【易错题】七年级数学上期中试卷附答案
《易错题》初中数学七年级上期中知识点(培优练)

一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .+26n B .+86n C .44n + D .8n 2.下列各数中,比-4小的数是( )A . 2.5-B .5-C .0D .23.如图,O 在直线AB 上,OC 平分∠DOA (大于90°),OE 平分∠DOB ,OF ⊥AB ,则图中互余的角有( )对.A .6B .7C .8D .94.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 25.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A .45°B .30 °C .15°D .60°7.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是( )A .84B .81C .78D .76 8.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是( )A .∠1=∠3B .∠1=∠2C .∠2=∠3D .∠1=∠2=∠39.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A .90元B .72元C .120元D .80元10.下列说法:①﹣a 一定是负数;②|﹣a |一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是( ) A .1个B .2个C .3个D .4个11.如图,将一三角板按不同位置摆放,其中1∠与2∠互余的是( )A .B .C .D .12.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( ) A .23bB .26bC .29bD .236b13.如图所示几何体的左视图是( )A .B .C .D .14.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .15.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++二、填空题16.如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的x=_____,一般地,用含有m ,n 的代数式表示y ,即y=_____.17.一个角与它的补角之差是20°,则这个角的大小是____. 18.观察下列各式:221111111112122++=+=+-⨯, 2211111111232323++=+=+-⨯, 2211111111343434++=+=+-⨯, ……请利用你所发现的规律, 222222221111111111111223341920++++++++,其结果为________.19.已知x=3是方程ax ﹣6=a+10的解,则a= .20.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______.21.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.22.如右图是正方体的一个平面展开图,如果原正方体前面的字为“友”,则后面的字为____________.23.正整数按如图的规律排列,请写出第10行,第10列的数字_____.24.在数轴上,若点A 表示2-,则到点A 距离等于2的点所表示的数为______. 25.已知实数x ,y 满足150x y ++-=,则y x 的值是____.三、解答题26.已知22A 3x 3y 5xy =+-,22B 2xy 3y 4x =-+.()1化简:2B A -;()2已知x 22a b --与y1ab 3的同类项,求2B A -的值. 27.先化简,再求值:2222(22)[2(1)32]a b ab a b ab +--++,其中a=2 , b=-228.如图,直线AB 、CD 相交于点O .已知∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3. (1)求∠AOE 的度数;(2)若OF 平分∠BOE ,问:OB 是∠DOF 的平分线吗?试说明理由.29.如图是某种产品展开图,高为3cm.(1)求这个产品的体积.(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸的厚度不计,纸箱的表面积尽可能小),求此长方体的表面积. 30.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。
《易错题》初中数学七年级上期中知识点总结(专题培优)

一、选择题1.为庆祝“六·一”儿童节,綦江区某中学初一年级学生举行火柴棒摆“金鱼”比赛.如图所示:……按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .+26nB .+86nC .44n +D .8n2.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m 3分裂后,其中有一个奇数是2015,则m 的值是( ) A .43B .44C .45D .463.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) A .861B .863C .865D .8674.按如图所示的运算程序,能使输出结果为10的是( )A .x =7,y =2B .x =﹣4,y =﹣2C .x =﹣3,y =4D .x =12,y =3 5.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF=600,那么∠DAE 等于( )A.45°B.30 °C.15°D.60°7.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为()A.66.6×107B.0.666×108C.6.66×108D.6.66×1078.下列数中,最小的负数是()A.-2 B.-1 C.0 D.19.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b)20的展开式中第三项的系数为()A.2017B.2016C.191D.19010.如图所示几何体的左视图是()A.B.C.D.11.下列等式变形错误的是( )A.若x=y,则x-5=y-5B.若-3x=-3y,则x=yC.若xa=ya,则x=y D.若mx=my,则x=y12.将方程247236x x---=去分母得 ( )A.2﹣2(2x-4)= - (x-7)B.12﹣2(2x﹣4)=﹣x﹣7 C.12﹣4x﹣8= - (x-7)D.12﹣2(2x﹣4)= x﹣713.有理数a、b、c在数轴上的对应点如图,下列结论中,正确的是()A .a >c >bB .a >b >cC .a <c <bD .a <b <c14.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++15.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >0二、填空题16.当k =_____时,多项式x 2+(k ﹣1)xy ﹣3y 2﹣2xy ﹣5中不含xy 项.17.一个圆柱的底面半径为R cm ,高为8cm ,若它的高不变,将底面半径增加了2cm ,体积相应增加了192πcm.则R=________.18.若关于x 的方程2ax =(a+1)x+6的解为正整数,求整数a 的值_____.19.商店运来120台洗衣机,每台售价是440元,每售出一台可以得到售价15%的利润,其中两台有些破损,按售价打八折出售。
