2020本溪中考数学试题

合集下载

辽宁省本溪市2020年中考数学试题及答案解析

辽宁省本溪市2020年中考数学试题及答案解析

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前辽宁省本溪市2020年中考数学试题试题副标题题号 一 二 三 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人 得分一、单选题1.下列各数是正数的是( ) A.0 B.5C.12-D.2-【答案】B 【解析】 【分析】根据正数的定义:正数都是大于0的数求解即可. 【详解】解:0既不是正数,也不是负数;5是正数; 12-和2-都是负数. 故选:B . 【点睛】本题考查的是正数,熟练掌握正数的定义是解题的关键.2.下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.试题第2页,总25页【答案】B 【解析】 【分析】根据轴对称图形沿对称轴折叠后可重合,分析选项中哪些图形是轴对称图形; 根据中心对称图形沿对称中心,旋转180度后与原图重合,找出各选项中的中心对称图形,联系上步结论即可得到答案. 【详解】解:A 、不是中心对称图形,是轴对称图形,故本选项不符合题意; B 、既是轴对称图形又是中心对称图形,故本选项符合题意; C 、是中心对称图形,不是轴对称图形,故本选项不符合题意; D 、不是中心对称图形,是轴对称图形,故本选项不符合题意. 故选:B . 【点睛】本题考查的是轴对称图形和中心对称图形,熟练掌握两者的定义是解题的关键. 3.下列计算正确的是( ) A.77x x x ÷= B.()22439x x -=-C.336•2x x x =D.326x x ()=【答案】D 【解析】 【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,积的乘方,把每个因式都分别乘方,再把所得的幂相乘,对各选项计算后利用排除法求解. 【详解】解:A 、76x x x ÷=,故此选项错误;B 、22439x x (﹣)=,故此选项错误;C 、336•x x x =,故此选项错误;D 、326x x ()=,故此选项正确;故选:D . 【点睛】……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………本题考查的是的同底数幂的计算,熟练掌握同底数幂的除法,乘法和幂的乘方是解题的关键.4.2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A.69.5610⨯ B.595.610⨯C.70.95610⨯D.495610⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将数据9560000科学记数法表示为69.5610⨯. 故选:A . 【点睛】本题考查的是科学记数法,熟练掌握科学记数法的定义是解题的关键. 5.下表是我市七个县(区)今年某日最高气温(℃)的统计结果:则该日最高气温(℃)的众数和中位数分别是( ) A.25,25 B.25,26C.25,23D.24,25【答案】A 【解析】 【分析】中位数是将一组数据按大小顺序排列,处于最中间位置的一个数据,或是最中间两个数据的平均数;众数是在一组数据中出现次数最多的数. 【详解】 解:在这7个数中,25(℃)出现了3次,出现的次数最多, ∴该日最高气温(℃)的众数是25; 把这组数据按照从小到大的顺序排列位于中间位置的数是25,试题第4页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………则中位数为:25; 故选:A . 【点睛】本题考查的是中位数和众数,熟练掌握两者的定义是解题的关键.6.不等式组30280x x ->⎧⎨-≤⎩的解集是( )A.3x >B.4x ≤C.3x <D.34x <≤【答案】D 【解析】 【分析】先分别求出两个不等式的解,再求出其公共解即可. 【详解】解: 30280x x ->⎧⎨-≤⎩①②,由①得:3x >, 由②得:4x ≤,则不等式组的解集为34x ≤<, 故选:D . 【点睛】本题考查的是不等式组,熟练掌握不等式组是解题的关键. 7.如图所示,该几何体的左视图是( )A. B.C. D.【答案】B【解析】【分析】根据几何体的三视图求解即可.【详解】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.【点睛】本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键.8.下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.若原命题成立,则它的逆命题一定成立C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数【答案】C【解析】【分析】必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【详解】解:A、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意;B、若原命题成立,则它的逆命题一定成立,是随机事件,不合题意;C、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件,熟练掌握他们的定义是解题的关键. 9.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()试题第6页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.360480140x x =- B.360480140x x =- C.360480140x x+= D.360480140x x-= 【答案】A 【解析】 【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可. 【详解】解:设甲型机器人每台x 万元,根据题意,可得 360480140x x=- 故选:A . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.10.如图,点P 是以AB 为直径的半圆上的动点,CA AB PD AC ⊥⊥,于点D ,连接AP ,设AP x PA PD y =,﹣=,则下列函数图象能反映y 与x 之间关系的是( )A.B.C.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………D.【答案】C 【解析】 【分析】设圆的半径为R ,连接PB ,求出1sin 22AP ABP x R R∠==,根据CA ⊥AB,求出21122PD APsin x x R Rα⨯===,即可求出函数的解析式为212y PA PD x x R-+==-. 【详解】设:圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==, CA AB ⊥,即AC 是圆的切线,则PDA PBA α∠∠==,则2122x PD APsin x x R Rα⨯=== 则212y PA PD x x R-+==-图象为开口向下的抛物线, 故选:C . 【点睛】本题考查了圆、三角函数的应用,熟练掌握函数图像是解题的关键.试题第8页,总25页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人 得分二、填空题11.若式子在实数范围内有意义,则x 的取值范围是 . 【答案】。

