a 22bc =2b 2-a 22b
2
,又a 2=2b 2
(1-sin A ),所以cos A =sin A , 即tan A =1,又知A ∈(0,π),所以A =π
4
.
6.(2017·南京、盐城模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a +2c =2b ,sin B =2sin C ,则cos A =________. 【答案】
24
【解析】由sin B =2sin C 结合正弦定理可得b =2c ,又a +2c =2b ,则a =2c ,由余弦定理可得cos
A =b 2+c 2-a 22bc =2c 2+c 2-2c 222c
2
=24.
7.(2015·重庆卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-1
4,3sin A =2sin B ,
则c =________. 【答案】4
【解析】由3sin A =2sin B 及正弦定理,得3a =2b ,又a =2,所以b =3,故c 2
=a 2
+b 2
-2ab cos C =4+9
-2×2×3×⎝ ⎛⎭
⎪⎫-14=16,所以c =4. 8.(2016·北京卷)在△ABC 中,A =2π3,a =3c ,则b
c =________.
【答案】
1
二、解答题
9.(2016·江苏卷)在△ABC 中,AC =6,cos B =45,C =π
4.
(1)求AB 的长;
(2)cos ⎝
⎛⎭⎪⎫A -π6的值.
解 (1)由cos B =4
5,B ∈(0,π),
则sin B =1-cos 2
B =35
,
又∵C =π4,AC =6,由正弦定理,得AC sin B =AB
sin
π
4
,
即635=AB
22
⇒AB =5 2. (2)由(1)得:sin B =35,cos B =45,sin C =cos C =2
2,
则sin A =sin(B +C )=sin B cos C +cos B sin C =72
10,
cos A =-cos(B +C )=-(cos B cos C -sin B sin C )=-210,则cos ⎝
⎛⎭⎪⎫A -π6=cos A cos π6+sin A sin π6=
72-6
20
. 10.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;
(2)
若b =2,求△ABC 面积的最大值.
【能力提升】
11.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,a +b =6,a cos B +b cos A
c
=
2cos C ,则c =________. 【答案】2 3 【解析】∵
a cos B +
b cos A
c
=2cos C ,由正弦定理,
得sin A cos B +cos A sin B =2sin C cos C ,∴sin(A +B )=sin C =2sin C cos C ,由于0<C <π,sin C ≠0,∴cos C =12,∴C =π
3
,
∵S △ABC =23=12ab sin C =3
4ab ,∴ab =8,又a +b =6,⎩⎪⎨
⎪⎧
a =2,
b =4
或⎩⎪⎨⎪⎧
a =4,
b =2,
c 2=a 2+b 2-2ab cos C =4
+16-8=12,∴c =2 3.
12.(2016·江苏卷)在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________. 【答案】8
【解析】在△ABC 中,A +B +C =π, sin A =sin[π-(B +C )]=sin(B +C ), 由已知,sin A =2sin B sin C ,
13.(2017·呼和浩特调研)某人为测出所住小区的面积,进行了一些测量工作,最后将所住小区近似地画成如图所示的四边形,测得的数据如图所示,则该图所示的小区的面积是________km 2
.
【答案】6-3
4
【解析】如图,连接AC ,由余弦定理可知AC =AB 2+BC 2
-2AB ·BC ·cos B =3,故∠ACB =90°,∠CAB
=30°,∠DAC =∠DCA =15°,∠ADC =150°,AC sin ∠ADC =AD sin ∠DCA ,即AD =AC sin ∠DCA
sin ∠ADC
=
3·
6-2
4
12
=
32-6
2
, 故S 四边形ABCD =S △ABC +S △ADC =12×1×3+12×⎝ ⎛⎭
⎪⎫32-622×
12=6-34(km 2
).
14.(2017·苏北四市调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos(B -C )=1-cos A ,且b ,a ,c 成等比数列. (1)求sin B ·sin C 的值; (2)求A ;
(3)求tan B +tan C 的值.。