七年级上学期期中数学考试试卷及参考答案(共3套,人教版)

.....⎩x < -b ⎩x < -b ⎩x < b⎧ ⎧ ⎩3x + y = 5 ⎩3x + y = -5 ⎩3x - y = 1⎩3x + y = 5七年级第一学期期中考试数学试题(总分:120 分时间:120 分钟)一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)1.若 m >-1,则下列各式中错误的是()A .6m >-6B .-5m <-5C .m+1>0D .1-m <22.下列各式中,正确的是( )A. 16 =±4B.± 16 =4C. 3 -27 =-3D. (-4)2 =-43.已知 a >b >0,那么下列不等式组中无解的是()A . ⎨x < a⎩x > -b⎧x > -a ⎧x > a ⎧x > -a B . ⎨ C . ⎨ D . ⎨4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ()(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40° (C) 先右转 50°,后左转 130° (D) 先右转 50°,后左转 50°5.解为 ⎨ x = 1 ⎩ y = 2 的方程组是( )⎧ x - y = 1 ⎧ x - y = -1 ⎧ x - y = 3 ⎧ x - 2 y = -3A. ⎨B. ⎨C. ⎨D. ⎨△6.如图,在 ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是()A .1000B .1100C .1150D .1200A A A 1 小刚PDBCBB 1 CC 1小华小军(1) (2) (3)7.四条线段的长分别为 3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A .4B .3C .2D .118.在各个内角都相等的多边形中,一个外角等于一个内角的 ,则这个多边形的边数是( )2A .5B .6C .7D .8△9.如图, A 1B 1C 1 是由△ABC 沿 BC 方向平移了 BC 长度的一半得到的,若△ABC 的面积为 20 cm 2,则四边形A 1DCC 1 的面积为( ) A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1) 表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)⎪⎩5⎧2312D二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.李庄13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选火车站好),说明理由:____________.15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.17.给出下列正多边形:①正三角形;②正方形;③正六边形;④正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)A D18.若│x2-25│+y-3=0,则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.⎧x-3(x-2)≥4,⎪19.解不等式组:⎨2x-1x+1,并把解集在数轴上表示出来.<.2⎪x-y=20.解方程组:⎨342⎪⎩4(x-y)-3(2x+y)=17B C21.如图,AD∥BC,AD平分∠EAC,你能确定∠B与∠C的数量关系吗?请说明理由。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。
【易错题】七年级数学上期中试卷带答案

【易错题】七年级数学上期中试卷带答案一、选择题1.甲乙两个超市为了促销一种定价相等的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买同样的商品最合算( )A .甲B .乙C .相同D .和商品的价格有关2.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°3.有理数 a ,b 在数轴上的点的位置如图所示,则正确的结论是( )A .a <﹣4B .a+ b >0C .|a|>|b|D .ab >04.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;已知按一定规律排列的一组数:250、251、252、、299、2100,若250=a ,用含a 的式子表示这组数的和是( )A .2a 2-2aB .2a 2-2a -2C .2a 2-aD .2a 2+a5.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .1324 6.解方程2153132x x +--=,去分母正确的是( ) A .2(21)3(53)1x x +--= B .21536x x +--=C .2(21)3(53)6x x +--=D .213(53)6x x +--= 7.按照一定规律排列的个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则为( )A .9B .10C .11D .12 8.已知,OA ⊥OC ,且∠AOB :∠AOC =2:3,则∠BOC 的度数为( ) A .30° B .150° C .30°或150° D .90°9.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( )A .﹣1B .0C .1D .210.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 11.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330 12.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是( )A .B .C .D .二、填空题13.23-的相反数是______. 14.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了__________道题.15.当a =________时,关于x 的方程+23=136x x a +-的解是x =-1. 16.若方程423x m x +=-与方程1(16)62x -=-的解相同,则m 的值为______. 