双曲线的弦长公式与面积(不过焦点的弦)
【高中数学】秒杀秘诀MS06双曲线的弦长和中点弦问题

双曲线的弦长公式与中点弦问题1.两条渐近线为02=+y x 和02=-y x 且被直线03=--y x 截得弦长为338的双曲线方程是.2.斜率为2的直线被双曲线22132x y -=截得的弦长为4,求直线的方程.3.已知倾斜角为4π的直线l 被双曲线60422=-y x 截得的弦长28=AB ,求直线l 的方程.秒杀秘籍:双曲线的弦长公式与面积(不过焦点的弦)双曲线()222210,0x y a b a b-=>>与直线l :y kx m =+相交于AB 两点,求AB 的弦长。
设:()()1122,,,A x y B x y 则()22121214AB kx x x x =++-将y kx m =+代入22221x ya b-=得:()22222222220b k a x a km x a m a b ----=()221222222212222a km x xb k a a m b x x b k a ⎧⎪+=⎪⎪-⎨⎪--⎪⋅=⎪-⎩∴()222222212122222141ab b k a m AB kx x x x kb k a -+∴=++-=+-例1:已知直线1+=x y 与双曲线14:22=-y x C 交于A 、B 两点,求AB 的弦长解:设:()()1122,,,A x y B x y 则()()()22222121121214AB x x y y k x x x x =-+-=++-将1y x =+代入2214yx -=得:23250x x --=21235123x x x x +=⋅=-⎧∴⎨⎩22218213AB k x x ∴=+-=双曲线与直线交点的判别式:()2222224a b b k a m ∆=-+用来判断是否有两个交点问题。
面积问题:双曲线与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ∆。
设C 到l 的距离为d ,则22220000222211221ABCkx y m kx y m ab b k a m S AB d AB b k a k ∆-+-+⋅-+===-+例2:动点P 到A(-1,0)及B(1,0)连线的斜率之积为m (m >0)且P 的轨迹E 的离心率为2m 。⑴求E 的方程;⑵设直线L:23=+y x 交曲线E 于M 、N,求ΔAMN 的面积。解:(1)设点()()2200,011y y P x y m mx y m m x x --⋅=⇒-=>+-;故动点轨迹为双曲线,且离心率为2m ,即2222211211y c m x m m m a +-===⇒=;E 的方程为()2211x y x -=≠±(2)12AMN S MN d ∆=,设()()1122,,,M x y N x y 则()22121214MN k x x x x =++-;将32y x =-+代入221x y -=得:()2314350x x -++-=12122352x x x x ⎧+=⎪∴⎨⋅=⎪⎩;23232131A A x y d k+---==++;32134164222AMNS MN d ∆--⋅-++===。
2.2.2(二)双曲线的简单几何性质(二)

2.2.2(二)
跟踪训练 3 设 A、B 分别是双曲线xa22-yb22=1(a,b>0)的左、
右顶点,双曲线的实轴长为 4 3,焦点到渐近线的距离为 3.
(1)求此双曲线的方程;
(2)已知直线 y= 33x-2 与双曲线的右支交于 D、E 两点,
本 讲 栏
且在双曲线的右支上存在点 C,使得O→D+O→E=mO→C,求
练一练·当堂检测、目标达成落实处
2.2.2(二)
2.已知双曲线xa22-by22=1 (a>0,b>0)的左、右焦点分别为 F1、
F2,过 F2 的直线交双曲线右支于 A,B 两点.若△ABF1
是以 B 为顶点的等腰三角形,且△AF1F2,△BF1F2 的面
本 讲
积之比 S△AF1F2∶S△BF1F2=2∶1,则双曲线的离心率
本
讲
A.(x-5)2+y2=36
B.(x+5)2+y2=36
栏 目
C.(x-5)2+y2=9
D.(x+5)2+y2=9
开 关
解析 由双曲线ax22-y92=1(a>0)得渐近线方程为 y=±3ax,即
3x±ay=0,∴a=4,
∴c2=a2+9=25,∴右焦点为(5,0). 又∵b2=9,∴虚轴长 2b=6. ∴所求圆的方程为(x-5)2+y2=36.
2.2.2(二)
题型一 直线与双曲线的位置关系
例 1 已知直线 y=kx-1 与双曲线 x2-y2=1 有且仅有一个
公共点,k 为何值?
本 讲 栏
解 由yx=2-kyx2-=11, ⇒(1-k2)x2+2kx-2=0.
目 开
当 1-k2≠0 时,即 k≠±1 时,
关 ∵直线和双曲线只有一个交点,
双曲线的简单几何性质(二)

当直线与双曲线的渐进线平行时 , 把直 线方程代入双曲线方程 , 得到的是一次方程 , 根本得不到一元二次方程 , 当然也就没有所 谓的判别式了 。
结论:判别式依然可以判断直线与双曲线的 位置关系 !
判断直线与双曲线位置关系的操作程序 把直线方程代入双曲线方程
得到一元一次方程
直线与双曲线的 渐进线平行
相切
[2] l : y 4 x 1 , c : x2 y2 1 相 交
3
9 16
试一下:判别式情况如何?
一般情况的研究
显然,这条直线与双曲线的渐进线是平行的, 也就是相交.把直线方程代入双曲线方程,看 看判别式如何?
l : y b x m ,c: x2 y2 1
a
a2 b2
根本就没有判别式 !
Δ>0
直线与双曲线相交(两个交点)
Δ=0
直线与双曲线相切
Δ<0
直线与双曲线相离
注:
①相交两点:
△>0
直线与双曲线只
同侧:x1 x2>0 异侧: x1 x2 <0 相交一点: 直线与渐进线平行
有一个交点是直 线与双曲线相切 的必要不充分 条 件!
