数学建模之非线性规划

合集下载

数学建模中的非线性规划问题求解方法研究

数学建模中的非线性规划问题求解方法研究

数学建模中的非线性规划问题求解方法研究随着信息化的发展,数学建模在各个领域中得到越来越广泛的应用。

而在数学建模中,非线性规划问题是最为普遍的一种问题。

在实际问题中,往往存在大量的决策变量以及约束条件,这就使得求解非线性规划问题更加困难。

因此,本文将重点介绍一些非线性规划问题的求解方法。

一、传统方法在传统的求解方法中,我们通常采用数值计算的方法来解决非线性规划问题。

其中比较常用的方法包括二分法、牛顿法、拟牛顿法、凸优化等。

这些方法主要是基于数值计算的方法,最大的优点是计算速度快,缺点是无法保证全局最优解。

因此,在实际问题中往往需要结合其他方法来进行求解。

二、全局优化方法全局优化方法是一种针对大型、高维非线性规划问题的求解方法。

其中包括分支定界法、随机搜索法、遗传算法等。

这些方法主要是针对非线性规划问题的全局最优解进行求解,可以有效地解决因初值选取不当导致的最优解失效问题。

尤其是在高维问题及多目标优化问题中发挥了重要作用。

三、混合整数非线性规划混合整数非线性规划是一种同时包含了整数规划与非线性规划的问题类型。

在实际问题中,很多时候需要同时考虑离散决策与连续决策,这时候我们就需要采用混合整数非线性规划进行求解。

在这种问题中,我们通常采用分支定界法或割平面法进行求解,这些方法可以有效地保证求解得到的最优解的可行性。

四、多目标决策问题在实际问题中,经常会遇到多目标决策问题,也就是需要同时考虑几种不同的目标函数,这时候我们就需要采用多目标优化的方法。

在实际求解中,多目标优化通常需要结合Pareto理论进行求解,也就是将多个目标函数综合考虑,以自我牺牲为代价尽可能地满足所有目标。

以上所介绍的非线性规划问题求解方法都有各自的优点和局限性,在实际问题中我们需要根据具体情况进行选择。

但是总的来说,在数学建模中非线性规划问题的求解是一项非常重要的任务,而求解方法的选择则需要综合考虑问题的性质、数据结构以及问题的维度等多个因素。

非线性规划(数学建模)

非线性规划(数学建模)

1.023
1.031 1.073 1.311 1.080 1.150 1.213 1.156 1.023 1.076 1.142 1.083 1.161 1.076 1.110 0.965
1.048
1.226 0.977 0.981 1.237 1.074 1.562 1.694 1.246 1.283 1.105 0.766 1.121 0.878 1.326 1.078
m ax ( 1)R (X)Q (X), st .. x xn 1 1 x 2 x i 0 i 1 ,2 , ,n
3个模型均为非线性规划模型。
引 例
投资选择问题
某公司在一个时期内可用于投资的总资本为 b万元, 可供选择
的项目有n个。假定对第i个项目的投资总额为ai万元,收益总额为
2.212
1.296 0.688 1.084 0.872 0.825 1.006 1.216 1.244 0.861 0.977 0.922 0.958 0.926 1.146 0.990
引 例
收益和风险
每个投资项目的收益率可以看成一个随机变量,其均值可
以用样本均值(历史均值)来近似.因此, 预计第j种投资的平 均收益率为
0.978
0.947 1.003 1.465 0.985 1.159 1.366 1.309 0.925 1.086 1.212 1.054 1.193 1.079 1.217 0.889
1.184
1.323 0.949 1.215 1.224 1.061 1.316 1.186 1.052 1.165 1.316 0.968 1.304 1.076 1.100 1.012
max s.t.
R( X ) Q( X ) x1 x2 x8 1, xi 0