17.在下列方程中 ①x+2y=3,②139x x -=,③2133y y -=+,④2102x =,是一元一次方程的有_______(填序号). 18.如图,是小明用火柴搭的1条、2条、3条“金鱼”…,分别用去火柴棒8根、14根、 20根、…,则搭n 条“金鱼”需要火柴棒________根(含n 的代数式表示).19.近似数2.30万精确到________位,用科学记数法表示为__________.20.2018年2月3日崂山天气预报:多云,-1°C~-9°C ,西北风3级,则当天最高气温比最低气温高_______℃三、解答题21.解下列方程.(1)2(35)26x x -=+;(2)2(1)132x x +=+. 22.某鱼池捕鱼8袋,以每袋25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,-3, 2, -0.5, 1, -2, -2, -2.5.这8袋鱼一共多少千克?23.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示: 月用电量不超过180度的部分 超过180度但不超过280度的部分 超过280度的部分 收费标准 0.5元/度 0.6元/度 0.9元/度 若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?24.先化简,再求值:2222(22)[2(1)32]a b ab a b ab +--++,其中a=2 , b=-225.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
数学初一上学期期中综合题易错题(附答案)
数学初一上学期期中综合题易错题一、综合题1.如图在数轴上点B表示数b 点C表示数c 且|b+15|+2(c−30)2=0.我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如:点A与点B之间的距离记作AB.(1)求BC的值;(2)在数轴上有一动点M满足MB+MC=51 直接写出点M表示的数;(3)动点A从数3对应的点开始向右运动速度为每秒2个单位长度同时点B C在数轴上运动点B C的速度分别为每秒3个单位长度、每秒5个单位长度运动时间为t秒.①若点B向右运动点C向左运动BA=BC 求t的值;②若点B向右运动点C向右运动(不考虑点A与点B重合)是否存在一个常数n使得AC−n×AB的值在一定时间范围内不随t的变化而变化?若存在求出n的值;若不存在请说明理由. 2.某自行车厂一周计划生产1050辆自行车平均每天生产150辆由于各种原因实际每天生产量与计划量相比有出入下表是某周的生产情况(超产为正、减产为负):(1)根据记录可知前三天共生产辆;(2)产量最多的一天比生产量最少的一天多生产辆;(3)该厂实行计划工资制每辆车50元超额完成任务每辆奖10元少生产一辆扣10元那么该厂工人这一周的工资总额是多少?3.同学们都知道|7−(−1)|表示7与-1之差的绝对值实际上也可理解为7与-1两数在数轴上所对的两点之间的距离.如|x−6|的几何意义是数轴上表示有理数x的点与表示有理数6的点之间的距离.试探索∶(1)求|3−(−2)|=;若|x+2|=3则x=;(2)|x−1|+|x+3|的最小值是;(3)当x=时|x+1|+|x−2|+|x−4|的最小值是;(4)已知(|x+1|+|x−2|)×(|y−2|+|y+1|)×(|z−3|+|z+1|)=36则求出x+y+z的最大值和最小值.4.如图在数轴上点A表示的数是﹣3 点B在点A的右侧且到点A的距离是18;点C在点A与点B 之间 且到点B 的距离是到点A 距离的2倍.(1)点B 表示的数是 ;点C 表示的数是 ;(2)若点P 从点A 出发 沿数轴以每秒4个单位长度的速度向右匀速运动;同时 点Q 从点B 出发 沿数轴以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒.①当P 运动到C 点时 点Q 所表示的数是多少?②当t 为何值时 P 、Q 之间的距离为6?③若点P 与点C 之间的距离表示为PC 点Q 与点B 之间的距离表示为QB.在运动过程中 是否存在某一时刻使得PC + QB = 5?若存在 请求出此时点P 表示的数;若不存在 请说明理由.5.已知数轴上A 、B 两点表示的数分别为a b 且a b 满足|a+20|+(b-13)2=0 点C 表示的数为16 点D 表示的数为-7.(1)A C 两点之间的距离为 ;(2)已知|m -n|可理解为数轴上表示数m 、n 的两点之间的距离.若点P 在数轴上表示的数为x 则满足|x+2|+|x-3|=5的所有的整数x 的和为 ;满足|x+2|+|x-3|=9的x 值为 .(3)点A B 从起始位置同时出发相向匀速运动 点A 的速度为6个单位长度/秒 点B 的速度为2个单位长度/秒 当点A 运动到点C 时 迅速以原来的速度返回 到达出发点后 又折返向点C 运动 点B 运动至点D 后停止运动 当点B 停止运动时 点A 也停止运动 求在此运动过程中 求A B 两点同时到达的点在数轴上表示的数.6.用“∶”定义一种新运算:对于任何有理数x 和y 规定x∶y ={2x +12y(x ≤y)y −12x(x >y). (1)求2∶(﹣3)的值;(2)若(﹣a 2)∶2=m 求m 的最大整数;(3)若关于n 的方程满足:1∶n =﹣32n ﹣2 求n 的值; (4)若−13A =13t 3−83t 2−2t −2 12B =−12t 3+2t 2+3t+1 且A∶B =﹣2 求5+12t ﹣2t 3的值. 7.已知数轴上A 、B 两点表示的数分别为a b 且a b 满足|a+20|+(b-13)2=0 点C 表示的数为16 点D 表示的数为-7.(1)A C 两点之间的距离为 ;(2)已知|m -n|可理解为数轴上表示数m 、n 的两点之间的距离.若点P在数轴上表示的数为x 则满足|x+20|+|x-13|=33的所有的整数x的和为;满足|x+20|+|x-13|=39的x值为.(3)点A B从起始位置同时出发相向匀速运动点A的速度为6个单位长度/秒点B的速度为2个单位长度/秒当点A运动到点C时迅速以原来的速度返回到达出发点后又折返向点C运动点B运动至点D后停止运动当点B停止运动时点A也停止运动求在此运动过程中求A B两点同时到达的点在数轴上表示的数.8.[知识回顾]有这样一类题:代数式ax−y+6+3x−5y−1的值与x的取值无关求a的值;通常的解题方法;把x y看作字母a看作系数合并同类项因为代数式的值与x的取值无关所以含x项的系数为0 即原式=(a+3)x−6y+5所以a+3=0即a=−3.(1)[理解应用]若关于x的多项式(2m−3)x+2m2−3m的值与x的取值无关求m的值;(2)已知3[(2x+1)(x−1)−x(1−3y)]+6(−x2+xy−1)的值与x无关求y的值;(3)(能力提升)如图1 小长方形纸片的长为a、宽为b 有7张图1中的纸片按照图2方式不重叠地放在大长方形ABCD内大长方形中有两个部分(图中阴影部分)未被覆盖设右上角的面积为S1左下角的面积为S2当AB的长变化时S1−S2的值始终保持不变求a与b的等量关系.9.观察下列各式:−11×2=−1+12;−12×3=−12+13−;−13×4=−13+14;(1)你发现的规律是(用含n的式子表示);(2)用规律计算:(−1×12)+(−12×13)+(−13×14)+⋯+(−12018×12019)+(−12019×12020).10.