②相切一点: △=0
特别注意直线与双 曲线的位置关系中:
③相 离: △<0
一解不一定相切, 相交不一定两解, 两解不一定同支。
判断下列直线与双曲线的位置关系:
[1] l : y 4 x 1,c : x2 y2 1; 相交(一个交点)
5
25 16
[2] l : y 5 x 1,c : x2 y2 1. 相离
4
25 16
题型一:直线与双曲线的位置关系
为三角形的三边。解决与这个三角形有关的问题,要充分 利用双曲线的定义和三角形的边角关系、正弦定理、余弦 定理。
高中数学圆锥曲线弦长公式(二)

高中数学圆锥曲线弦长公式(二)高中数学圆锥曲线弦长公式1. 弦长公式弦长公式是关于圆锥曲线上两点之间弦的长度的公式,根据不同的圆锥曲线类型有不同的表达式。
下面将列举各个圆锥曲线的弦长公式,并给出相应的示例。
椭圆的弦长公式椭圆是一种圆锥曲线,其弦长公式为:L=2asin(θ2 )其中,L为弦长,a为椭圆长轴的长度,θ为弦与椭圆长轴所夹的角度。
例如,假设椭圆长轴长度为6,弦与椭圆长轴所夹角度为60°,代入公式计算得到:L=2×6sin(60°2)=2×6sin30°=6×1=6所以该椭圆上所给定的两点之间的弦长为6。
双曲线的弦长公式双曲线是一种圆锥曲线,其弦长公式为:L=2asinh(θ2 )其中,L为弦长,a为双曲线长轴的长度,θ为弦与双曲线长轴所夹的角度,sinh为双曲正弦函数。
例如,假设双曲线长轴长度为4,弦与双曲线长轴所夹角度为45°,代入公式计算得到:L=2×4sinh(45°2)=2×4sinh°=2×4×=所以该双曲线上所给定的两点之间的弦长约为。
抛物线的弦长公式抛物线是一种圆锥曲线,其弦长公式为:L=|8a2 3ℎ|其中,L为弦长,a为抛物线的焦点到顶点的距离,ℎ为弦与抛物线的对称轴之间的垂直距离。
例如,假设抛物线的焦点到顶点的距离为6,弦与抛物线的对称轴之间的垂直距离为2,代入公式计算得到:L=|8×623×2|=|2886|=48所以该抛物线上所给定的两点之间的弦长为48。
2. 总结•椭圆的弦长公式为L=2asin(θ2);•双曲线的弦长公式为L=2asinh(θ2);•抛物线的弦长公式为L=|8a 23ℎ|。
以上是圆锥曲线弦长公式的相关内容,通过这些公式我们可以计算出给定圆锥曲线上两点之间的弦长。
双曲线知识点

双曲线知识点指导教师:郑军一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;若k 不存在,a m a -<<时,直线与双曲线没有交点;m a m a ><-或直线与双曲线相交于两点;3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a -<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x bk a a y << (00y ≠)或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
双曲线弦长公式二级结论

双曲线弦长公式二级结论
双曲线的弦长公式是一个重要的数学定理,其二级结论更为深入。
具体地说,对于双曲线上的一对对称点P和P',其弦长公式可以表
示为:SP × SP' = a - b,其中a和b分别是双曲线的两个半轴长度,而SP和SP'则是P和P'与双曲线中心的距离。
进一步地,如果
P和P'分别在双曲线的两个分支上,那么二级结论可以表述为:SP ×SP' = c - a,其中c是双曲线的离心率。
这个公式在数学和物理学
上都有着广泛的应用,特别是在描述光学和电学现象时,常常用到双曲线的性质来分析和解释。
- 1 -。
双曲线知识点总结
双曲线知识点指导教师:郑军一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上);1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y << (00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a ≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
双曲线知识点及题型总结刘
双曲线知识点及题型总结1、双曲线定义:①到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|,这两点与椭圆的定义有本质的不同.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线; 当2a >|F 1F 2|时,动点轨迹不存在.②动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线2.双曲线的标准方程: ①12222=-b y a x (a >0,b >0)(焦点在x 轴上); ②12222=-bx a y (a >0,b >0)(焦点在y 轴上); 1)如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3)双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
3. 求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.4. 曲线的简单几何性质22a x -22by =1(a >0,b >0) ⑴范围:|x |≥a ,y ∈R⑵对称性:关于x 、y 轴均对称,关于原点中心对称 ⑶顶点:轴端点A 1(-a ,0),A 2(a ,0) ⑷渐近线:①若双曲线方程为12222=-b y a x ⇒渐近线方程⇒=-02222by a x x a by ±=②若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222by a x注:①当焦点在x 轴上时:渐渐线倾斜角与离心率的关系:tan θ=②当焦点在y 轴上时:渐渐线倾斜角与离心率的关系:tan θ=③若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x (0>λ,焦点在x轴上,0<λ,焦点在y 轴上)④特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;y =a b x ,y =-abx ⑸准线:l 1:x =-c a 2,l 2:x =c a 2,两准线之距为2122a K K c=⋅⑹焦半径:21()a PF e x ex a c =+=+,(点P 在双曲线的右支上x a ≥);22()a PF e x ex a c=-=-,(点P 在双曲线的右支上x a ≥);当焦点在y 轴上时,标准方程及相应性质(略)⑺通径的定义:过焦点且垂直于实轴的直线与双曲线相交于A 、B 两点,则其长为:ab AB 22||=(8)与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222b y a x )0(≠λ(9)与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x (10)1-2222=by a x (a>0;b>0)的焦点为1F 与2F ,且p 为曲线上任意一点,12F PF θ∠=。
双曲线焦点弦长公式3个
双曲线焦点弦长公式3个首先给出一个求解问题。
已知抛物线的焦准距为p(焦准距即焦点到准线的距离),过其焦点F的弦AB与其对称轴的夹角为α,求弦长|AB|。
对这个问题,一般都是通过解析几何来解决,不过在解析几何建立之前,这个问题也是可以解决的,我们现在就来看看。
如上图所示,直线l为抛物线的准线,O为抛物线的顶点,F为为焦点,AB为过焦点F的弦,α为其与对称轴x的夹角,E为准线与对称轴的交点。
作AD⊥l于D点,作BC⊥l与C点,由抛物线的第二定义可知:|AF|=|AD|,|BF|=|BC|,这里我们规定α为锐角,即|AF|>|BF|,过F点作l的平行线,交AD与G点,交BC的延长线于H点,过B点作BI⊥AD于I。