2020年辽宁省本溪中考数学试题及答案(word版)

2020年辽宁省本溪中考数学试题及答案(word版)

2020年辽宁省本溪市中考数学试卷一、选择题(每题3分,共24分)1、2-的相反数是( )A 、12-B 、12C 、2D 、±22、如图是某几何体得三视图,则这个几何体是( )A 、球B 、圆锥C 、圆柱D 、三棱体3 )A 、2B 、4C 、15D 、164、一元二次方程2104x x -+=的根( ) A 、121122x x ==-, , B 、1222x x ==-, C 、1212x x ==- D 、1212x x == 5、在一次数学竞赛中,某小组6名同学的成绩(单位:分)分别是69、75、86、92、95、88.这组数据的中位数是( )A 、79B 、86C 、92D 、876、如图,在Rt △ABC 中,∠C=90°,AB=10,BC=8,DE 是△ABC 的中位线,则DE 的长度是( )A 、3B 、4C 、4.8D 、57、反比例函数(0)k y k x=≠的图象如图所示,若点A (11x y ,)、B (22x y ,)、C (33x y ,)是这个函数图象上的三点,且1230x x x >>>,则123y y y 、、的大小关系( )A 、312y y y <<B 、213y y y <<C 、321y y y <<D 、123y y y <<8、如图,正方形ABCD 的边长是4,∠DAC 的平分线交DC 于点E ,若点P 、Q 分别是AD 和AE 上的动点,则DQ+PQ 的最小值( )A 、2B 、4C 、D 、二、填空题(每题3分,共24分)9、函数14y x =-中的自变量x 的取值范围__________。

10、掷一枚质地均匀的正方体骰子,骰子的六个面上分别有1至6的点数,则向上一面的点数是偶数的概率__________。

11、如图:AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,EG 平分∠AEF .EG ⊥FG 于点G ,若∠BEM=50°,则∠CFG= __________。

