数理逻辑1-2章单选11-4答案
离散数学-第一部分 数理逻辑-第二章 命题逻辑等值演算

名称
M0 M1 M2 M3
20
实例
由三个命题变项 p, q, r 形成的极小项与极大项.
极小项
公式
成真赋值 名称
p q r 0 0 0 m0
p q r 0 0 1 m1
p q r 0 1 0 m2
p q r 0 1 1 m3
p q r 1 0 0 m4
p q r 1 0 1 m5
p q r 1 1 0 m6
p(qr) (pq) r p(qr) 不与 (pq) r 等值
2
等值式例题
例1 判断下列各组公式是否等值: (1) p(qr) 与 (pq) r
p q r qr p(qr) pq (pq)r
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1Hale Waihona Puke 110 00111 1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
结论: p(qr) (pq) r
3
等值式例题
(2) p(qr) 与 (pq) r
p q r qr p(qr)
000 1
1
001 1
1
010 0
1
011 1
1
100 1
1
101 1
1
110 0
0
111 1
1
pq (pq)r
1
0
1
1
1
0
1
1
0
1
0
数理逻辑课后习题答案

数理逻辑课后习题答案数理逻辑课后习题答案数理逻辑是一门研究推理和思维的学科,它涉及到数学和哲学的交叉领域。
在学习数理逻辑的过程中,课后习题是巩固知识和提高能力的重要途径。
本文将为你提供一些数理逻辑课后习题的答案,希望能够帮助你更好地理解和应用这门学科。
1. 逻辑符号的运用习题:将以下自然语言句子转化为逻辑符号表示:a) 如果今天下雨,那么我就带伞。
b) 所有猫都喜欢吃鱼。
c) 除非你努力学习,否则你不会成功。
答案:a) p: 今天下雨q: 我带伞逻辑符号表示:p → qb) p: x是猫q: x喜欢吃鱼逻辑符号表示:∀x(p → q)c) p: 你努力学习q: 你成功逻辑符号表示:p → q2. 命题逻辑推理习题:使用命题逻辑进行推理,判断以下论断是否成立:a) 如果今天是周末,那么我会去看电影。
今天是周末,所以我会去看电影。
b) 如果这只猫是黑色的,那么它是一只黑猫。
这只猫是黑色的,所以它是一只黑猫。
答案:a) 论断成立。
根据前提条件,今天是周末,可以推出结论我会去看电影。
b) 论断不成立。
虽然前提条件是这只猫是黑色的,但不能推出结论它是一只黑猫,因为黑色的猫不一定全身都是黑色的。
3. 谓词逻辑推理习题:使用谓词逻辑进行推理,判断以下论断是否成立:a) 所有猫都喜欢吃鱼。
汤姆是一只猫,所以汤姆喜欢吃鱼。
b) 所有学生都喜欢音乐。
小明是学生,所以小明喜欢音乐。
答案:a) 论断成立。
根据前提条件,所有猫都喜欢吃鱼,可以推出结论汤姆喜欢吃鱼。
b) 论断成立。
根据前提条件,所有学生都喜欢音乐,可以推出结论小明喜欢音乐。
4. 范式化和归结习题:使用范式化和归结法解决以下逻辑问题:a) 给定前提条件:p → q, ¬q → r, ¬r。
证明结论:¬p。
答案:首先,根据前提条件,我们可以得到以下逻辑式:1. p → q2. ¬q → r3. ¬r然后,我们可以将逻辑式1和3应用范式化规则,得到新的逻辑式:4. ¬p → ¬q接下来,我们将逻辑式4和逻辑式2应用归结规则,得到新的逻辑式:5. ¬p → r最后,我们将逻辑式5和前提条件的逻辑式3应用归结规则,得到最终的结论:6. ¬p通过范式化和归结法,我们证明了结论¬p成立。
数理逻辑 第二章 算法、整数和矩阵 整数和除法

三、素数
如果整数不能被小于或等于其平方根的 素数整除,它就是素数。
例5:证明101是素数。
解:不超过101的平方根的素数有2,3,5, 7。因为101不能被这些数整除,所以101是 素数。
三、素数
由于每个整数都有素因子分解,如何求 解整数n的素因子分解?