根据图上的几何关系,则有:2|EF|=|AD|+|BC|−(|AG|−|BH|),由于∠DAF=∠FBH=α,EF=p,(已知条件)于是在直角△AGF与直角三角形△BHF中有:|AG|=|AF|cosα,|BH|=|BF|cosα,结合|AD|=|AF|,|BC|=|BF|,于是有:2p=|AF|(1+cosα)+|BC|(1−cosα) ……(记为抛物线焦半径和式)在直角△BIA中,由勾股定理得:|AI|2=(|AD|−|BC|)2=(|AF|−|BF|)2,|AI|2+|BI|2=|AB|2,而|BI|=|AB|sinα,即:(|AF|−|BF|)2=|AB|2−(|AB|sinα)2=(|AB|cosα)2,于是可得:|AF|=|AB|2(1−cosα),|BF|=|AB|2(1+cosα),代入抛物线焦半径和式中,化简,可得:2p=|AB|sin2α,即:|AB|=2psin2α这就是抛物线焦点弦长公式。
我们可以看到,使用纯几何的办法来求解抛物线的弦长是十分麻烦的,所以解析几何的创立才有了它的必要性,下面就来看看解析几何的办法。
如上图所示,以抛物线顶点为O点,对称轴为x轴,建立直角坐标系xOy,于是抛物线的方程为y2=2px,其焦点坐标为F(p2,0),由于AB与x轴的夹角为α,所以直线AB的斜率为tanα,其方程则由点斜式确定为y=tanα(x−p2)。
圆锥曲线 第2节 双曲线及性质
第2节 双曲线及性质知识点一 双曲线的定义1.定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹.2.定义的集合表示:{M |||MF 1|-|MF 2||=2a ,0<2a <|F 1F 2|}. 3.焦点:两个定点F 1,F 2.4.焦距:两焦点间的距离,表示为|F 1F 2|. 5. 双曲线标准方程x 2y 2y 2x 2一、双曲线的定义的应用例1 (1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,若|PF 1|-|PF 2|=b ,且双曲线的焦距为25,则该双曲线的方程为__________.解析 由题意得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a =b ,c 2=a 2+b 2,2c =25,解得⎩⎪⎨⎪⎧a 2=1,b 2=4,则该双曲线的方程为x 2-y 24=1. (2)已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2.若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.解 由x 29-y 216=1得,a =3,b =4,c =5.由双曲线的定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=64,所以12F PF S=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=16 3. 反思感悟 双曲线的定义的应用(1)已知双曲线上一点的坐标,可以求得该点到某一焦点的距离,进而根据定义求该点到另一焦点的距离.(2)双曲线中与焦点三角形有关的问题可以根据定义结合余弦定理、勾股定理或三角形面积公式等知识进行运算,在运算中要注意整体思想和一些变形技巧的灵活运用. 一般地,双曲线的焦点三角形有以下性质:(2c)2=|PF 1|2+ |PF 2|2−2|PF 1||PF 2|cos∠F 1PF 2,得到:|PF 1||PF 2|= 2b 21− cos∠F 1PF 2;S ∆F1PF 2= 12|PF 1||PF 2|sin∠F 1PF 2=b 2sin∠F 1PF 21− cos∠F 1PF 2=b 2tan(∠F 1PF 22)跟踪训练1 (1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5 D .3解析 由题意得||PF 1|-|PF 2||=6,∴|PF 2|=|PF 1|±6,∴|PF 2|=9或-3(舍去) (2)设F 1,F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A .4 2 B .8 3 C .24 D .48解析 ⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,解得|PF 1|=8,|PF 2|=6.在△PF 1F 2中,|PF 1|=8,|PF 2|=6,|F 1F 2|=10,∴△PF 1F 2为直角三角形,∴12PF F S =12|PF 1||PF 2|=24. 二、求双曲线的标准方程例2 (1)以椭圆x 28+y 25=1长轴的端点为焦点,且经过点(3,10)的双曲线的标准方程为________.解析 由题意得,双曲线的焦点在x 轴上,且c =2 2.设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则有a 2+b 2=c 2=8,9a 2-10b 2=1,解得a 2=3,b 2=5.故所求双曲线的标准方程为x 23-y 25=1. (2)求过点P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5且焦点在坐标轴上的双曲线的标准方程.解 设双曲线的方程为Ax 2+By 2=1,AB <0.因为点P ,Q 在双曲线上,则⎩⎨⎧9A +22516B =1,2569A +25B =1,解得⎩⎨⎧A =-116,B =19.故双曲线的标准方程为y 29-x 216=1.反思感悟 求双曲线的标准方程1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值.2.不知道焦点在横纵坐标的曲线,可设为为mx 2+ny 2=1(当m >0,n >0,m ≠n ,为椭圆方程,当mn <0,m≠n ,为双曲线,当m=n ≠0,为圆)3. 与x 2a 2+y 2b 2=1(a >b >0)有共同焦点的曲线可设为12222=-+-kb y k a x (2b k <,为共焦点椭圆;22a k b <<为共焦点双曲线)4. 与x 2a 2±y 2b 2=1(a >b >0)有相同离心率的曲线可设为12222=±mby ma x 5. 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线bx ±ay =0的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).跟踪训练2 (1)焦点在x 轴上,经过点P (4,-2)和点Q (26,22)的双曲线的标准方程为________.解析 设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),将点(4,-2)和(26,22)代入方程得⎩⎨⎧16a 2-4b 2=1,①24a 2-8b 2=1,②解得a 2=8,b 2=4,所以双曲线的标准方程为x 28-y 24=1. (2)已知方程x 2k -5-y 2|k |-2=1对应的图形是双曲线,那么k 的取值范围是________.解析 ∵方程对应的图形是双曲线,∴(k -5)(|k |-2)>0.即⎩⎪⎨⎪⎧ k -5>0,|k |-2>0,或⎩⎪⎨⎪⎧k -5<0,|k |-2<0.解得k >5或-2<k <2.知识点二 双曲线的性质x ≥a 或x ≤-ay ≤-a 或y ≥a一、由双曲线的几何性质求标准方程 例1 求满足下列条件的双曲线的方程:(1)已知双曲线的焦点在x 轴上,离心率为53,且经过点M (-3,23);(2)渐近线方程为y =±12x ,且经过点A (2,-3).解 (1)设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).∵e =53,∴e 2=c2a 2=a 2+b 2a2=1+b 2a 2=259,∴b a =43.由题意得⎩⎨⎧b a =43,9a 2-12b 2=1,解得⎩⎪⎨⎪⎧a 2=94,b 2=4.∴所求的双曲线方程为4x 29-y 24=1.(2)方法一 ∵双曲线的渐近线方程为y =±12x .当焦点在x 轴上时,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵点A (2,-3)在双曲线上,∴4a 2-9b2=1.②①②联立,无解.当焦点在y 轴上时,设所求方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵点A (2,-3)在双曲线上,∴9a 2-4b 2=1.④联立③④,解得a 2=8,b 2=32.∴所求双曲线的标准方程为y 28-x 232=1. 