一元二次方程专题复习讲义知识点考点题型总结h useok
一元二次方程专题复习讲义(知识点_考点_题型总结材料)haouseok

一元二次方程专题复习解与解法元二次方程 根的判别韦达定理⑴②未知数的最高次数是.2,这样的③整式方程就是一元二次方程。
2⑵一般表达式:ax bx c 0(a0)⑶难点:如何理解 “未知数的最高次数是 2 ① 该项系数不为“ 0 ”; ② 未知数指数为“ 2 ”;③ 若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、- ■下列方程中是关于 x 的一兀二次方程的是()A 3 x 1 2 2 x 1B 11 c c2 2 0x xC2axbx c 0Dx 2x x 1变式:: 当k时, 关于x 的方程kx 222x x 23是一元二次方程。
例2、方程 m 2 x m 3mx 1 0是关于x 的一元二次方程,则 m 的值为 _________________ 。
2★1、方程8x 7的一次项系数是 _______________ ,常数项是 __________ 。
★2、若方程 m 2x 向10是关于x 的一元一次方程,⑴求m 的值;⑵写出关于 x 的一元一次方程。
★★3、若方程m 1 x2m ? x 1是关于x的一元二次方程,则m的取值范围是____________★★★4、若方程nx m+x n-2x 2=0是一元二次方程,则下列不可能的是()2 2例2、关于x的一元二次方程a 2 x x a 4 0的一个根为0,则a的值为 ___________ 。
2例3、已知关于x的一元二次方程ax bx c 0 a 0的系数满足a c b,则此方程必有一根为________ 。
例4、已知a, b是方程x 4x m 0的两个根,b, c是方程y 8y 5m 0的两个根,贝U m的值为_________。
★1、已知方程x2 kx 10 0的一根是2,则k为__________________ ,另一根是___________x 1★2、已知关于x的方程x2 kx 2 0的一个解与方程3的解相同。
《一元二次方程》总复习、练习、中考真题【题型解析】

一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
《一元二次方程》考点题型(总结)