已知多项式x+3与另一个多项式A的乘积为多项式B.(1)若A为关于x的一次多项式x+a B为关于x的二次二项式求a的值;(2)若B为x3+px2+qx+6求3p−q的值.11.A.B、C为数轴上的三点动点A.B同时从原点出发动点A每秒运动x个单位动点B每秒运动y个单位且动点A运动到的位置对应的数记为a 动点B运动到的位置对应的数记为b 定点C 对应的数为8.(1)若2秒后a、b满足|a+8|+(b﹣2)2=0 则x=y=并请在数轴上标出A.B两点的位置.(2)若动点A.B在(1)运动后的位置上保持原来的速度且同时向正方向运动z秒后使得|a|=|b| 使得z=.(3)若动点A.B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒点A与点C之间的距离表示为AC 点B与点C之间的距离表示为BC 点A与点B之间的距离为AB 且AC+BC=1.5AB 则t=.12.在学了乘法公式“ (a±b)2=a2±2ab+b2”的应用后王老师提出问题:求代数式x2+4x+5的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论最后总结出如下解答方法:解:x2+4x+5=x2+4x+22−22+5=(x+2)2+1∵(x+2)2≥0∴(x+2)2+1≥1.当(x+2)2=0时(x+2)2+1的值最小最小值是1.∴x2+4x+5的最小值是1.请你根据上述方法解答下列各题:(1)直接写出(x−1)2+3的最小值为.(2)求代数式x2+10x+32的最小值.(3)若7x−x2+y−11=0求x+y的最小值.13.已知:b是最小的正整数且a、b、c满足(c−5)2+|a+b|=0请回答问题.(1)请直接写出a、b、c的值.a=b=c=.(2)a、b、c所对应的点分别为A、B、C 点P为一动点具对应的数为x 点P在0到2之间运动时(即0≤x≤2时)请化简式子:|x+1|−|x−1|+2|x+5|(请写出化简过程).(3)在(1)(2)的条件下点A、B、C开始在数轴上运动若点A以每秒1位长度的速度向左运动同时点B和点C分别以每秒2个单位长度和5个单位长度的速度也向左运动运动时间为t是否存在t 使A、B、C中一点是其它两点的中点若存在求出t值若不存在说明理由.14.如图已知A B两点在数轴上点A表示的数为-10 点O到点B的距离是点O到点A的距离的3倍.点M以每秒3个单位长度的速度从点A向右运动点N同时以每秒2个单位长度的速度从点O 向右运动.(1)数轴上点B表示的数是;(2)经过几秒点M N到原点O的距离相等?(3)当点M运动到什么位置时恰好点A到点M的距离是点B到点N的距离的2倍?15.定义:若A B C为数轴上三点若点C到点A的距离是点C到点B的距离2倍我们就称点C是[A,B]的美好点.例如;如图1 点A表示的数为−1点B表示的数为2 表示1的点C到点A的距离是2 到点B的距离是1 那么点C是[A,B]的美好点;又如表示0的点D到点A的距离是1 到点B的距离是2 那么点D就不是[A,B]的美好点但点D是[B,A]的美好点.如图2 M N为数轴上两点点M所表示的数为−7点N所表示的数为2.(1)点E F G表示的数分别是-3 6.5 11 其中是[M,N]美好点的是;写出[N,M]美好点H所表示的数是.(2)现有一只电子蚂蚁P从点N开始出发以2个单位每秒的速度向左运动.当t为何值时点P 恰好为M和N的美好点?16.定义:对于一个有理数x 我们把[x]称作x的对称数.若x≥0 则[x]=x﹣1;若x<0 则[x]=x+1.例:[0.5]=﹣0.5.(1)求[ 54]=[﹣4]=.(2)已知有理数m>0 n<0 且满足[m]=[n] 试求代数式(n﹣m)4﹣6(12m2n+52m-n)+3nm2+9n的值;(3)计算:2[x-2]-[x+3].17.有一种“二十四点”的游戏其游戏规则是这样的:任取四个1~13之间的自然数将这四个数(每个数只用一次)进行加减乘除四则运算使其结果等于24 例如对1,2,3,4可作如下运算:(1+2+3)×4=24[注意上述运算与4×(2+3+1)应视为相同方法的运算].现有四个有理数3,4 -6,10 运用上述规则写出三种不同方法的运算使其结果等于24 运算式如下:(1);(2);(3).另有四个数3 -5,7 -13 可通过运算式使其结果等于24.18.“收获是努力得来的” 在数轴上若点C到点A的距离刚好是3 则点C叫做点A的“收获点” 若点C到A、B两点的距离之和为6 则点C叫做A、B的“收获中心”.(1)如图1 点A表示的数为﹣1 则A的收获点C所表示的数应该是;(2)如图2 M、N为数轴上两点点M所表示的数为4 点N所表示的数为﹣2 点C就是M、N 的收获中心则C所表示的数可以是(填一个即可);(3)如图3 A、B、P为数轴上三点点A所表示的数为﹣1 点B所表示的数为4 点P所表示的数为8 现有一只电子蚂蚁从点P出发以2个单位每秒的速度向左运动当经过t秒时电子蚂蚁是A 和B的收获中心求t的值.19.如图在单位长度为1的数轴上有A、B、C、D四个点点A、C表示的有理数互为相反数.(1)请在数轴上方标出A、B、C、D四点所表示的有理数;(2)A、C两点间的距离AC=B、D两点间的距离BD=;(3)点A、B、C、D同时开始在数轴上运动若点C和点D分别以每秒2个单位长度和3个单位长度的速度向右运动.同时若点A和点B分别以每秒6个单位长度和5个单位长度的速度向左运动假设t秒钟后若点A和点C之间的距离表示为AC 若点A和点D之间的距离表示为AD 若点B和点D之间的距离表示为BD.①t秒钟过后AD的长度为▲ (用含t的代数式表示);②请问:AC-BD的值是否随着时间t的变化而变化?若变化请说明理由:若不变请求其值. 20.为体现社会对教师的尊重教师节这一天上午出租车司机小王在东西向的公路上免费接送老师。
部编数学七年级上册期中考试检测卷(解析版)【突破易错-冲刺满分】含答案
【突破易错·冲刺满分】2021-2022学年七年级数学上册期末突破易错挑战满分(人教版)期中考试检测卷班级___________ 姓名___________ 学号____________ 分数____________考试范围:第一章-第三章;考试时间:120分钟;总分:120分一、选择题(本大题共6小题,每小题3分,共18分)1.(2021·沈阳市第七中学七年级月考)﹣2021的相反数是( )A.﹣2021B.2021C.﹣12021D.12021【答案】B【分析】根据相反数的定义即可得出答案.【详解】解:-2021的相反数是2021,故选:B.【点睛】本题考查了相反数的定义,掌握相反数的定义是解题的关键,即:只有符号不同的两个数互为相反数.2.(2021·陕西神木·七年级期末)关于整式,下列说法正确的是( )A.x2y的次数是2B.0不是单项式C.3πmn的系数是3D.x3﹣2x2﹣3是三次三项式【答案】D【分析】根据单项式的次数和系数的定义,多项式的定义进行逐一判断即可.【详解】解:A、x2y的次数是3,故不符合题意;B、0是单项式,故不符合题意;C、3πmn的系数是3π,故不符合题意;D、x3﹣2x2﹣3是三次三项式,故符合题意.故选D.