方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上,∴2222-(-3)2=λ,即λ=-8.∴所求双曲线的标准方程为y 28-x 232=1.反思感悟 由双曲线的性质求双曲线的标准方程(1)根据双曲线的某些几何性质求双曲线方程,一般用待定系数法转化为解方程(组),但要注意焦点的位置,从而正确选择方程的形式. (2)巧设双曲线方程的技巧渐近线为ax ±by =0的双曲线方程可设为a 2x 2-b 2y 2=λ(λ≠0). 跟踪训练1 求适合下列条件的双曲线的标准方程: (1)焦点在x 轴上,虚轴长为8,离心率为53;(2)过点(2,0),与双曲线y 264-x 216=1离心率相等.解 (1)设所求双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知2b =8,e =c a =53,从而b =4,c =53a ,代入c 2=a 2+b 2,得a 2=9,故双曲线的标准方程为x 29-y 216=1.(2)当所求双曲线的焦点在x 轴上时,可设其方程为x 264-y 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=116,故所求双曲线的标准方程为x 24-y 2=1;当所求双曲线的焦点在y 轴上时,可设其方程为y 264-x 216=λ(λ>0),将点(2,0)的坐标代入方程得λ=-14<0(舍去).综上可知,所求双曲线的标准方程为x 24-y 2=1.二、求双曲线的离心率例2 已知圆C :x 2+y 2-10y +21=0与双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线相切,则该双曲线的离心率是( ) A. 2 B.53 C.52D.5解析 由双曲线x 2a 2-y 2b 2=1(a >0,b >0),可得其一条渐近线的方程为y =ba x ,即bx -ay =0,又由圆C :x 2+y 2-10y +21=0,可得圆心为C (0,5),半径r =2, 则圆心到直线的距离为d =|-5a |b 2+(-a )2=5ac ,则5a c =2,可得e =c a =52.反思感悟 求双曲线离心率的方法(1)直接法:若可求得a ,c ,则直接利用e =ca得解.(2)解方程法:若得到的是关于a ,c 的齐次方程pc 2+q ·ac +r ·a 2=0(p ,q ,r 为常数,且p ≠0),则转化为关于e 的方程pe 2+q ·e +r =0求解.跟踪训练2 已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,PQ 是经过F 1且垂直于x 轴的双曲线的弦,如果∠PF 2Q =90°,求双曲线的离心率.解 设F 1(c ,0),将x =c 代入双曲线的方程得c 2a 2-y 2b 2=1,那么y =±b 2a .由|PF 2|=|QF 2|,∠PF 2Q =90°,知|PF 1|=|F 1F 2|,所以b 2a=2c ,所以b 2=2ac ,所以c 2-2ac -a 2=0,所以⎝⎛⎭⎫c a 2-2×ca -1=0,即e 2-2e -1=0,所以e =1+2或e =1-2(舍去),所以双曲线的离心率为1+ 2.知识点三 直线与双曲线的位置关系 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±ba 时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±ba 时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2).Δ>0⇒直线与双曲线有两个公共点; Δ=0⇒直线与双曲线有一个公共点; Δ<0⇒直线与双曲线有0个公共点.思考 直线与双曲线只有一个交点,是不是直线与双曲线相切?答案 不是.当直线与双曲线的渐近线平行时,直线与双曲线只有一个交点 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点, 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2].一、直线与双曲线的位置关系例1 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若直线l 与双曲线C 有两个不同的交点,求实数k 的取值范围;(2)若直线l 与双曲线C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.解 (1)由⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1,消去y 整理,得(1-k 2)x 2+2kx -2=0.由题意,知⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+8(1-k 2)>0,解得-2<k <2且k ≠±1. 所以实数k 的取值范围为(-2,-1)∪(-1,1)∪(1,2).(2)设A (x 1,y 1),B (x 2,y 2),由(1),得x 1+x 2=-2k 1-k 2,x 1x 2=-21-k 2.又直线l 恒过点D (0,-1),则①当x 1x 2<0时,S △OAB =S △OAD +S △OBD =12|x 1|+12|x 2|=12|x 1-x 2|= 2.②当x 1x 2>0时,S △OAB =|S △OAD -S △OBD |=⎪⎪⎪⎪12|x 1|-12|x 2|=12|x 1-x 2|= 2. 所以(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(22)2, 即⎝⎛⎭⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62.由(1),知上述k 的值符合题意,所以k =0或k =±62. 反思感悟 直线与双曲线(1)位置关系的判定方法:代数法(注意二次项系数为0的情况). (2)弦长公式:设直线y =kx +b 与双曲线交于A (x 1,y 1),B (x 2,y 2), 则|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2.跟踪训练1 已知双曲线焦距为4,焦点在x 轴上,且过点P (2,3). (1)求该双曲线的标准方程;(2)若直线m 经过该双曲线的右焦点且斜率为1,求直线m 被双曲线截得的弦长. 解 (1)设双曲线方程为x 2a 2-y 2b2=1(a ,b >0),由已知可得左、右焦点F 1,F 2的坐标分别为(-2,0),(2,0),则|PF 1|-|PF 2|=2=2a ,所以a =1,又c =2,所以b =3,所以双曲线方程为x 2-y 23=1. (2)由题意可知直线m 的方程为y =x -2,联立双曲线及直线方程消去y 得2x 2+4x -7=0, 设两交点为A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-2,x 1x 2=-72,由弦长公式得|AB |=1+k 2|x 1-x 2|=1+k 2(x 1+x 2)2-4x 1x 2=6. 二、与双曲线有关的轨迹问题例2 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其它两观测点晚4 s .已知各观测点到该中心的距离是1 020 m .则该巨响发生在接报中心的(假定当时声音传播的速度为340 m/s ,相关各点均在同一平面上)( )A .北偏西45°方向,距离68010 mB .南偏东45°方向,距离68010 mC .北偏西45°方向,距离680 5 mD .南偏东45°方向,距离680 5 m解析 如图,以接报中心为原点O ,正东、正北方向为x 轴,y 轴正向,建立直角坐标系.设A ,B ,C 分别是西、东、北观测点,则A (-1 020,0),B (1 020,0),C (0,1 020). 设P (x ,y )为巨响发生点.由已知|P A |=|PC |,故P 在AC 的垂直平分线PO 上,PO 的方程为y =-x , 又B 点比A 点晚4 s 听到爆炸声,故|PB |-|P A |=340×4=1 360, 可知P 点在以A ,B 为焦点的双曲线x 2a 2-y 2b2=1上,依题意得a =680,c =1 020,∴b 2=c 2-a 2=1 0202-6802=5×3402, 故双曲线方程为x 26802-y 25×3402=1,将y =-x 代入上式,得x =±6805,∵|PB |>|P A |,∴x =-6805,y =680 5 ,即P (-6805,6805), 故PO =68010 . 