《一元二次方程》考点题型归纳考点一:一元二次方程的概念及性质题模:定义及一般形式1. 下列方程中一元二次方程的个数为()(1)2x2−5x−6=0;(2)x2−7xy+6=0;(3)x2+y2=7;(4)x2−√2x=0;=7.(5)x2−4=(x+2)2;(6)32x2+4A.2B.3C.4D.52.下列方程中,是关于x的一元二次方程的是()=5B. ax2+bx+c=0A. x2+1xC. (x-1)(x+2)=0D. 3x2+4xy-y2=03. 下列方程不是一元二次方程的是()=8A.9x2=7xB.y23C.3y(y−1)=y(3y+1)D.√2(x2+1)=√104.已知(m -1)x|m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.【变式】若方程是关于的一元二次方程,求m 的值.【变式2】、当m 取何值时,方程03)3(72=+---x x m m是关于x 的一元二次方程?并求出方程的根。
题模:一元二次方程的有关概念1. 一元二次方程x 2−3x −5=0中的一次项系数和常数项分别是( ) A.1,−5B.1,5C.−3,−5D.−3,52. 将一元二次方程 2x 2+7=9x 化成一般式后,二次项系数和一次项系数分别为 ( ) A. 2,9 B. 2,7 C. 2,−9 D. 2x 2,−9x题模:一元二次方程的解1.[2019·怀化] 一元二次方程x 2+2x+1=0的根是 ( ) A.x 1=1,x 2=-1 B.x 1=x 2=1 C.x 1=x 2=-1D.x 1=-1,x 2=22. 方程x 2−2=0的根是( ) A.±√2 B.√2 C.2D.不能确定考点三:一元二次方程的解法(1)、235)3(22=+-x ; (2)、141)23(52=--x ;2(310m m x mx --=x(3)、842=-x x ; (4)、032422=--x x ;(5)、0432=+--x x ; (6)、04121312=-+x x ;(7)、012=-+x x ; (8)、0322=--x x (9)、 0652=+x x ; (10)、06222=--x x ;(11)、0)1(2)1(2=-+-x x x ; (12)、4860)1(60002=-x ;(13)、015)35(2=++-x x ; (14)、7)35()32(2--=-x x x .考点四:根与系数的关系1.已知关于x 的方程(k -1)x 2-√1+2k x+14=0有实数根,则k 的取值范围为 ( )A .k ≥-2B .k ≥-12 C .k ≥-12且k ≠1D .以上都不对2.[2019·天门] 若方程x 2-2x -4=0的两个实数根为α,β,则α2+β2的值为 ( ) A.12 B.10C.4D.-43.[2019·包头] 已知等腰三角形的三边长分别为a,b,4,且a,b 是关于x 的一元二次方程x 2-12x+m+2=0的两根,则m 的值是 ( ) A.34B.30C.30或34D.30或364.[2019·娄底] 已知方程x 2+bx+3=0的一个根为√5+√2,则方程的另一个根为 .5.当m 取何值时,关于x 的方程221(2)104x m x m +-+-= (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?6.若关于x 的一元二次方程x 2+(m+1)x+m+4=0两实根的平方和为2,求m 的值.7. 若m 是非整负数,且关于x 的方程22(1)2(1)10m x m x -+--=有两个实数根,求m 的值.考点吴:一元二次方程的应用题模:日历问题1.如图1是一张月历表,在此月历表上用一个长方形任意圈出2×2个数(如17,18,24,25),如果圈出的四个数中最小数与最大数的积为128,那么这四个数的和为 ( )图1A .40B .48C .52D .56题模:利润问题1.某玩具厂生产某种儿童玩具,每个成本是2元,利润率为25%.工厂通过改进技术,降低了成本, 在售价不变的情况下, 利润增加了15%, 则这种玩具的成本降低了_______元(精确到0.1元,利润率=×100%).2.[2019·哈尔滨] 某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为 ( ) A.20% B.40% C.18%D.36%题模:面积问题1 用一段长为30m 的篱笆围成一个边靠墙的矩形菜园,墙长为18米 (1)若围成的面积为72米2,球矩形的长与宽; (2)菜园的面积能否为120米2,为什么?2. 如图为一张方格纸,纸上有一灰色三角形,其顶点均位于某两网格线的交点上,若灰色三角形面积为421平方米,则此方格纸的面积为 平方米.售价成本成本3.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路(如图2所示),四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为米.题模:增长率问题1[2019·鸡西]某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.72.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是.题模:销售利润问题某商店准备进一批季节性小家电,进货价为40元/个,经市场预测,售价为52元/个时,可售出180个,该家电每个每涨价1元,销售量净减少10个;每个每降价1元,销售量净增加10个.因受库存影响,每批次进货个数不得超过180个.商店若准备获利2000元,则应进货多少个?售价为多少元/个?2.某社区利用一块长方形空地建了一个小型的惠民停车场,其布局如图3所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米.(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;若每个车位的月租金每上涨10元,就会少租出1个车位,为尽可能优惠居民,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?。
一元二次方程知识点总结和例题——复习

(2)配方法配方法是一种重要的数学方法, 它不仅在解一元二次方程上有所应用, 而且在 数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式,把公式中的a 看做未知数x ,并用x 代替,则有。
1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知配方法解一元二次方程的一般步骤: 现将已知方程化为一般形式;化二次项系式,则这个方程就为一元二次方程。
来表示,即6. 一元二次方程根与系数的关系(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
如果方程的两个实数根是,那么,。
也就是说,对于任何一个有实数根的一元直接开平方法适用于解形如的一元二次方程。
根据平方根的定义可知, 是b 的 二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反 数;两根之积等于常数项除以二次项系数所得的商。
知识点总结:一兀二次方程平方根,当时,,,当b<0时,方程没有实数根。
数的最高次数是2 (二次)的方程,叫做一元二次方程。
数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边 2. 一元二次方程有四个特点: 配成一个完全平方式;变形为 (X+P) 2=q 的形式,如果q > 0,方程的根是x=-p含有一个未知数; ±V q ;如果qv 0,方程无实根. 且未知数次数最高次数是 2 ; (3)公式法是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整 公式法是用求根公式解一元二次方程的解的方法, 它是解一元二次方程的一般式方程,若是,再对它进行整理。
如果能整理为2 ax +bx+c=O(a 丰 0)的形方法。
元二次方程的求根公式:(4 )将方程化为一般形式: ax 2+bx+c=0 时,应满足(aM 0)(4)因式分解法3. 一元二次方程的一般形式 :一般地,任何一个关于 x 的一元二次方程,经因式分解法就是利用因式分解的手段, 求出方程的解的方法, 这种方法简单易 过整理,?都能化成如下形式 2ax +bx+c=0 (aM O)。
一元二次方程知识点总结归纳(含练习)