本题主要考查了单项式和多项式的定义,单项式次数和系数的判定,解题的关键在于能够熟练掌握单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或字母也是一个单项式,单项式的系数为其数字部分,次数为字母部分各个字母的指数的和;多项式的定义:几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数,叫做多项式的次数.3.(2021·包头稀土高新区第四中学七年级月考)下列各数中:﹣3,0,+5,132-,﹣80%,1+3,2013.非负数有( )个.A .1个B .2个C .3个D .4个【答案】D【分析】根据非负数的概念,找出非负数即可.【详解】解:非负数有0,+5,1+3,2013,共4个.故选:D .【点睛】本题考查了有理数的分类,熟练掌握非负数的概念是解本题的关键.4.(2021·长沙市长郡双语实验中学九年级月考)下列计算正确的是( )A .()22a b a b --=-+B .2222c c -=C .22245x y yx x y --=-D .325a b ab+=【答案】C【分析】利用去括号法则可判断A ,根据整式同类项合并规则进行合并可判断B ,C ,D .【详解】解:A 、()2222a b a b a b =-+--¹-+,故选项A 错误;B 、22222c c c -=¹,故选项B 错误;C 、22222445x y yx x y x y x y --=--=-,故选项C 正确;D 、3a ,2b 不是同类项不能合并,325a b ab +¹,故选项D 错误.【点睛】本题考查同类项合并,本质就是单项式的相同字母不变指数不变,只把系数相加减才是关键.5.(2021·成都市第二十中学校七年级月考)下列各数中,数值相等的是( )A .(﹣2)3和﹣23B .﹣|23|和|﹣23|C .(﹣3)2和﹣32D .23和32【答案】A【分析】分别算出各数的绝对值和乘方,再进行比较即可.【详解】解:A . (﹣2)3=-8,﹣23=-8,故该选项正确;B . ﹣|23|=-8,|﹣23|=8,故该选项错误;C .(﹣3)2=9,﹣32=-9,故该选项错误;D . 23=8,32=9,故该选项错误.故选A .【点睛】本题主要考查有理数的绝对值和乘方,掌握乘方和绝对值的意义,是解题的关键.6.(2021·重庆实验外国语学校七年级月考)已知数列1234,,,,a a a a ×××满足条件:13123412231112,,,,111a a a a a a a a a a +++====×××---,以此类推,则2021a 的值为( )A .3-B .12-C .13D .2【答案】D【分析】根据题目条件求出前几个数的值,知以112,3,,23--重复出现,利用这种规律求解.【详解】解:12a =Q ,\1211123112a a a ++===---,2321112a a a +==--,3431113a a a +==-,454121a a a +\==-,\以112,3,,23--重复出现,202145051=´+ Q,202112a a\==,故选:D.【点睛】本题主要考查数字的变化规律,通过归纳、想象、猜想,进行规律的探索,解题的关键是求出前面几个的值,找到相应规律.二、填空题(本大题共6小题,每小题3分,共18分)7.(2021·河南舞阳·)单项式﹣234x yp的次数是___________.【答案】3【分析】单项式的次数是所含所有字母指数的和,由此即可求解.【详解】解:单项式234x yp-的次数是2+1=3,故答案为:3.【点睛】此题主要考查了单项式的次数的定义,解题的关键是熟练掌握相关的定义即可求解.8.(2020·南安市南光中学七年级月考)当a=3,b=2时,代数式2a-b的值等于____.【答案】4【分析】把a,b代入求值即可;【详解】∵a=3,b=2,∴原式2324´-=;故答案是4.【点睛】本题主要考查了代数式求值,准确计算是解题的关键.9.(2021·东莞市东莞中学初中部九年级月考)我国是世界上免费为国民接种新冠疫苗最多的国家,截至2021年6月5日,免费接种数量已超过21.61亿剂次,将21.61亿用科学记数法表示为____________.【答案】92.16110´【分析】科学记数法的形式是:10n a ´ ,其中1a £<10,n 为整数.所以 2.161a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往左移动到2的后面,所以9.n =【详解】解:21.61亿889=21.6110 2.1611010 2.16110.´=´´=´故答案为:92.16110´【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10.(2021·湖南宁乡·)若32n x y 与21232m x y --是同类项,则m n +=_________.【答案】1【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】解:根据题意得:2n = ,312m =-,解得:2n =,1m =-.则1m n +=.故答案是:1.【点睛】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点.11.(2021·渝中·重庆巴蜀中学七年级月考)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫作正数与负数.如果向北走5步记作﹣5步,那么+7步表示________.【答案】向南走7步【分析】根据正负数表示相反的意义可得答案.【详解】解:如果向北走5步记作-5步,那么+7步表示向南走7步,故答案为:向南走7步.【点睛】本题主要考查了正负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(2021·湖北潜江·七年级月考)如果数轴上的点A 对应有理数为-3,那么与A 点相距5个单位长度的点所对应的有理数为___________.【答案】-8或2【分析】考虑在点A 的左边与点A 的右边两种情形.【详解】当在点A 的左边与A 点相距5个单位长度的点所对应的有理数为-8;当在点A 的右边与A 点相距5个单位长度的点所对应的有理数为2.故所求的有理数为-8或2.故答案为:-8或2.【点睛】本题考查了数轴上两点间的距离,注意:所求的有理数表示的点既可在点A 的左边,也可在点A 的右边,不要有遗漏的情况.三、(本大题共5小题,每小题6分,共30分)13.(2021·全国七年级课时练习)合并同类项:(1)325a b a b +--; (2)22114932ab b ab b -+--【答案】(1)2a b -+;(2)21136ab b --.【分析】(1)根据合并同类项的计算法则进行求解即可;(2)根据合并同类项的计算法则进行求解即可.【详解】解:(1)325a b a b+--(35)(2)a ab b =-+-(35)(21)a b=-+-2a b =-+;(2)22114932ab b ab b -+--2211(49)32ab ab b b æö=--+-ç÷èø21136ab b =--.【点睛】本题主要考查了合并同类项,解题的关键在于能够熟练掌握合并同类项的计算法则.14.(2021·辽宁瓦房店·七年级月考)计算题(1)﹣7+13﹣6+20;(2)﹣14﹣(1﹣12)×22+(﹣3)2.