故巨响发生在接报中心的北偏西45°距中心68010 m 处. 反思感悟 和双曲线有关的轨迹(1)定义法.解决轨迹问题时利用双曲线的定义,判定动点的轨迹就是双曲线. (2)直接法.根据点满足条件直接代入计算跟踪训练2 若动圆P 经过定点A (3,0),且与定圆B :(x +3)2+y 2=16外切,试求动圆圆心P 的轨迹.解 设动圆圆心P (x ,y ),半径为r .则依题意有|P A |=r ,|PB |=r +4,故|PB |-|P A |=4. 即动圆圆心P 到两个定点B (-3,0),A (3,0)的距离之差等于常数4,且4<|AB |,因此根据双曲线定义,点P 的轨迹是以A ,B 为焦点的双曲线的右支. 设其方程为x 2a 2-y 2b 2=1(a >0,b >0),则c =3,2a =4,b 2=5,所以动圆圆心P 的轨迹方程为x 24-y 25=1(x ≥2).所以动圆圆心P 的轨迹是双曲线x 24-y 25=1的右支双曲线的定义1.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( ) A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3) D.x 29-y 216=1(x ≥3) 答案 D解析 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支. 由c =5,a =3,知b 2=16,∴P 点的轨迹方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A.⎝⎛⎭⎫22,0 B.⎝⎛⎭⎫62,0 C.⎝⎛⎭⎫52,0 D .(3,0) 答案 B解析 将双曲线方程化为标准方程为x 2-y 212=1, ∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62,故右焦点坐标为⎝⎛⎭⎫62,0.3.已知双曲线x 2a -3+y 22-a =1,焦点在y 轴上,若焦距为4,则a 等于( )A.32 B .5 C .7 D.12 答案 D解析 根据题意可知,双曲线的标准方程为 y 22-a -x 23-a=1. 由其焦距为4,得c =2,则有c 2=2-a +3-a =4,解得a =12.4.已知双曲线x 24-y 25=1上一点P 到左焦点F 1的距离为10,则PF 1的中点N 到坐标原点O的距离为( ) A .3或7 B .6或14 C .3 D .7答案 A解析 连接ON ,ON 是△PF 1F 2的中位线, ∴|ON |=12|PF 2|,∵||PF 1|-|PF 2||=4,|PF 1|=10,∴|PF 2|=14或6, ∴|ON |=12|PF 2|=7或3.5.(多选)已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是( ) A .2 B .-1 C. 4 D .-3 答案 AB解析 设双曲线的方程为x 2a 2-y 2b2=1,则c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠12,∴AB 满足条件.6.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________. 答案 (2,+∞)解析 由曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,可得x 21m -y 21m -2=1,即有m >0,且m -2>0,解得m >2.7.以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程为______________. 答案 y 25-x 24=1解析 由题意, 知双曲线的两焦点为F 1(0,-3),F 2(0,3). 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程,得25a 2-16b 2=1.又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.8.已知△ABP 的顶点A ,B 分别为双曲线C :x 216-y 29=1的左、右焦点,顶点P 在双曲线C上,则|sin A -sin B |sin P 的值等于________.答案 45解析 由方程x 216-y 29=1知a 2=16,b 2=9,即a =4,c =16+9=5.在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |sin P =||PB |-|P A |||AB |=2a 2c =2×42×5=45.9.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.解 已知双曲线x 216-y 29=1,则c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).依题意知b 2=25-a 2,故所求双曲线方程可写为x 2a 2-y 225-a 2=1.∵点P ⎝⎛⎭⎫-52,-6在所求双曲线上, ∴⎝⎛⎭⎫-522a 2-(-6)225-a 2=1,化简得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254.当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去, ∴a 2=1,b 2=24, ∴所求双曲线的标准方程为x 2-y 224=1. 10.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1—→·MF 2—→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程. 解 (1)如图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1—→·MF 2—→=0,则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n ,由双曲线定义,知m -n =2a =8,① 又m 2+n 2=(2c )2=80,② 由①②得m ·n =8,∴12mn =4=12|F 1F 2|·h ,∴h =255. (2)设所求双曲线C 的方程为 x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2), ∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去),∴所求双曲线C 的方程为x 212-y 28=1.11.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹是( ) A .双曲线的一支 B .圆 C .椭圆 D .双曲线答案 A解析 设动圆的圆心为M ,半径为r ,圆x 2+y 2=1与x 2+y 2-8x +12=0的圆心分别为O 1和O 2,半径分别为1和2, 由两圆外切的充要条件,得 |MO 1|=r +1,|MO 2|=r +2. ∴|MO 2|-|MO 1|=1, 又|O 1O 2|=4,∴动点M 的轨迹是双曲线的一支(靠近O 1).12.已知F 1,F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于( )A .2B .4C .6D .8 答案 B解析 不妨设P 是双曲线右支上一点, 在双曲线x 2-y 2=1中,a =1,b =1,c =2, 则|PF 1|-|PF 2|=2a =2,|F 1F 2|=22,∵|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2, ∴8=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·12,∴8=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, ∴8=4+|PF 1|·|PF 2|, ∴|PF 1|·|PF 2|=4.