一元二次方程知识点总结归纳1.一元二次方程的定义及一般形式:(1)等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
(2)一元二次方程的一般形式:。
其中a为二次项系数,b为一次项系数,c为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
2.一元二次方程的解法(1)直接开平方法:(2)因式分解法:一般步骤如下:(3)配方法:(4)公式法:3.韦达定理(根与系数关系)将一元二次方程化成一般式ax2+bx+c=0之后,设它的两个根是x1和x2,则x1和x2与方程的系数a,b,c之间有如下关系:x1+X2=;x1x2=4.一元二次方程的应用列一元二次方程解应用题,其步骤和二元一次方程组解应用题类似①“审”,弄清楚已知量,未知量以及他们之间的等量关系;②“设”指设元,即设未知数,可分为直接设元和间接设元;③“列”指列方程,找出题目中的等量关系,再根据这个关系列出含有未知数的等式,即方程。
④“解”就是求出说列方程的解;⑤“答”就是书写答案,检验得出的方程解,舍去不符合实际意义的方程。
练习一、选择题(共30分)1、若关于x的方程(a-1)x1+a2=1是一元二次方程,则a的值是()A、0B、-1C、±1D、12、下列方程:①x2=0, ②-2=0,③3x=(1+2x)(2+x),④3x2-=0,⑤中,一元二次方程的个数是( )A、1个B、2个C、3个D、4个3、把方程(x-5)(x+5)+(2x-1)2=0化为一元二次方程的一般形式是( )A、5x2-4x-4=0B、x2-5=0C、5x2-2x+1=0D、5x2-4x+6=04、方程x2=6x的根是( )A、x1=0,x2=-6B、x1=0,x2=6B、x=6 D、x=05、不解方程判断下列方程中无实数根的是( )A、-x2=2x-1B、4x2+4x+=0C、-x-=0D、(x+2)(x-3)=-56、某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A、200(1+x)2=1000B、200+200×2x=1000C、200+200×3x=1000D、200[1+(1+x)+(1+x)2]=10007、关于x的二次方程(a-1)2+x-a2-1=0的一个根是0,则a的值为()A、1B、-1C、1或-1D、0.58、关于x的方程x2+2(k+2)x+k2=0的两实根之和大于-4,则k的取值范围是( )x21+x22x01823=+-xxx45x223A、k>-1B、k<0B、-1<k<0 D、-1≤k<09、若方程4x2-(m-2)x+1=0的左边是一个完全平方式,则m的值是()A、-6或-2B、-2C、6或-2D、2或-610、使分式的值为0,则x的取值为( ).A、-3B、1C、-1D、-3或1二、填空题(共30分)11、如果2x2+1与4x2-2x-5互为相反数,则x 的值为________.12、如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________.13、如果关于x的方程4mx2-mx+1=0有两个相等实数根,那么它的根是_______.14、若关于x的方程(k-1)x2-4x-5=0 有实数根, 则k 的取值范围是_______.15、一元二次方程x2-ax-3x=0的两根之和为2a-1,则两根之积为_________;16、已知是方程x2+mx+7=0的一个根,则m= ,另一根为;17、若一元二次方程ax2+bx+c=0(a≠0)有一个根为1,则a+b+c= ;若有一个根为-1,则b 与a、c之间的关系为;若有一个根为零,则c= .18、若方程2x2-8x+7=0的两根恰好是一个直角三角形两条直角边的长,则这个直角三角形的斜边长是___________.19、已知关于x的一元二次方程x2-mx+2m-1=0的两个实数根的平方和为23,则m的值。
初中数学一元二次方程知识点总结(含习题)