从最小的素数2开始,从小到大用一个个素 数去除n;
最常用的产生伪随机数的过程称为线性同 余法
xn+1=(axn+c) mod m P120
九、密码学
最重要的同余应用之一涉及研究信息保 密的密码学
解为 a p1a1 p2a2 pnan
b p1b1 p2b2 pnbn
每个指数都是非负整数,出现在a和b分解中的所有素数都包 含在两个分解之中,必要时以0为指数出现
gcd(a,b)
p p min(a1,b1) min(a2,b2)
1
2
p min( an ,bn ) n
五、最大公约数
证明:P116 例14:已知120和500的素因子分解分别
定理7:令m为正整数,若a≡b(mod m), c≡d(mod m),那么a+c≡b+d(mod m)以及 ac≡bd(mod m)。
证明:P118
例18:由于7≡2(mod 5)和11≡1(mod 5), 从定理7知: 18≡3(mod 5) 77≡2(mod 5)
八、同余应用
可以用同余为计算机分配内存地址 例19:散列(哈希)函数 散列就是无需查找,直接用元素的查找
数理逻辑
Mathematical Logic
第二章 算法、整数和矩阵
Chapter 2 Algorithm、Integer and Matrix
数理逻辑_复习题及参考答案

从一份模拟试题中抽取出来的《数理逻辑》复习题及参考答案一、单选题(每小题2分,共20分)1 以下语句是命题的是( )。
A . y 等于x 。
B . 每个自然数都是奇数。
C . 请爱护环境。
D . 你今天有空吗?2 设α是一赋值,α(p)= α(q)=1,α(r)=0,下列公式的值为假的是( )。
A .p ∧(q ∨r)B .(p ✂r) ↔ (¬r ✂q)C .(r ✂q) ∧(q ✂p)D .(r ✂q)3 以下联结词的集合( )不是完备集。
A .{¬,∧,∨, ✂,↔}B .{¬,∧,∨}C .{¬, ✂}D .{∧,∨}4 公式A 的对偶式为A*,下列结果成立的是( )。
A .A ↔A*B .¬A ↔A*C .A|=|A*D .¬A|=|A*5 假设论域是正整数集合,下列自然语言的符号化表示中,( )的值是真的。
A .∀x ∃yG(x,y),其中G(x,y)表示xy=yB .∀x ∀yF(x,y),其中F(x,y)表示x+y=yC .∃x ∀yH(x,y),其中H(x,y)表示x+y=xD .∀x ∀yM(x,y),其中M(x,y)表示xy=x6.以下式子错误的是( )。
A .∀x ¬A(x) |=| ¬∃xA(x)B .∀x(A(x)∧B(x)) |=| ∀xA(x)∧∀x B(x)C .∃x(A(x)∨B(x)) |=| ∃xA(x)∨∃x B(x)D .∀x(A(x)∨B(x)) |=| ∀xA(x)∨∀x B(x)7. 下列式子( )不正确。
A .{x}∈{{x}}B .{x}∈{{x},x}C .{x}⊆{{x}}D .{x}⊆{{x},x}二、填空题(每小题2分,共20分)1.句子“只有小王爱唱歌,他才会弹钢琴。
”中,把“小王爱唱歌”形式化为命题符p ,“小王会弹钢琴”形式化为命题符q ,则句子形式化为公式 。
数理逻辑课本答案

第一章命题逻辑的基本概念作业1.1判断下列语句是否是命题,并对命题确定其真值:(1)火星上有生命存在.(2)12是质数。
(3)香山比华山高。
(4)x+y=2。
(5)这盆茉莉花真香!(6)结果对吗?(7)这句话是错的。
(8)假如明天是星期天,那么学校放假。
解答:(1)“火星上有生命存在”是命题,但现在不能确定其真值;(2)“12是质数”是命题,其真值为假;(3)“香山比华山高”是命题,其真值为假;(4)“x+y=2”不是命题,因为含有公认是变量的东西,从而不具有确定的真值;(5)“这盆茉莉花真香!”是感叹句,因而不是命题;(6)“结果对吗?”是疑问句,因而不是命题;(7)“这句话是错的”是语义悖论,因而不是命题;(8)“假如明天是星期天,那么学校放假”是命题,其真值为真。
点评:实际上,确定一个具体命题的真值不是数理逻辑研究的内容,但是不能说一个命题没有真值。