故选B. 13.已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为________. 答案 32解析 因为F 是双曲线C :x 2-y 23=1的右焦点, 所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ).因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.14.已知双曲线C :x 23-y 2=1的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线C 的右支相交于P ,Q 两点,且点P 的横坐标为2,则|PQ |=________,△PF 1Q 的周长为________. 答案233 1633解析 ∵c =a 2+b 2=2,∴F 2(2,0). 又点P 的横坐标为2,∴PQ ⊥x 轴. 由223-y 2=1,得y =±33,故|PF 2|=33. ∴|PQ |=233. 又P ,Q 在双曲线的右支上,∴|PF 1|-|PF 2|=23,|QF 1|-|QF 2|=2 3. ∴|PF 1|=|QF 1|=2a +|PQ |2=733,∴△PF 1Q 的周长为|PF 1|+|QF 1|+|PQ |=1633.15.光线被曲线反射,等效于被曲线在反射点处的切线反射.已知光线从椭圆的一个焦点出发,被椭圆反射后要回到椭圆的另一个焦点;光线从双曲线的一个焦点出发被双曲线反射后的反射光线等效于从另一个焦点发出;如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线C ′:x 2m 2-y 2n 2=1(m >0,n >0)有公共焦点,现一光线从它们的左焦点出发,在椭圆与双曲线间连续反射,则光线经过2k (k ∈N *)次反射后回到左焦点所经过的路径长为__________.答案 2k (a -m )解析 光线从左焦点出发经过椭圆反射要回到另一个焦点,光线从双曲线的左焦点出发被双曲线反射后,反射光线的反向延长线过另一个焦点, 如图,|BF 2|=2m +|BF 1|,|BF 1|+|BA |+|AF 1|=|BF 2|-2m +|BA |+|AF 1|=|AF 2|+|AF 1|-2m =2a -2m , 所以光线经过2k (k ∈N *)次反射后回到左焦点所经过的路径长为2k (a -m ).16.已知△ABC 的一边的两个顶点B (-a ,0),C (a ,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形. 解 设顶点A 的坐标为(x ,y ),则 k AB =y x +a ,k AC =yx -a. 由题意,得y x +a ·y x -a =m ,即x 2a 2-y 2ma2=1(y ≠0). 当m >0时,轨迹是中心在原点,焦点在x 轴上的双曲线(除去与x 轴的两个交点); 当m <0且m ≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x 轴的两个交点),其中当-1<m <0时,椭圆焦点在x 轴上; 当m <-1时,椭圆焦点在y 轴上;当m =-1时,轨迹是圆心在原点,半径为a 的圆(除去与x 轴的两个交点).双曲线的性质1.双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4 D .42 答案 C解析 双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,从而2a =4,故选C.2.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则双曲线的离心率等于( )A.31414B.324C.32D.43答案 C解析 由题意知a 2+5=9,解得a =2,e =c a =32.3.已知双曲线的实轴和虚轴等长,且过点(5,3),则双曲线方程为( ) A.x 225-y 225=1 B.x 29-y 29=1 C.y 216-x 216=1 D.x 216-y 216=1 答案 D解析 由题意知,所求双曲线是等轴双曲线,设其方程为x 2-y 2=λ(λ≠0),将点(5,3)代入方程,可得λ=52-32=16,所以双曲线方程为x 2-y 2=16,即x 216-y 216=1. 4.双曲线x 2-y 2=1的顶点到其渐近线的距离等于( ) A.12 B.22 C .1 D.2 答案 B解析 双曲线x 2-y 2=1的渐近线方程为x ±y =0,顶点坐标为(1,0),(-1,0), 故顶点到渐近线的距离为22. 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则双曲线C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12.故双曲线C 的渐近线方程为y =±12x ,故选C.6.如图,双曲线C :x 29-y 210=1的左焦点为F 1,双曲线上的点P 1与P 2关于y 轴对称,则|P 2F 1|-|P 1F 1|的值是________.答案 6解析 设F 2为右焦点,连接P 2F 2(图略),由双曲线的对称性,知|P 1F 1|=|P 2F 2|, 所以|P 2F 1|-|P 1F 1|=|P 2F 1|-|P 2F 2|=2×3=6.7.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =________. 答案 2解析 设B 为双曲线的右焦点,如图所示.∵四边形OABC 为正方形且边长为2, ∴c =|OB |=2 2. 又∠AOB =π4,∴b a =tan π4=1,即a =b . 又∵a 2+b 2=c 2=8,∴a =2.8.若一双曲线与椭圆4x 2+y 2=64有公共的焦点,且它们的离心率互为倒数,则该双曲线的方程为________. 答案 y 2-3x 2=36 解析 椭圆4x 2+y 2=64可变形为x 216+y 264=1,a 2=64,c 2=64-16=48,∴焦点为(0,43),(0,-43),离心率e =32, 则双曲线的焦点在y 轴上,c ′=43,e ′=23, 从而a ′=6,b ′2=12,故所求双曲线的方程为y 2-3x 2=36. 9.求适合下列条件的双曲线的标准方程.(1)两顶点间的距离是6,两焦点所连线段被两顶点和中心四等分; (2)渐近线方程为2x ±3y =0,且两顶点间的距离是6. 解 (1)由两顶点间的距离是6,得2a =6,即a =3.由两焦点所连线段被两顶点和中心四等分可得2c =4a =12,即c =6, 于是有b 2=c 2-a 2=62-32=27.由于焦点所在的坐标轴不确定,故所求双曲线的标准方程为x 29-y 227=1或y 29-x 227=1.(2)设双曲线方程为4x 2-9y 2=λ(λ≠0), 即x 2λ4-y 2λ9=1(λ≠0),由题意得a =3. 当λ>0时,λ4=9,λ=36,双曲线方程为x 29-y 24=1;当λ<0时,-λ9=9,λ=-81,双曲线方程为y 29-x 2814=1.故所求双曲线的标准方程为 x 29-y 24=1或y 29-x 2814=1. 10.设双曲线x 2a 2-y 2b 2=1(0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l 的距离为34c ,求双曲线的离心率. 解 直线l 的方程为x a +yb =1,即bx +ay -ab =0.于是有|b ·0+a ·0-ab |a 2+b 2=34c ,所以ab =34c 2,两边平方,得a 2b 2=316c 4. 又b 2=c 2-a 2,所以16a 2(c 2-a 2)=3c 4, 两边同时除以a 4,得3e 4-16e 2+16=0, 解得e 2=4或e 2=43.又b >a ,所以e 2=a 2+b 2a 2=1+b 2a2>2,则e =2. 于是双曲线的离心率为2.11.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则双曲线C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1 D.x 220-y 280=1 答案 A解析 双曲线C 的渐近线方程为x 2a 2-y 2b 2=0,点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2,又a 2+b 2=c 2=25,解得b 2=5,a 2=20,故选A.12.