数学建模各类方法归纳总结

数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。

随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。

本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。

一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。

它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。

贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。

2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。

它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。

数理统计模型在市场预测、风险评估等领域有着重要的应用。

3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。

线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。

4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。

非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。

二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。

它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。

神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。

2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。

它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。

遗传算法模型在组合优化、机器学习等领域具有广泛的应用。

3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。

它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。

非线性规划和多目标规划模型数学建模

非线性规划和多目标规划模型数学建模
i'j(ij2 )(m o d2 )
进一步考虑到角度的周期性,不碰撞的约束条件可写成:
ij i'jij 2ij
第5讲 非线性规划和多目标模型
最终,原非线性规划问题转化为
6
min i
iji'j 1 2 ( i ij) i2 6 1 , i ij,1i, 2,j,i,j , 61 ,2 , ,6
,
vsinyi0i'
,if
i'
3
2
,tani'
yi0 xi0
or 3
2
i'
2, tani'
yi0 Dxi0
(2)计算任意飞机在t时刻两者的距离:
d ij(i i,j j,t)2 (x i0 v tc o s (i i) x 0 j v tc o s (j j))2 (y i0 v ts in (i i) y 0 j v ts in (j j))2
s . t .
6
m in i i 1
d i j(i i,j j,t ) 8i j
i
6
目标函数也可以定义为
minmax 1i6
i
第5讲 非线性规划和多目标模型
我们来简单看一下其复杂程度
(1)区域内飞行时间:假设飞行角度为θi ’= θi + Δ θi
vDcosxi0i'
,if
0 i'
2
,
最优解 迭代法是主要求解方法: 通常从一个初始解出发,在可
行域中沿着使得目标函数降低的方向前进到下一个解。 一般求解方法:罚函数法,拉格朗日乘子法,近似规划
法等,或者采用智能算法,如:遗传算法,模拟退火算 法,蚁群算法等。

数学建模-非线性规划

数学建模-非线性规划

-32-第三章 非线性规划§1 非线性规划1.1 非线性规划的实例与定义如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。

一般说来,解非线性规划要比解线性规划问题困难得多。

而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。

下面通过实例归纳出非线性规划数学模型的一般形式,介绍有关非线性规划的基本概念。

例1 (投资决策问题)某企业有n 个项目可供选择投资,并且至少要对其中一个项目投资。

已知该企业拥有总资金A 元,投资于第),,1(n i i L =个项目需花资金i a 元,并预计可收益i b 元。

试选择最佳投资方案。

解 设投资决策变量为 ⎩⎨⎧=个项目决定不投资第,个项目决定投资第i i x i 0,1,n i ,,1L =,则投资总额为∑=ni ii xa 1,投资总收益为∑=ni ii xb 1。

因为该公司至少要对一个项目投资,并且总的投资金额不能超过总资金A ,故有限制条件 ∑=≤<ni ii A xa 1另外,由于),,1(n i x i L =只取值0或1,所以还有 .,,1,0)1(n i x x i i L ==−最佳投资方案应是投资额最小而总收益最大的方案,所以这个最佳投资决策问题归结为总资金以及决策变量(取0或1)的限制条件下,极大化总收益和总投资之比。

因此,其数学模型为:∑∑===ni ii ni ii xa xb Q 11maxs.t. ∑=≤<ni ii A xa 1.,,1,0)1(n i x x i i L ==−上面例题是在一组等式或不等式的约束下,求一个函数的最大值(或最小值)问题,其中至少有一个非线性函数,这类问题称之为非线性规划问题。

可概括为一般形式)(min x fq j x h j ,,1,0)(s.t.L =≤ (NP) p i x g i ,,1,0)(L ==-33-其中T n x x x ][1L =称为模型(NP)的决策变量,f 称为目标函数,i g ),,1(p i L =和),,1(q j h j L =称为约束函数。