辽宁省本溪市2020年(春秋版)中考数学试卷C卷

辽宁省本溪市2020年(春秋版)中考数学试卷C卷

辽宁省本溪市2020年(春秋版)中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、(共10小题,每小题3分,满分30分,在每小题给出的四个选项 (共10题;共20分)1. (2分) (2019八上·海曙期末) 下列说法中:①法国数学家笛卡尔首先建立了坐标思想;②全等三角形对应边上的中线长相等;③若则④有两边和其中一条边所对的一个角对应相等的两个三角形一定全等.说法正确的为()A . ①③④B . ②④C . ①②D . ②③④2. (2分)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A . 5B . 6C . 7D . 83. (2分)校服裙子的展开图可近似看做是()A .B .C .D .4. (2分)已知两个不等式的解集在数轴上如图表示,那么这个解集为()A . x≥-1B . x>-1C . -3<x≤-1D . x>-35. (2分)某农场的粮食总产量为1500吨,设该农场人数为x人,平均每人占有粮食数为y吨,则y与x 之间的函数图象大致是()A .B .C .D .6. (2分) (2018八上·平顶山期末) 如图,所有的四边形是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13 cm,则图中所有的正方形的面积之和为()A . 169cm2C . 338cm2D . 507cm27. (2分)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(如图);④在同圆或等圆中,相等的弧所对的圆周角相等.其中正确的是()A . ③④B . ①②③C . ②④D . ①②③④8. (2分) (2017七下·平谷期末) 用小棋子摆出如下图形,则第n个图形中小棋子的个数为()A . nB . 2nC . n2D . n2+19. (2分)(2019·抚顺模拟) 如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A . 1∶3C . ∶2D . ∶310. (2分)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式x2+1<的解集是()A . x>1B . x<0C . 0<x<1D . ﹣1<x<0二、填空题(共6小题,每小题3分,满分18分,把最后答案直接填在 (共6题;共6分)11. (1分)(2017·平川模拟) 因式分解:xy2﹣4x=________.12. (1分)(2016·连云港) 如图,直线AB∥CD,BC平分∠ABD,若∠1=54°,则∠2=________.13. (1分)(2016·高邮模拟) 某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.79.59.59.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.14. (1分)已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足,则m的值是________ .15. (1分)(2016·达州) 如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为________.16. (1分)(2017·扬州) 如图,已知点A是反比例函数y=﹣的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为________.三、解答题(72分.解答时应写出必要的文字说明、证明过程或演算步 (共9题;共96分)17. (5分)(2019·颍泉模拟) 计算:(π﹣2019)0+(1﹣sin30°)×()﹣318. (5分)(2014·北海) 解方程组.19. (15分)(2020·广州模拟) 某中学计划为乡村希望小学购买一些文具送给学生, 为此希望小学决定围绕“在笔袋、圆规、直尺和钢笔四种文具中, 你最需要的文具是什么 ( 必选且只选一种) ”的问题, 在全校内随机抽取部分学生进行问卷调查, 将调查结果整理后绘制成如图所示的不完整的统计图, 请你根据图中所给的信息解答下列问题:(1)在这次调查中, 一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若希望小学共有360名学生, 请你估计全校学生中最需要钢笔的学生有多少名.20. (10分)(2017·天等模拟) 已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC 于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.21. (10分)(2017·莱芜) 某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A 距甲楼的距离AB是31m,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)22. (10分) (2020八下·哈尔滨月考) 如图,海中有一个小岛B,它的周围14海里内有暗礁,在小岛正西方有一点A测得在北偏东60°方向上有一灯塔C,灯塔C在小岛B北偏东15°方向上20海里处,渔船跟踪鱼群沿AC方向航行,每小时航行海里.(1)如果渔船不改变航向继续航行,有没有触礁危险?请说明理由.(2)求渔船从A点处航行到灯塔C,需要多少小时?23. (15分)(2016·南山模拟) 为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?24. (11分)(2020·包河模拟) 已知:如图1,△ABC中,AB=AC,BC=6,BE为中线,点D为BC边上一点;BD=2CD,DF⊥BE于点F,EH⊥BC于点H.(1) CH的长为________;(2)求BF·BE的值:(3)如图2,连接FC,求证:∠EFC=∠ABC.25. (15分) (2018八下·罗平期末) 如图,在平面直角坐标系中,A(0,8),B(﹣4,0),线段AB的垂直平分线CD分别交AB、OA于点C、D,其中点D的坐标为(0,3).(1)求直线AB的解析式;(2)求线段CD的长;(3)点E为y轴上一个动点,当△CDE为等腰三角形时,求E点的坐标.参考答案一、(共10小题,每小题3分,满分30分,在每小题给出的四个选项 (共10题;共20分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(共6小题,每小题3分,满分18分,把最后答案直接填在 (共6题;共6分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(72分.解答时应写出必要的文字说明、证明过程或演算步 (共9题;共96分) 17-1、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、。