【答案】(1)20;(2)6【分析】(1)利用有理数的加减法法则计算即可;(2)先计算乘方,再计算乘法,再计算加减法即可;【详解】解:(1)﹣7+13﹣6+20;=﹣7﹣6+13+20;=﹣13+13+20;=20(2)﹣14﹣(1﹣12)×22+(﹣3)2=-1-12×4+9=-3+9=6【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解题的关键.15.(2021·全国七年级课时练习)求代数式的值:(1)2287677p q q p -+--,其中33p q ==,;(2)13513266m n n m ---,其中62m n ==,.【答案】(1)1-;(2)113-.【分析】(1)根据合并同类项,可化简整式,根据代数式求值,可得答案;(2)根据合并同类项,可化简整式,根据代数式求值,可得答案.【详解】解:(1)原式27p q =--,当33p q ==,时,原式23371=--=-;(2)原式2951114666666m n n m m n =---=-,当62m n ==,时,原式1141162663=´-´=-.【点睛】本题考查了整式的化简求值,利用合并同类项系数相加字母及指数不变是解题关键.16.(2021·广东乐昌·)如图是一个圆环,外圆与内圆的半径分别是R 和r .(1)直接写出圆环的面积(用含R 、r 的代数式表示);(2)当R =5、r =3时,求圆环的面积(结果保留π).【答案】(1)πR 2﹣πr 2;(2)16π【分析】(1)根据题意,圆环的面积为半径为R 的圆的面积减去半径为r 的圆的面积,根据圆的面积公式,列出代数式即可;(2)将字母的值代入(1)的代数式中求解即可.【详解】(1)解:环形的面积=πR 2﹣πr 2(2)解:当R =5,r =3时,原式=25π﹣9π=16π【点睛】本题考查了列代数式并求值,根据题意列出代数式是解题的关键.17.(2021·山东济宁·七年级月考)一辆出租车一天上午以某商场为出发地在东西大街上运行,规定向东为正,向西为负,出租车的行驶里程(单位:km )如下:9+,3-,5-,4+,8-,6+,3-,6-,4-,1+,10+.(1)将最后一名乘客送到目的地时,相对于商场,出租车的位置在哪里? ;(2)这天上午出租车总共行驶了多少km ?(3)已知出租车每行驶1km 耗油0.08L ,每升汽油的售价为6.5元.如果不计其他成本,出租车平均每千米收费2.5元,那么这半天出租车盈利(或亏损)了多少元?【答案】(1)出租车回到了商场东1千米处;(2)这天上午出租车总共行驶了59km ;(3)这半天出租车盈利了116.82元.【分析】(1)根据有理数的加法运算,看其结果的正负即可判断其位置;(2)根据绝对值的定义列式计算即可;(3)根据题意列式计算即可.【详解】(1)()9354863641101km --+-+---++=,所以将最后一名乘客送到目的地,出租车回到了商场东1千米处;(2)()93548636411059km ++-+-+++-+++-+-+-++++=,即这天上午出租车总共行驶了59km ;(3)59 2.5590.08 6.5116.82´-´´=(元),答:这半天出租车盈利了116.82元.【点睛】本题主要考查了有理数的加减乘除混合运算,注意正负数的意义,熟练掌握运算法则是解题的关键.四、(本大题共3小题,每小题8分,共24分)18.(2021·全国七年级单元测试)有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a 0,b 0,c ﹣b 0.(2)化简:|a|+|b+c|﹣|c﹣a|.【答案】(1)<,>,>;(2)b.【分析】(1)根据有理数a、b、c在数轴上的位置,进而判断即可;(2)判断b+c,c﹣a的符号,再化简绝对值即可.【详解】(1)由有理数a、b、c在数轴上的位置可知,a<0<b<c,∴c﹣b>0,故答案为:<,>,>;(2)由有理数a、b、c在数轴上的位置可得,b+c>0,c﹣a>0,∴|a|+|b+c|﹣|c﹣a|=﹣a+b+c﹣c+a=b.【点睛】本题考查数轴表示数的意义和方法,绝对值、有理数的减法,正确判断各个代数式的符号是正确化简的前提.19.(2021·广东九年级专题练习)一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.(1)A的对面是 ,B的对面是 ,C的对面是 ;(直接用字母表示)(2)若A=﹣2,B=|m﹣3|,C=m﹣3n﹣112,E=(52+n)2,且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.【答案】(1)D,E,F;(2)F所表示的数是﹣5.【分析】(1)依据A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E,进一步可求C的对面是F;(2)依据小正方体各对面上的两个数都互为相反数,可求m,n,进一步求出F所表示的数.【详解】解:(1)由图可得,A与B、C、E、F都相邻,故A对面的字母是D;E与A、C、D、F都相邻,故B对面的字母是E;故C的对面是F.故答案为:D,E,F;(2)∵字母A表示的数与它对面的字母D表示的数互为相反数,∴|m﹣3|+(52+n)2=0,∴m﹣3=0,52+n=0,解得m=3,n=﹣52,∴C=m﹣3n﹣112=3﹣3×(﹣52)﹣112=5,∴F所表示的数是﹣5.【点睛】本题主要考查的是由三视图判断几何体,正方体相对两个面上的文字,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.20.(2020·广西三江·七年级期中)有20筐土豆,以每筐18千克为标准,超过或不足的千克数分别用正、负数来表示,记录如表:与标准质量的差值(单位:千克)– 3.5– 2– 1.50+ 1+ 2.5筐数244334(1)20筐土豆中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,20筐土豆总计超过或不足多少千克?(3)若土豆每千克售价1.5元,则出售这20筐土豆可卖多少元钱?【答案】(1)6;(2)不足8千克;(3)528元【分析】(1)求出最重的和最轻的,然后做差即可;(2)用筐数乘以差值再相加即可;(3)算出20筐土豆的质量,再乘以1.5即可;【详解】解:(1)∵最重的一筐超过2.5千克,最轻的差3.5千克,∴2.5 – ( – 3.5) = 6(千克),故最重的一筐比最轻的一筐重6千克.故答案为:6;(2)2 × ( – 3.5) + 4 × ( – 2) + 4 × ( – 1.5) + 3 × 0 + 3 × 1 + 4 × 2.5= – 8(千克).故20筐土豆总计不足8千克;(3)1.5 × (18 × 20 – 8),= 1.5 × 352,= 528(元).故出售这20筐土豆可卖528元.【点睛】本题主要考查了有理数混合运算的应用,准确分析计算是解题的关键.五、(本大题共2小题,每小题9分,共18分)21.(2020·上饶市广信区第七中学七年级月考)[新定义运算]:如果(0,1,0)b a N a a N =>¹>,则b 叫做以a 为底N 的对数,记作log a N b =,例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=.