数学建模非线性规划

数学建模非线性规划

其一为SUMT外点法,其二为SUMT内点
法.
5
SUTM外点法
对一般的非线性规划: min f X
s.t.hgji
X X
0 0
i 1,2,..., m; j 1,2,..., l.
(1)
m
l
可设:TX , M f X M min0, gi X 2 M hj X 2 (2)
z
(
x1,
x2
)
1 1
-21
x1 x2
2 6
T
x1 x2
2、 输入命令:
s.t.
1 1
21
x1 x2
2 2
0 0
x1 x2
H=[1 -1; -1 2]; c=[-2 ;-6];A=[1 1; -1 2];b=[2;2]; Aeq=[];beq=[]; VLB=[0;0];VUB=[]; [x,z]=quadprog(H,c,A,b,Aeq,beq,VLB,VUB)
性约束条件.因为线性近似通常只在展开点附近近似程度较
高,故需要对变量的取值范围加以限制,所增加的约束条件是:
xj
x
k j
k j
j 1,, n
求解该线性规划问题,得到最优解X k1 ;
(4) 检验X k1 点对原约束是否可行。若X k1 对原约束可行,
则转步骤(5);否则,缩小步长限制,令
k j
k j
7. [x,fval,exitflag]=quaprog(...);
8. [x,fval,exitflag,output]=quaprog(...);
17
例1 min f(x1,x2)=-2x1-6x2+x12-2x1x2+2x22