作业1.2令p表示今天很冷,q表示正在下雪,将下列命题符号化:(1)如果正在下雪,那么今天很冷。
(2)今天很冷当且仅当正在下雪。
(3)正在下雪的必要条件是今天很冷。
用自然语言叙述下列公式:¬(p∧q)¬p∨¬q p→q¬p∨q¬¬p¬p↔q解答:(1)“如果…那么…”是典型的表蕴涵的连词,因此句子“如果正在下雪,那么今天很冷”符号化为q→p;(2)“当且仅当”是典型的表等价的连词,因此句子“今天很冷当且仅当正在下雪”符号化为p↔q;(3)“正在下雪的必要条件是今天很冷”相当于“只有今天很冷,(才)正在下雪”,也即“如果正在下雪,那么意味着今天很冷”,因此应该符号化为q→p。
对于公式的自然语言叙述,我们有:(1)公式¬(p∧q)的自然语言叙述可以是:“并非今天很冷且正在下雪”;(2)公式¬p∨¬q的自然语言叙述可以是:“并非今天很冷或者并非正在下雪”,或者“今天不很冷或者没有正在下雪”;(3)公式p→q的自然语言叙述可以是:“如果今天很冷,那么正在下雪”;(4)公式¬p∨q的自然语言叙述可以是:“今天不很冷或者正在下雪”;(5)公式¬¬p的自然语言叙述可以是:“并非今天不很冷”;(6)公式¬p↔q的自然语言叙述可以是:“今天不很冷当且仅当正在下雪”。
数理逻辑部分参考答案

4.下面的推理是否正确,请给予说明. (1) (x)A(x) B(x) (2) A(y) B(y) 前提引入 US (1)
错误。 因为(1)中(x)的辖域仅是 A(x),而不是 A(x) B(x)
四.计算题 1. 求 PQR 的析取范式,合取范式、主析取范式,主合取范式.
解:由于 P Q R P Q R 析取范式: P Q R 合取范式: P Q R 主析取范式 P Q R P Q R (P 1 1) (1 Q 1) (1 1 R) (P (Q Q) (R R)) (( P P) Q (R R)) (( P P) (Q Q) R) (P Q R) (P Q R) (P Q R) (P Q R) ( P Q R) ( P Q R) ( P Q R)
( A(a) A(b)) (B(a) B(b))
.
6.设个体域 D={1, 2, 3},A(x)为“x 大于 3”,则谓词公式(x)A(x) 的真值 为 0 . 7.谓词命题公式(x)((A(x)B(x)) C(y))中的自由变元为 8. 谓词命题公式(x)(P(x) Q(x) R(x, y))中的约束变元为 y x . .
三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 设 P:今天是天晴 则该语句符号化为 P 2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式. 设 P:小王去旅游,Q:小李也去旅游 则该语句符号化为 P∧Q
3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式. 设: P:他去旅游 Q:他有时间 则该语句符号化为 P->Q 4.将语句“41 次列车下午五点开或者六点开.”翻译成命题公式. 设:
数理逻辑考试题及答案

数理逻辑考试题及答案一、单项选择题(每题2分,共20分)1. 以下哪个选项不是命题逻辑中的联结词?A. 与B. 或C. 非D. 存在答案:D2. 在布尔代数中,以下哪个表达式是正确的?A. ¬(A∧B) = ¬A∨¬ BB. A∧¬ A = AC. A∨¬ A = 1D. A∧(A∨B) = A答案:C3. 以下哪个命题是真命题?A. 如果今天是星期一,那么明天是星期二。
B. 所有的鸟都会飞。
C. 所有的人都是哲学家。
D. 2+2=5答案:A4. 在命题逻辑中,以下哪个命题的否定是正确的?A. 如果A,则B。
B. A且B。
C. A或B。
D. A当且仅当B。