(1)填空:6log 6=_________,0.51log 8=________;(2)如果2log |5|3m -=,求m 的值.【答案】(1)1,3;(2)3-或13.【分析】(1)根据新运算的定义即可得;(2)先根据新运算的定义可得一个关于m 的绝对值方程,再解方程即可得.【详解】(1)因为166=,33110.528æö==ç÷èø,所以6log 61=,0.51log 38=,故答案为:1,3;(2)如果2log 53m -=,则3528m -==,解得3m =-或13m =,即m 的值为3-或13.【点睛】本题考查了有理数乘方的应用、绝对值方程的应用,理解新运算的定义是解题关键.22.(2021·河南濮阳·)如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm .(1)2节链条长______cm ,6节链条长______cm ;(2)n 节链条长多少cm ?(3)如果一辆自行车的链条由60节这样的链条组成,那么这辆自行车上链条总长度是多少?【答案】(1)4.2cm ,11cm ;(2)1.7n +0.8;(3)102cm【分析】(1)根据图形找出规律计算2节、6节链条的长度即可;(2)由(1)写出表示链条节数的一般式;(3)根据关系式计算,注意自行车的链条为环形,在展直的基础上还要减少0.8cm .【详解】解:(1)∵根据图形可得出:2节链条的长度为:2.5×2-0.8=4.2cm ,3节链条的长度为:2.5×3-0.8×2=5.9cm ,4节链条的长度为:2.5×4-0.8×3=7.6cm ,…6节链条的长度为:2.5×6-0.8×5=11cm ,故答案为:4.2cm ,11cm ;(2)由(1)可得n 节链条长为:2.5n -0.8(n -1)=1.7n +0.8.故答案为:1.7n +0.8;(3)因为自行车上的链条为环形,首尾环形相连,展直的长度减1个0.8cm ,故这辆自行车链条的总长为1.7×60=102cm ,故答案为102cm .【点睛】此题主要考查了图形的变化类,根据题意得出60节链条的长度与每节长度之间的关系是解决问题的关键.六、(本大题共12分)23.(2021·盐城市盐都区实验初中七年级期中)在数轴上,点A 表示的数为a ,点B 表示的数为b ,且|a +2|+(b ﹣3)2=0.(1)a = ,b = ;(2)在(1)的条件下,点A 以每秒0.5个单位长度沿数轴向左移动,点B 以每秒1个单位长度沿数轴向右移动,两点同时移动,当点A 运动到﹣4所在的点处时,求A 、B 两点间距离;(3)在(2)的条件下,现A 点静止不动,B 点沿数轴向左运动时,经过多长时间A 、B 两点相距3个单位长度?【答案】(1)2,3-;(2)11;(3)经过8或14时,A 、B 两点相距3个单位长度【分析】(1)利用非负性即可求解;(2)设t 秒时,点A 运动到4-,求出所需时间4t =,4秒后,点B 运动到3417+´=,即可求出两点间的距离;(3)分两种情况进行讨论,即点B 需要运动到1-或7-处.【详解】解:(1)根据绝对值与平方的非负性得,20,30a b +=-=,2,3a b \=-=,故答案是:2,3-;(2)设t 秒时,点A 运动到4-,则20.54t --=-,解得:4t =,4秒后,点B 运动到3417+´=,7(4)11\--=,即,A B 两点间的距离为11;(3),A B Q 分别位于4,7-,要使A 、B 两点相距3个单位长度,则点B 需要运动到1-或7-处,设经过t 秒,当71t -=-,解得:8t =,当77t -=-,解得:14t =,\经过8或14秒,A 、B 两点相距3个单位长度.【点睛】本题考查了绝对值和完全平方公式的非负性、数轴上的动点问题、数轴上两点间的距离问题,解题的关键是利用数形结合的思想进行解答.。
人教版七年级初一数学期中易错题集锦
人教版七年级初一数学期中易错题集锦人教版七年级数学上册易错题集锦一、选择题:1.下列说法中正确的是()A。
有最小的正数B。
有最大的负数C。
有最小的整数D。
有最小的正整数2.在-22,π。
333四个数中,有理数的个数为()A。
1个 B。
2个 C。
3个 D。
4个3.绝对值最小的有理数是()A。
1 B。
0 C。
-1 D。
不存在4.绝对值最小的整数是()A。
-1 B。
1 C。
0 D。
不存在5.3.14-π的值为()B。
3.14-π6.比较-111/234,-1/的大小,结果正确的是()C。
<-<-7.若ab≠0,则a/b+b/a的值不可能为()D。
-28.已知数轴上的A点到原点距离为2,那么数轴上到A点距离是3的点所表示的数有()B。
2个9.数轴上表示整数的点称为整点,某数轴的单位长度为1㎝,若在数轴上画出一条长2004㎝的线段AB,则AB盖住的整点个数是()C。
2004或200510.有一个两位数,它的十位数字是b,个位数字是a,则这个两位数的大小是()C。
10b +a11.XXX利用计算机设计了一个计算程序,输入与输出的数据如下表:输入输出… …1 22 323 510 417 526当输入数据8时,输出的数据是()B。
676112.若x+xy=2,y+xy=-1,则x+2xy+y的值是()A。
113.一辆汽车在a秒内行驶m米,则它在2分钟内行驶多少米。
A。
120m B。
6m C。
20m D。
10m15.在数轴上,点A表示的数是1,那么在数轴上与A相距3个单位长度的点表示的数是______。
4或-216.大于-3.5小于4.7的整数有_______个。
817.用“>”、“<”或“=”填空。
11/9 < 10/918.若x-y,x+y<0.19.(1) 若a>0,b0,a(-b)0.2) 若ab>0,b0,且a+b<0,则a<-b。
20.-1/2的倒数是-2,倒数等于本身的数是1和-1,相反数等于本身的数是0,绝对值等于本身的数是0.21.3的相反数是-3,若a>3,则这个数是a-3.22.数轴上点M表示2,点N表示-3.5,点A表示-1,在点M和点N中,距离A点较远的是点N。
七年级数学上册期中易错题集及解析(131页精品)
6.点 M 在数轴上距原点 4 个单位长度,若将 M 向右移动 2 个单位长度至 N 点,点 N 表
示的数是( )
A.6
B.﹣2
C.﹣6
D.6 或﹣2
考点:数轴。
分析:首先根据绝对值的意义“数轴上表示一个数的点到原点的距离,即为这个数的绝对
值”,求得点 M 对应的数;再根据平移和数的大小变化规律,进行分析:左减右加.
变式:
2.下列四种说法:①0 是整数;②0 是自然数;③0 是偶数;④0 是非负数.其中正确
的有( )
A.4 个
B.3 个
C.2 个
D.1 个
考点:有理数。
分析:根据 0 的特殊规定和性质对各选项作出判断后选取答案,注意:2002 年国际数学协
会规定,零为偶数;我国 2004 年也规定零为偶数.
解答:解:①0 是整数,故本选项正确;
.
解答:解:负整数和负分数统称负有理数,A 正确.
整数分为正整数、负整数和 0,B 正确.
正有理数与 0,负有理数组成全体有理数,C 错误.
3.14 是小数,也是分数,小数是分数的一种表达形式,D 正确.
故选 C.
点评:认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.
注意整数和正数的区别,注意 0 是整数,但不是正数.