数学建模中的非线性规划问题

数学建模中的非线性规划问题

数学建模中的非线性规划问题在数学建模领域中,非线性规划问题是一类重要且常见的问题,它在实际应用中具有广泛的意义和价值。

非线性规划问题的研究和解决,对于优化问题的求解和实际应用具有重要的指导作用。

非线性规划问题可以简单地理解为在约束条件下寻找一个或多个使目标函数最优化的变量取值。

与线性规划问题不同,非线性规划问题在目标函数和约束条件中可能存在非线性项,因此其求解难度较大。

不同于线性规划问题的凸性、单调性等属性,非线性规划问题涉及到更多的数学工具和分析方法。

在实际应用中,非线性规划问题的出现非常普遍。

例如,在生产中,企业需要在有限的资源条件下使利润最大化,这就需要解决一个非线性规划问题。

除此之外,非线性规划问题还广泛应用于交通、能源、金融等领域。

不仅如此,非线性规划问题还可以用于统计数据拟合、函数逼近等问题的求解。

因此,研究和解决非线性规划问题具有非常重要的实际意义。

在解决非线性规划问题时,常用的方法主要包括精确解法和近似解法。

精确解法主要包括拉格朗日乘子法、KKT条件等,通过求解一系列方程和方程组来确定最优解。

这类方法通常适用于问题结构相对简单、目标函数和约束条件有良好性质的情况。

然而,对于问题结构复杂、目标函数和约束条件非常复杂的情况,精确解法往往效率较低,难以求解。

因此,在实际应用中,近似解法更为常见。

近似解法主要包括梯度下降法、牛顿法、拟牛顿法、遗传算法等。

这些方法通常基于局部优化思想,通过不断迭代和优化,逐步靠近最优解。

这类方法适用于一般性的非线性规划问题,具有较强的鲁棒性和适应性。

但是,这些方法也有其局限性,如收敛速度慢、易陷入局部最优等。

除了上述方法外,还有一些新的研究方法和算法被提出,如混合整数非线性规划、次梯度法、粒子群优化等。

这些方法在某些特定问题中表现出较好的运用效果,并有望在未来的研究中得到更广泛的应用。

总之,非线性规划问题在数学建模中占据重要地位,对于优化问题的求解和实际应用具有重要的指导作用。

数学教案数学建模中的非线性规划问题

数学教案数学建模中的非线性规划问题

数学教案数学建模中的非线性规划问题一、引言在实际生活和工程领域中,我们经常会遇到各种非线性规划问题。

非线性规划是一种优化问题,它的目标函数和约束条件都是非线性的。

解决非线性规划问题可以帮助我们更好地理解和应用数学知识,同时也可以提高我们的实际问题解决能力。

本教案旨在介绍数学建模中的非线性规划问题,并探究如何求解这类问题。

二、背景知识1. 非线性规划的基本概念非线性规划是在目标函数和约束条件中存在非线性项的优化问题。

目标函数和约束条件可以是非线性的多项式、指数函数、对数函数等形式。

2. 非线性规划的求解方法目前,常用的非线性规划求解方法有梯度法、牛顿法、拟牛顿法等。

这些方法都是基于局部优化的思想,通过迭代逼近全局最优解。

三、教学内容1. 非线性规划问题的数学建模非线性规划问题通常可以通过建立数学模型来描述。

在建模过程中,需要确定目标函数和约束条件,并根据实际问题选择适当的变量和参数。

2. 求解非线性规划问题的基本步骤求解非线性规划问题通常需要经过以下步骤:a. 确定问题的数学模型;b. 将目标函数和约束条件转化为数学表达式;c. 选择合适的求解方法,并考虑收敛性和计算复杂度等因素;d. 编写相应的计算程序,并进行数值计算;e. 对结果进行分析和解释,给出合理的结论。