若双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线方程为y =-x ,则双曲线的方程为( ) A .y 2-x 2=96 B .y 2-x 2=160 C .y 2-x 2=80 D .y 2-x 2=24答案 D解析 设双曲线方程为x 2-y 2=λ(λ≠0),因为双曲线与椭圆有相同的焦点,且焦点为(0,±43),所以λ<0,且-2λ=(43)2,得λ=-24.故选D.13.已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,△ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A. 5 B .2 C. 3 D.2 答案 D解析 不妨取点M 在第一象限,如图所示,设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),则|BM |=|AB |=2a ,∠MBx =180°-120°=60°,∴M 点的坐标为(2a ,3a ).∵M 点在双曲线上,∴4a 2a 2-3a 2b 2=1,a =b ,∴c =2a ,e =ca= 2.故选D.14.如果双曲线x 2a 2-y 2b 2=1右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是________. 答案 (2,+∞)解析 如图,因为|AO |=|AF |,F (c ,0),所以x A =c 2,因为A 在右支上且不在顶点处,所以c 2>a ,所以e =ca>2.15.若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( ) A .[3-23,+∞) B .[3+23,+∞) C.⎣⎡⎭⎫-74,+∞ D.⎣⎡⎭⎫74,+∞答案 B解析 因为F (-2,0)是已知双曲线的左焦点,所以a 2+1=4,即a 2=3, 所以双曲线方程为x 23-y 2=1.设点P (x 0,y 0)(x 0≥3),则x 203-y 20=1(x 0≥3),可得y 20=x 203-1(x 0≥3),易知FP →=(x 0+2,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+2)+y 20=x 0(x 0+2)+x 203-1=4x 203+2x 0-1,此二次函数对应的图象的对称轴方程为x 0=-34.因为x 0≥3,所以当x 0=3时,OP →·FP →取得最小值43×3+23-1=3+23,故OP →·FP →的取值范围是[3+23,+∞). 16.已知双曲线E :x 2m -y 25=1.(1)若m =4,求双曲线E 的焦点坐标、顶点坐标和渐近线方程; (2)若双曲线E 的离心率为e ∈⎝⎛⎭⎫62,2,求实数m 的取值范围. 解 (1)m =4时,双曲线方程化为x 24-y 25=1,所以a =2,b =5,c =3,所以焦点坐标为(-3,0),(3,0),顶点坐标为(-2,0),(2,0),渐近线方程为y =±52x . (2)因为e 2=c 2a 2=m +5m =1+5m ,e ∈⎝⎛⎭⎫62,2,所以32<1+5m <2,解得5<m <10, 所以实数m 的取值范围是(5,10).直线与双曲线的位置关系1.若直线x =a 与双曲线x 24-y 2=1有两个交点,则a 的值可以是( ) A .4 B .2 C .1 D .-2答案 A解析 因为在双曲线x 24-y 2=1中,x ≥2或x ≤-2, 所以若x =a 与双曲线有两个交点,则a >2或a <-2,故只有A 符合题意.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 答案 B解析 易知选项B 正确.3.等轴双曲线x 2-y 2=a 2与直线y =ax (a >0)没有公共点,则a 的取值范围是( )A .a =1B .0<a <1C .a >1D .a ≥1 答案 D解析 等轴双曲线x 2-y 2=a 2的渐近线方程为y =±x ,若直线y =ax (a >0)与等轴双曲线x 2-y 2=a 2没有公共点,则a ≥1.4.直线l :y =kx 与双曲线C :x 2-y 2=2交于不同的两点,则斜率k 的取值范围是( )A .(0,1)B .(-2,2)C .(-1,1)D .[-1,1] 答案 C解析 由双曲线C :x 2-y 2=2与直线l :y =kx 联立,得(1-k 2)x 2-2=0.因为直线l :y =kx与双曲线C :x 2-y 2=2交于不同的两点,所以⎩⎪⎨⎪⎧1-k 2≠0,8(1-k 2)>0, 解得-1<k <1,即斜率k 的取值范围是(-1,1).5.设点F 1,F 2分别是双曲线C :x 2a 2-y 22=1(a >0)的左、右焦点,过点F 1且与x 轴垂直的直线l 与双曲线C 交于A ,B 两点.若△ABF 2的面积为26,则该双曲线的渐近线方程为( )A .y =±3xB .y =±33xC .y =±2xD .y =±22x答案 D解析 设F 1(-c ,0),A (-c ,y 0),则c 2a 2-y 202=1, ∴y 202=c 2a 2-1=c 2-a 2a 2=b 2a 2=2a 2, ∴y 20=4a 2, ∴|AB |=2|y 0|=4a. 又2ABF S =26,∴12·2c · |AB |=12·2c ·4a =4c a=26, ∴c a =62, ∴b a =c 2a 2-1=22. ∴该双曲线的渐近线方程为y =±22x . 6.若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则k 的取值范围为________.答案 ⎝⎛⎭⎫1,153 解析 联立方程⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0,① 若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则方程①有两个不等的负根.所以⎩⎨⎧ Δ=16k 2+40(1-k 2)>0,x 1x 2=-101-k 2>0,x 1+x 2=4k 1-k 2<0,解得1<k <153. 7.直线y =x +1与双曲线x 22-y 23=1相交于A ,B 两点,则|AB |=________. 答案 46解析 由⎩⎪⎨⎪⎧y =x +1,x 22-y 23=1,得x 2-4x -8=0. 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧Δ>0,x 1+x 2=4,x 1·x 2=-8,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2×(16+32)=4 6.8.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,以线段F 1F 2为边作正△MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率e =________.答案 3+1 解析 以线段F 1F 2为边作正△MF 1F 2,则M 在y 轴上,可设|F 1F 2|=2c ,M 在y 轴正半轴,则M (0,3c ),又F 1(-c ,0),则边MF 1的中点为⎝⎛⎭⎫-c 2,32c ,代入双曲线方程,可得c 24a 2-3c 24b 2=1,由于b 2=c 2-a 2,e =c a ,则有e 2-3e 2e 2-1=4,即有e 4-8e 2+4=0,解得e 2=4±23,由于e >1,即有e =1+ 3.9.已知双曲线的方程为x 2-y 22=1,直线l 过点P (1,1),斜率为k . 当k 为何值时,直线l 与双曲线有一个公共点?解 设直线l :y -1=k (x -1),即y =kx +(1-k ).由⎩⎪⎨⎪⎧ y =kx +(1-k ),x 2-y 22=1, 得 (k 2-2)x 2-2k (k -1)x +k 2-2k +3=0.当k 2-2=0,即k =±2时,方程只有一个解;当k 2-2≠0,且Δ=24-16k =0,即k =32时,方程只有一个解. 