初中数学一元二次方程知识点总结(含习题)一元二次方程知识点的总结知识结构梳理:1、概念1) 一元二次方程含有一个未知数。
2) 未知数的最高次数是2.3) 是方程。
4) 一元二次方程的一般形式是ax²+bx+c=0.2、解法1) 因式分解法,适用于能化为(x+m)(x+n)=0的一元二次方程。
2) 公式法,即把方程变形为ax²+bx+c=0的形式,一元二次方程的解为x=[-b±√(b²-4ac)]/(2a)。
3) 完全平方式,其中求根公式是(x±a)²=b,当时,方程有两个不相等的实数根。
4) 配方法,其中求根公式是(x±a)(x±b)=0,当时,方程有两个实数根。
5) 二次函数图像法,当时,方程有没有实数根。
3、应用1) 一元二次方程可用于解某些求值题。
2) 一元二次方程可用于解决实际问题的步骤包括:列方程、化简方程、解方程、检验答案。
知识点归类:考点一:一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
一元二次方程必须同时满足以下三点:①方程是整式方程。
②它只含有一个未知数。
③未知数的最高次数是2.考点二:一元二次方程的一般形式一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c分别叫做二次项系数、一次项系数、常数项。
要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
考点三:解一元二次方程的方法一元二次方程的解也叫一元二次方程的根。
解一元二次方程的方法包括因式分解法、公式法、完全平方式、配方法和二次函数图像法。
解一元二次方程有四种常用方法:直接开平方法、配方法、因式分解法和公式法。
选择哪种方法要根据具体情况而定。
直接开平方法是解形如x²=a的方程的方法,解为x=±√a。
配方法是将方程的左边加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,然后用因式分解法或直接开平方法解方程。
完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。
一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是():A。
2x^2+11x-2=0B。
ax^2+bx+c=DC。
2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。
针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。
3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。
m=n=2B。
m=2.n=1C。
n=2.m=1D。
m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。
根的概念可用于求代数式的值。
典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。
例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。
(完整版)21章一元二次方程重难点、易考点汇总,推荐文档

3.下列方程中是关于 x 的一元二次方程的是( ) 1
A.x2+x2=0
B.ax2+bx+c=0
C.(x-1)(x+2)=1
4.下列方程中,无论取何值,总是关于 x 的一元二次方程的是( )
D.3x2-2xy-5y2=0
A. ax 2 bx c 0
B. ax 2 1 x 2 x
5.下列方程中是一元二次方程的有(
2.关于x的一 元二次方程(a2—1)x2+x—2=0是一元二次方程,则a满足( )
A. a≠1
B. a≠—1
C. a≠±1
D.为任意实数
3.当 k
时,关于 x 的方程 kx 2 2x x 2 3 是一元二次方程。
4 关于x的方程(m 1)x m 1 3x 6,当m ___ 时,该方程是一元二次方程
.
6、一元二次方程 ax2 bx c 0 ,若 x=1 是它的一个根,则 a+b+c=
,若 a-b+c=0,则方程必有
一根是 。
7.已知关于 x 的一元二次方程 ax 2 bx c 0 a 0 的系数满足 a c b ,则此方程必有一根为
21 章一元二次方程重点、易考点
一、一元二次方程的概念
1.只含有______个未知数,并且未知数的最高次数是__________,这样的整式方程叫做一元二次方
程.
2.一元二次方程的一般形式是________________.
二、一元二次方程的解法
1.解一元二次方程的基本思想是
,
主要方法有:直接开平方法、__________、公式法、__________.
2.配方法:通过配方把一元二次方程 ax2+bx+c=0(a≠0,b2-4ac≥0)变形为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程专题复习一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx xm m 是关于x 的一元二次方程,则m 的值为 。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值; ⑵方程的另一个解。
★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
★★4、已知a 是0132=+-x x 的根,则=-a a 622。
★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -★★★6、若=•=-+y x 则y x 324,0352 。
()m x m m x ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。
)A.12322-=+x xB.()022=-x C.x x -=+132 D.092=+x)()021=--x x x x 21,x x x x ==⇒或0”,()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ ,0222=++a ax x例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x xD 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若()()032=+--+y x y x ,则x+y 的值为 。
变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,x xC.3321-==,x xD.2221-==,x x 例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。
变式:已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。
★1、下列说法中: ①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x . ③)3)(2(6522--=+-a a b ab a ④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( ) A.1个 B.2个 C.3个 D.4个★2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y ★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+x x 的解是 。
★★★6、已知06622=--y xy x ,且0>x ,0>y ,求yx y x --362的值。
★★★7、方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。
()002≠=++a c bx 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x xx ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
)04,02≥-≠ac b a 且aac b b x 242-±-=,()04,02≥-≠ac b a 且例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x -- 说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.⑴求代数式的值; ⑵解二元二次方程组。
例1、 已知0232=+-x x ,求代数式()11123-+--x x x 的值。
例2、如果012=-+x x ,那么代数式7223-+x x 的值。
例3、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
例4、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再消元。
但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已知的问题.①定根的个数;②求待定系数的值;③应用于其它。
例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?★1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★ ★★5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?例1、关于x 的方程()03212=-++mx x m ⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。
例3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
⑴“握手”问题;⑵“利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少31,第三年比第二年减少21,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利31,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,61.313≈)4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:(1)当销售价定为每千克55元时,计算月销售量和月销售利润。