3. 实际问题的案例分析通过实际问题的案例分析,引导学生了解非线性规划问题的应用场景,并培养学生解决实际问题的能力。

四、教学设计1. 概念讲解通过讲解非线性规划的基本概念和相关知识,引导学生了解非线性规划问题的特点和求解方法。

2. 理论讲解分析非线性规划问题的常见形式,并介绍求解非线性规划问题的基本步骤和方法。

3. 数学建模实践设计几个实际问题的数学建模例子,引导学生通过建立数学模型并求解,解决实际问题。

4. 计算实验利用数学软件(如MATLAB)进行计算实验,演示非线性规划问题的求解过程,并分析计算结果。

5. 案例分析讨论选取一些典型的非线性规划问题的案例,进行讨论和分析,引导学生理解非线性规划问题的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极小值点 M函数(目标值)
优化参数
函数的极小值
初始值
函数的理论(fminunc,fminsearch)
Fibonac c i(斐波那契法)
一维搜索插值法
微积分中的求根法
解析法
Fn
1 5
1
2
5
n
1
2
5
n
二次插值法
例: 求多元函数 f (x, y) x3 y3 3x2 3y2 9x
x12
x2
x32
0,
x1 x22 x32 20,
s.t
x1
x22
2
0,
x2
2 x3 2
3,
x1
,
x2 ,
x3
0.
Matlab优化工具箱
例题:
在约10000m高空的某边长160km的正方形区 域内,经常有若干架飞机作水平飞行。区域内 每架飞机的位置和速度向量均由计算机记录其 数据,以便进行飞行管理。当一架欲进入该区 域的飞机到达区域边缘时,记录其数据后,要 立即计算并判断是否会与区域内的飞机发生碰 撞。如果会碰撞,则应计算如何调整各架(包 括新进入的)飞机飞行的方向角,以避免碰撞。 现假定条件如下:
思考:
y
(160,160)
1.飞行区域
2.约束条件 :
飞行区域
两架飞机相距至少8km;调整角度<30o
飞行速度均为a=800km;刚进入时的飞机
与其他飞机相距在6(00,k0m) 以上;
x
3.目标函数: 飞机飞行方向角调整的幅度尽量小
n
min i i 1
建模过程:
利用飞机的相对飞行速度,将i视为静止, j以相对速度进行飞行
模型,列出计算步骤,对以下数据进行计算(方
向角误差不超过0.01度),要求飞机飞行方向角调
整的幅度尽量小。
飞机编号 横坐标 纵坐标 方向角(度)
1
150
140 243
2
85
85
236
3
150
155 220.5
4
145
50
159
5
130
150 230
新进入 0
0
52
注:方向角指飞行方向与x轴正向的夹角
的极值。(fminunc,fminsearch,) 程序:
f=@(x)x(1)^3-x(2)^3+3*x(1)^2+... 3*x(2)^2-9*x(1); g=@(x)-f(x); [x,y]=fminunc(f,rand(2,1)) [xx,yy]=fminsearch(g,rand(2,1)); xx,yy=-yy
解:设投资决策变量为
1, 决定投资第i个项目 xi 0, 决定不投资第i个项目
n
投资花费资金的总量为 ai xi i 1
n
投资的总收益为 bi xi i 1
限制条件
0
n
ai xi A
xi 0或1(i 1,..., n)
i 1
所以数学模型为
最佳投资方案应是投资额最小而总收益最大
的方案
. vij
j
0 ij
.8km irij0 (xi 源自x j )2 ( yi y j )2
v
2
s
in(
j
i
)(cos(
j
i
), sin(
j
i
));
2
22
22
所以,相对飞行角
ij
2
j
i
2
最小夹角i0j
8
arc
sin( rij
0
)
于是,建立ij与i0j的关系
0 mn
arg ( xm
e e in im iym ) (xn
1)不碰撞的标准为任意两架飞机的距离大于 8km;
2)飞机飞行方向角调整的幅度不应超过30度; 3)所有飞机飞行速度均为每小时800km; 4)进入该区域的飞机在到达区域边缘时,与
区域内飞机的距离应在60km以上; 5)最多需考虑6架飞机; 6)不必考虑飞机离开此区域后的状况。
请你对这个避免碰撞的飞行管理问题建立数学
2.2约束条件(非线性规划)
min f (x)
A x b,
s.t
cA(exq )
x
be 0,
q
,
ceq(x) 0,
lb x ub.
fmincon函数
[]
目标函数的值 初始值 线性约束等式的上下界
[x,fval]=fmincon(‘fun’,x0,A,b,Aeq,beq,lb,ub,nonlcon,
非线性规划
一、非线性规划的定义与实例 二、无约束条件和约束条件的Matlab解法 三、非线性规划的经典例题
一、定义与实例
1. 定义:如果目标函数或约束条件中包 含非线性函数,就称这种规划问题为 非线性规划问题。
非线性规划不像线性规划有通用的方法,解 非线性规划要比解线性规划问题困难的多。非 线性规划目前还没有适于各种问题的一般算法, 各个方法都有自己特定的适用范围。
1.1约束最优化函数
fminbnd fmincon quadprog fseminf fminimax
1.2无约束极值函数 fminunc fminsearch
2. 例:某企业有n个项目可供选择投资,并
且至少要对其中一个项目投资。已知该企 业拥有总资金A元,投资于第i(i=1,…,n) 个项目需花资金 ai 元,并预计可收益 bi 元。 试计算最佳投资方案。
n
bi xi
maxQ
i 1 n
,
ai xi
i 1
s,t0
n
ai xi
i 1
A
xi 0或1,i 1,...,n.
二、无约束条件和约束条件的 Matlab解法
2.1无约束条件 Matlab中的函数 fminunc函数 fminsearch函数
2.1.1 fminunc函数
@fun
[x,fval]=fminunc(‘fun’,x0,options)
options) 目标函数
变量的上下界
决策的值
线性约束不等式的上下 界
优化参数
非线性约束的不等式 和等式的上下界
例1:
min f (x) 2x12 4x1x2 4x22 6x1 3x2,
x1 x2 3, s.t4x1 x2 9,
x1, x2 0.
例2: min f (x) x12 x22 x32 8,
iyn )
非线性规划模型:
6
min | i |, i 1
s.t |
0 ij
1 2
(i
j)
|
0 ij
,
i
1,..5,
j
i
1,...,6,
| i | 30o ,i 1,2,...,6
i0j的值
i0j 的值
相关文档
最新文档