综上所述,当k =±2或k =32时,直线l 与双曲线只有一个公共点. 10.斜率为2的直线l 在双曲线x 23-y 22=1上截得的弦长为6,求直线l 的方程. 解 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧y =2x +m ,x 23-y 22=1,得10x 2+12mx +3(m 2+2)=0.(*) 设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点,由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).于是|AB |2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2=5[(x 1+x 2)2-4x 1x 2]=5⎣⎡⎦⎤3625m 2-4×310(m 2+2). 因为|AB |=6,所以365m 2-6(m 2+2)=6. 则m 2=15,m =±15.由(*)式得Δ=24m 2-240,把m =±15代入上式,得Δ>0,所以m 的值为±15,故所求l 的方程为y =2x ±15.11.已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点,则a 的取值范围是____________. 答案 -6<a <6且a ≠±3解析 由⎩⎪⎨⎪⎧y =ax +13x 2-y 2=1得(3-a 2)x 2-2ax -2=0. ∵直线与双曲线相交于两点,∴⎩⎪⎨⎪⎧3-a 2≠0,Δ>0⇒-6<a <6且a ≠± 3. ∴a 的取值范围是-6<a <6且a ≠± 3.12.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则双曲线的离心率e 的取值范围是________. 答案 [2,+∞)解析 由题意,知b a ≥3,则b 2a 2≥3,所以e =1+⎝⎛⎭⎫b a 2≥2.13.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.答案 3215解析 双曲线x 29-y 216=1的右顶点A (3,0),右焦点F (5,0),渐近线方程为y =±43x .不妨设直线FB 的方程为y =43(x -5),代入双曲线方程整理,得x 2-(x -5)2=9,解得x =175,y =-3215, 所以B ⎝⎛⎭⎫175,-3215.所以S △AFB =12|AF ||y B |=12(c -a )·|y B |=12×(5-3)×3215=3215. 14.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,左、右顶点为A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线斜率为________. 答案 ±1解析 由题意知F (c ,0),A 1(-a ,0),A 2(a ,0),其中c =a 2+b 2.联立⎩⎪⎨⎪⎧ x =c ,x 2a 2-y 2b 2=1, 解得B ⎝⎛⎭⎫c ,b 2a ,C ⎝⎛⎭⎫c ,-b 2a , 所以A 1B —→=⎝⎛⎭⎫c +a ,b 2a ,A 2C —→=⎝⎛⎭⎫c -a ,-b 2a .因为A 1B ⊥A 2C ,所以A 1B —→·A 2C —→=(c +a )(c -a )-b 4a 2=0, 解得a =b ,所以渐近线的斜率为±1.15.设双曲线x 2-y 22=1上有两点A ,B ,AB 中点M (1,2),则直线AB 的方程为________________. 答案 y =x +1解析 方法一 (用根与系数的关系解决)显然直线AB 的斜率存在.设直线AB 的方程为y -2=k (x -1),即y =kx +2-k ,由⎩⎪⎨⎪⎧y =kx +2-k ,x 2-y 22=1, 得(2-k 2)x 2-2k (2-k )x -k 2+4k -6=0,当Δ>0时,设A (x 1,y 1),B (x 2,y 2),则1=x 1+x 22=k (2-k )2-k 2, 所以k =1,满足Δ>0,所以直线AB 的方程为y =x +1.方法二 (用点差法解决)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧ x 21-y 212=1,x 22-y 222=1,两式相减得(x 1-x 2)(x 1+x 2)=12(y 1-y 2)(y 1+y 2).因为x 1≠x 2,所以y 1-y 2x 1-x 2=2(x 1+x 2)y 1+y 2,所以k AB =2×1×22×2=1,所以直线AB 的方程为y =x +1,代入x 2-y22=1满足Δ>0.所以直线AB 的方程为y =x +1.16.已知直线l :x +y =1与双曲线C :x 2a 2-y 2=1(a >0).(1)若a =12,求l 与C 相交所得的弦长;(2)若l 与C 有两个不同的交点,求双曲线C 的离心率e 的取值范围. 解 (1)当a =12时,双曲线C 的方程为4x 2-y 2=1,联立⎩⎪⎨⎪⎧x +y =1,4x 2-y 2=1,消去y , 得3x 2+2x -2=0.设两交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-23,x 1x 2=-23,则|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+(x 1-x 2)2 =2·(x 1+x 2)2-4x 1x 2 =2×289=2143.(2)将y =-x +1代入双曲线x 2a 2-y 2=1,得(1-a 2)x 2+2a 2x -2a 2=0,∴⎩⎪⎨⎪⎧ 1-a 2≠0,4a 4+8a 2(1-a 2)>0,解得0<a <2且a ≠1.∵双曲线的离心率e =1+a 2a =1a 2+1, ∴e >62且e ≠ 2. 即离心率e 的取值范围是⎝⎛⎭⎫62,2∪(2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 1 页
双曲线的弦长公式与面积(不过焦点的弦)
双曲线
()0,01-
2
22
2>>=b a b
y a
x 与直线m kx y l +=:相交于AB 两点,求AB 的弦长.
设 设()()2211,,,y x B y x A 则()()()2122122
1221241x x x x k y y x x AB -++=-+-=
将
m
kx y +=代
入
1
-
2
22
2=b
y a
x 得:
(
)
⎪⎪⎩
⎪⎪⎨⎧---=⋅-=+∴=-2222
222212222212
22222222-20-2--a k b b a m a x x a k b km a x x b a m a kmx a x a k b ()
2
2
2
2
2222
212
212
2141k
a b m a k b ab k
x x x x k
AB -+-+=-++==∴.
双曲线与直线交点的判别式:()
2222224m a k b b a +-=∆用来判断是否有两个交点问题. 面积问题:双曲线与直线m kx y l +=:相交与两点,()00,y x C 为AB 外任意一点,求ABC S ∆.设C 到l 的距离为d ,则222222200200-1
21
21a k b m a k b ab m y kx k m y kx AB d AB S ABC
-+⋅+-=++-==△.
直线与双曲线交点问题: (1)直线m kx y +=与双曲线()0,01-
2
2
2
2
>>=b a b
y a x 有两个交点时,
(
)04222222>+-=∆m a k b b a ;()
04222222=+-=∆m a k b b a ,有仅有一个交点;
()042
222
2
2<+-=∆m a k b
b a ,没有交点.
(2)过点()00,y x P 的直线与双曲线有一个交点情况需要分类讨论:
①当a b
x y ±=00时,点P 在渐近线上,当a x ±=0时,有两条直线(一条切线,一条与另一条
渐近线平行的直线);①当a x ±≠0时,且在双曲线外部,有三条直线(两条切线,一条与另一条渐近线平行的直线);
①当()0,01-220220>>>b a b
y a x 时(点P 在双曲线内部),一定有交点,当直线斜率a b k ±=时,
有一交点,当直线斜率a
b
k ±≠时,有两个交点.。