解答:解:因为点 M 在数轴上距原点 4 个单位长度,点 M 的坐标为±4.
(1)点 M 坐标为 4 时,N 点坐标为 4+2=6;
(2)点 M 坐标为﹣4 时,N 点坐标为﹣4+2=﹣2.
所以点 N 表示的数是 6 或﹣2.
故选 D.新课|标 第| 一|网
点评:此题考查了绝对值的几何意义以及平移和数的大小变化规律.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将-206亿=-20600000000用科学记数法表示为-2.06×1010.
【详解】
设小长方形的宽为x,则其长为 -6x=34-6x,
所以AD=5x,CD=2(34-6x)=68-12x,
则有5x=68-12x,
解得:x=4,
则大长方形的面积为7×4×(34-6×4)=280,
故选C.
7.A
解析:A
【解析】
【分析】
由平面图形的折叠及正方体的表面展开图的特点解题.
【详解】
将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,
【详解】
4 600 000 000用科学记数法表示为:4.6×109.
故选D.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6.C
解析:C
【解析】
【分析】
观察图形可知AD=BC,也就是5个小长方形的宽与2个小长方形有长相等.设小长方形的宽为x,则其长为34﹣6x,根据AB=CD列方程即可求解即可.
∴阴影部分面积之差 .
∵S始终保持不变,∴3b﹣a=0,即a=3b.
故选B.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
5.D
解析:D
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
A.-2B.-1C.0D.1
9.一家健身俱乐部收费标准为180元/次,若购买会员年卡,可享受如下优惠:
会员年卡类型
办卡费用(元)
每次收费(元)
A类
1500
100
B类
3000
60
C类
4000
40
例如,购买A类会员年卡,一年内健身20次,消费 元,若一年内在该健身俱乐部健身的次数介于50-60次之间,则最省钱的方式为()
故选D.
【点睛】
本题考查绝对值,熟练掌握绝对值的性质是解题关键.
二、填空题
13.【解析】试题解析:根据只有符号不同的两个数互为相反数可得的相反数是
解析:
【解析】
试题解析:根据只有符号不同的两个数互为相反数,可得 的相反数是
14.【解析】【分析】直接根据相反数的定义进行解答即可【详解】解:由相反数的定义可知的相反数是即故答案为:【点睛】本题考查的是相反数的定义即只有符号不同的两个数叫互为相反数
4.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()
A.a= bB.a=3bC.a= bD.a=4b
5.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为
解得:
故答案为6.
16.【解析】寻找规律:不难发现第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星∴第10个图形有112
解析:【解析】
寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
∴a-b>0,c+b<0,
则原式=a+a-b+c+b=2a+c
故答案为:2a+c.
【点睛】
本题考查整式的加减;数轴;绝对值.
18.-206×1010【解析】【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时
故选C.
【点睛】
此题考查的是用代数式表示实际意义,掌握实际问题中各个量之间的关系是解决此题的关键.
10.D
解析:D
【解析】
【分析】
根据原方程可知将其两边同时乘以各分母的最小公倍数6即可求得相应的答案.
【详解】
∵原方程分母的最小公倍数为6,
∴原方程两边同时乘以6可得: ,
故选:D.
【点睛】
本题主要考查了一元一次方程中去分母的运算,熟练掌握相关方法是解题关键
【详解】
输出数据的规律为 ,
当输入数据为8时,输出的数据为 = .
故答案选:C.
【点睛】
本题考查的知识点是有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.
3.D
解析:D
【解析】
【分析】
根据运算程序,结合输出结果确定的值即可.
【详解】
解:A、x=7、y=2时,输出结果为2×7+22=18,不符合题意;
故答案为:-2.06×1010.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.如果 ,下列成立的是()
A. B. C. D.
二、填空题
13. 的相反数是______.
14. 的相反数是______.
15.若计算(x﹣2)(3x+m)的结果中不含关于字母x的一次项,则m的值为_____.
16.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.
A.24里B.12里C.6里D.3里
2.小王利用计算机设计了一个程序,输入和输出的数据如下表:
输入
…
1
2
3
4
5
…
输出
…
…
那么,当输入数据8时,输出的数据是( )
A. B. C. D.
3.按如图所示的运算程序,能使输出结果为10的是( )
A.x=7,y=2B.x=﹣4,y=﹣2C.x=﹣3,y=4D.x= ,y=3
B、x=﹣4、y=﹣2时,输出结果为2×(﹣4)﹣(﹣2)2=﹣12,不符合题意;
C、x=﹣3、y=4时,输出结果为2×(﹣3)﹣42=﹣22,不符合题意;
D、x= 、y=3时,输出结果为2× +32=10,符合题意;
故选:D.
【点睛】
此题考查了代数式的求值与有理数的混合运算,熟练掌握运算法则是解本题的关键.
∴第10个图形有112-1=120个小五角星.
17.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b<0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值
解析:2a+c.
【解析】
【分析】
【详解】
解:根据数轴上点的位置得:c<b<0<a,
三、解答题
21.如图,直线AB,CD相交于点O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度数;
(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.
22.读句画图:如图所示,A,B,C,D在同一平面内.
(1)过点A和点D画直线;
(2)画射线CD;
(3)连接AB;
(4)连接BC,并反向延长BC.
【易错题】七年级数学上期中试卷附答案
一、选择题
1.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为()
(4) [2(x﹣ )+ ]=5x.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
【详解】
试题分析:设第一天走了x里,则根据题意知 ,解得x=192,故最后一天的路程为 里.
故选C
2.C
解析:C
【解析】
【分析】
根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.
4.B
解析:B
【解析】
【分析】
表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.
【详解】
如图,设左上角阴影部分的长为AE,宽为AF=3b,
右下角阴影部分的长为PC,宽为CG=a,
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,
∴AE+a=4b+PC,即AE﹣PC=4b﹣a,
A.购买A类会员年卡B.购买B类会员年卡
C.购买C类会员年卡D.不购买会员年卡
10.将方程 去分母得()
A.2﹣2(2x-4)= - (x-7)B.12﹣2(2x﹣4)=﹣x﹣7
C.12﹣4x﹣8= - (x-7)D.12﹣2(2x﹣4)= x﹣7
11.若代数式x+2的值为1,则x等于( )