答案:A5. 以下哪个选项是谓词逻辑中的量词?A. 与B. 或C. 存在D. 非答案:C6. 在谓词逻辑中,以下哪个表达式表示“存在一个x,使得x是学生”?A. ∀x (x 是学生)B. ∃x (x 是学生)C. ¬∃x (x 是学生)D. ¬∀x (x 是学生)答案:B7. 以下哪个选项是模态逻辑中的模态词?A. 与B. 或C. 可能D. 非答案:C8. 在模态逻辑中,以下哪个命题表示“必然P”?A. PB. ¬PC. ◊PD. □P答案:D9. 以下哪个命题是逻辑等价的?A. A∧BB. A∨BC. ¬A∧¬ BD. ¬(A∧¬B)答案:C10. 在逻辑推理中,以下哪个选项是演绎推理?A. 归纳推理B. 演绎推理C. 溯因推理D. 类比推理答案:B二、多项选择题(每题3分,共15分)1. 以下哪些选项是命题逻辑中的有效推理形式?A. 从A∧B,可以推出A。
B. 从A∨B,可以推出A。
C. 从A,可以推出A∨B。
D. 从A∧B,可以推出B。
答案:A, C, D2. 在布尔代数中,以下哪些表达式是等价的?A. A∧(B∨¬A)B. A∨(B∧¬A)C. A∧¬ BD. A∨¬ B答案:A, C3. 以下哪些命题是真命题?A. 如果A则B,且A为真,那么B也为真。
离散数学及其应用数理逻辑部分课后习题答案

作业答案:数理逻辑部分P14:习题一1、下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(3 答:简单命题,真命题。
(9)吸烟请到吸烟室去! 答:不是命题。
(12)8是偶数的充分必要条件是8能被3整除。
答:复合命题,假命题。
14、讲下列命题符号化。
(6)王强与刘威都学过法语。
答::p 王强学过法语;:q 刘威学过法语。
符号化为:p q ∧(10)除非天下大雨,他就乘班车上班。
答::p 天下大雨;:q 他乘班车上班。
符号化为:p q →(13)“2或4是素数,这是不对的”是不对的。
答::p 2是素数;:q 4是素数。
符号化为:(())p q ⌝⌝∨15、设:p 2+3=5. :q 大熊猫产在中国。
:r 太阳从西方升起。
求下列复合命题的真值。
(2)(())r p q p →∧↔⌝(4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解答: p 真值为1;q 真值为1;r 真值为0.(2)p q ∧真值为1;()r p q →∧真值为1;p ⌝真值为0;所以(())r p q p →∧↔⌝真值为0.(4)p q r ∧∧⌝真值为1,p q ⌝∨⌝真值为0,()p q r ⌝∨⌝→真值为1;所以()(())p q r p q r ∧∧⌝↔⌝∨⌝→真值为1.19、用真值表判断下列公式的类型。
(4)()()p q q p →→⌝→⌝所以为重言式。
(7)所以为可满足式。
P36:习题二3、用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出其成真赋值。
(1)()p q q ⌝∧→ 解答:()(())(())()10p q q p q q p q q p q q ⌝∧→⇔⌝⌝∧∨⇔⌝⌝∨⌝∨⇔⌝⌝∨⌝∨⇔⌝⇔所以为永假式。
(2)(())()p p q p r →∨∨→ 解答:(())()(())()()()1()1p p q p r p p q p r p p q p r p r →∨∨→⇔⌝∨∨∨⌝∨⇔⌝∨∨∨⌝∨⇔∨⌝∨⇔ 所以因为永真式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理逻辑1、2章自测题-单选题
Ⅰ单项选择题
1由n个命题变元组成不等价的命题公式的个数为( )
(1)2n; (2)2n; (3)n2; (4)2 (2) n.
答案:〔 4 〕
2设P:我将去镇上,Q:我有时间.命题“我将去镇上,仅当我有时间”符号化为( )
(1)P→Q; (2) Q→P;
(3)P ↔Q; (4) ┐P∨┐Q.
答案:〔 1 〕
3设P:我们划船,Q:我们跑步.命题“我们不能既划船又跑步”符号化为( )
(1) ┐P∧┐Q; (2) ┐P∨┐Q;
(3) ┐(P ↔ Q); (4) P ↔┐Q.
答案:〔 2 〕
4下面哪一个命题是命题“2是偶数或-3是负数”的否定( )
(1)2是偶数或-3不是负数;
(2)2是奇数或-3不是负数;
(3)2不是偶数且-3不是负数;
(4)2是奇数且-3不是负数.
答案:〔 4 〕
5设P:张三可以做这件事,Q:李四可以做这件事.命题“张三或李四可以做这件事”
符号化为( 1 )
(1)P∨Q; (2)P∨┐Q;
(2)┐P ↔Q; (4)┐(┐P∨┐Q).
答案:〔 1 〕
6下面语句中哪个是真命题( )
(1)我正在说慌;
(2)如果1+2=3,那么雪是黑的;
(3)如果1+2=5,那么雪是黑的;
(4)严禁吸烟.
答案:〔 3 〕
7下面哪个联结词运算不可交换( )
(1)∧ (2)→; (3)∨; (4) ↔
答案:〔 2 〕
8命题公式(P∧(P→Q)) →Q是( )
(1)矛盾式; (2)蕴含式;
(3)重言式; (4)等价式.
答案:〔 3 〕
9下面哪个命题公式是重言式( 2 )
(1)(P→Q)∧(Q→P);
(2)(P∧Q)→P;
(3)(┐P∨Q)∧()P∧┐Q);
(4)┐(P∨Q).
答案:〔 2 〕
10下面哪一组命题公式是等值的( 2 )
(1)┐P∧┐Q, P∨Q;
(2)A→(B→A), ┐A→ (A→┐B);
(3)Q→(P∨Q), ┐Q∧(P∨Q);
(4)┐A∨(A∧B), B.
答案:〔 2 〕
11P→Q的逆反式是( )
(1) Q→┐P; (2) P→┐Q;
(3) Q→┐P; (4) ┐Q→┐P.
答案:〔 4 〕
12┐P→Q的逆反式是( 3 )
(1) ┐Q→┐P; (2) P→┐Q;
(3) ┐Q→P; (4) P→Q.
答案:〔 3 〕
13下列命题联结词集合中,哪个是极小功能联结词集合( 3 )
(1){┐,↔}; (2){┐,∨;∧};
(3){↑}; (4){∧,→}
答案:〔 3 〕
14下列命题联结词集合中,哪个不是极小功能联结词集合( 3 )
(1){┐,∧}; (2){┐, →};
(3){┐,∧,∨}; (4){↑}.
答案:〔 3 〕
15已知A是B的充分条件,B是C的必要条件,D是B的必要条件,问A是D的什么条件( )
(1)充分条件; (2)必要条件;
(3)充要条件; (4)(1)(2)(3)都不对.
答案:〔 1 〕
16┐P→ Q的反换式是( 4 )
(1) Q→┐P; (2) ┐P→ Q;
(3) ┐Q→P; (4) P→┐Q.
答案:〔4 〕
17下面哪一个命题公式是重言式( )
(1)P→(Q∨R);
(2)(P∨R)∧(P→Q);
(3)(P∨Q)(Q∨R);
(4)((P→(Q→R))→((P→Q) →(P→R)).
答案:〔〕
18下面哪一个命题公式不是重言式( )
(1)Q→(P∨Q);
(2)(P∧R)→P;
(3)┐(┐P∧Q)∧(┐P∨Q);
(4)(P→Q)↔ ( ┐P∨Q).
答案:〔 3 〕
19重言式的否定式是( 2 )
(1)重言式; (2)矛盾式;
(3)可满足式; (4)蕴含式.
答案:〔 2 〕
20下面哪一个命题是假命题( 1 )
(1)如果2是偶数,那么一个公式的析取范式唯一;
(2)如果2是偶数,那么一个公式的析取范式不唯一;
(3)如果2是奇数,那么一个公式的析取范式唯一;
(4)如果2是奇数,那么一个公式的析取范式不唯一.
答案:〔1
21下面哪一组命题公式不是等价的;
(1)┐(A→B), A∧┐B;
(2)┐(A ↔ B), (A∧┐B)∨(┐A∧B);
(3)A→(B∨C), ┐A∧(B∨C);
(4)A→(B∨C), (A∧┐B) →C.
答案:〔3
22合式公式P→(Q↓P)是( 2 )
(1)重言式; (2)可满足式;
(3)矛盾式; (4)等价式
答案:〔2。