辽宁省本溪市2020年(春秋版)中考数学试卷(II)卷

辽宁省本溪市2020年(春秋版)中考数学试卷(II)卷

辽宁省本溪市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,共30分) (共10题;共30分)1. (3分)﹣3的绝对值是()A . 3B . -3C .D . -2. (3分)若二次根式在实数范围内有意义,则x的取值范围是()A . x≤﹣1B . x≥-1C . x≤1D . x≥13. (3分)(2019·上海模拟) 下列4个对事件的判断中,所有符合题意结论的序号是()①“哥哥的年龄比弟弟的年龄大”是必然事件;②“书柜里有6本大小相同,厚度差不多的书,从中随机摸出一本是小说”是随机事件;③在1万次试验中,每次都不发生的事件是不可能事件;④在1万次试验中,每次都发生的事件是必然事件.A . ①B . ①②C . ①③④D . ①②③④4. (3分)(2019·中山模拟) 下面图形中,是轴对称图形的是()A .B .C .D .5. (3分)(2017·河北模拟) 如图是由相同小正方体组成的立体图形,它的左视图为()A .B .C .D .6. (3分) (2017八上·常州期末) 已知一次函数y=kx+b,函数值y随自变置x的增大而减小,且kb<0,则函数y=kx+b的图象大致是()A .B .C .D .7. (3分) (2019九上·孝南月考) 已知关于x的一元二次方程有两个相等的实数根,则的值等于()A . 2B . 1C . 0D . 无法确定8. (3分)(2020·西安模拟) 如图,A,B两点分别在反比例函数y=- 和y= 的图象上,连接OA,OB.若OA⊥OB,OB=2OA,则k的值为()A . -2B . 2C . -4D . 49. (3分)如图,点I和O分别是△ABC的内心和外心,则∠AIB和∠AOB的关系为()A . ∠AIB=∠AOBB . ∠AIB≠∠AOBC . 2∠AIB﹣∠AOB=180°D . 2∠AOB﹣∠AIB=180°10. (3分) (2018七上·瑶海期末) 找出以下图形变化的规律,则第2016个图形中黑色正方形的数量是()A . 3021B . 3022C . 3023D . 3024二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共18分)11. (3分) (2017七下·宁城期末) 若,,则 =________.12. (3分)(2018·贵港) 已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是________.13. (3分) (2017八下·泰州期中) 若,对任意实数n都成立,则a﹣b=________.14. (3分)如图,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=________.15. (3分) (2017九上·北京月考) 当a________,二次函数的值总是负值.16. (3分)(2018·黄梅模拟) 已知:如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=________cm.三、解答题(共8题,共72分) (共8题;共72分)17. (8分) (2019七下·江苏月考) 计算:(1)a•a2(﹣a)3(﹣a)4 ;(2)(﹣x)(﹣x)5+(x2)3;(3)(﹣a2)3÷(﹣a3)2 ;(4)(p﹣q)4÷(q﹣p)3(p﹣q)2.18. (8分) (2017八下·海安期中) 如图:在▱ABCD中,∠BAD的平分线AE交DC于E,若∠DAE=27°,求∠C、∠B的度数.19. (8.0分)(2017·葫芦岛) 随着通讯技术的迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了________名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为________;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.20. (8.0分)如图所示,已知△ABC:①过A画出中线AD;②画出角平分线CE;③作AC边上的高BF21. (8分) (2017九上·老河口期中) 如图10,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC 相切于点D,与AC相交于点E,与AB相交于点F,连接AD.(1)求证:AD平分∠BAC;(2)若点E为的中点,探究线段BD,CD之间的数量关系,并证明你的结论;(3)若点E为的中点,CD=,求与线段BD,BF所围成的阴影部分的面积.22. (10分) (2019九上·红安月考) 我县某风景区门票价格如图所示,红安县红色旅游公司有甲、乙两个旅行团队,计划在“五一”小黄金周期间到该景点游玩,两团队游客人数之和为120 人,乙团队人数不超过50 人.设甲团队人数为x 人,如果甲、乙两团队分别购买门票,两团队门票款之和为W 元.(1)求W 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若甲团队人数不超过100 人,请说明甲、乙两团队联合购票比分别购票最多可节约多少钱;(3)五一”小黄金周之后,该风景区对门票价格作了如下调整:人数不超过50 人时,门票价格不变;人数超过50 人但不超过100 人时,每张门票降价a 元;人数超过100 人时,每张门票降价2a 元.在(2)的条件下,若甲、乙两个旅行团队“五一”小黄金周之后去游玩,最多可节约3400 元,求a 的值.23. (10分) (2019八上·大洼月考) 操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.24. (12分) (2019九上·黄石期末) 如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D 的坐标;(3) P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(共10小题,每小题3分,共30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本大题共6个小题,每小题3分,共18分) (共6题;共18分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共8题,共72分) (共8题;共72分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、19-3、19-4、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

2020年辽宁省抚顺市、本溪市、辽阳市中考数学试题

2020年辽宁省抚顺市、本溪市、辽阳市中考数学试题

绝密★启用前辽宁省抚顺市、本溪市、辽阳市2020年中考数学试题第I 卷(选择题)一、单选题1.下图是由一个长方体和一个圆锥组成的几何体,它的主视图是( )A .B .C .D .【答案】C 【解析】 【分析】根据从正面看得到的图形是主视图,可得答案. 【详解】从正面看下边是一个矩形,矩形的上边是一个三角形, 故选:C .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 2.下列运算正确的是( ) A .2323m m m += B .422m m m ÷= C .236m m m ⋅=D .()325mm =【答案】B 【解析】【分析】运用合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算法则运算即可.【详解】解:A.m2与2m不是同类项,不能合并,所以A错误;B.m4÷m2=m4﹣2=m2,所以B正确;C.m2•m3=m2+3=m5,所以C错误;D.(m2)3=m6,所以D错误;故选:B.【点睛】本题主要考查了合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方等运算,熟练掌握运算法则是解答此题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、不是轴对称图形,是中心对称图形,故此选项不符合题意;C、是轴对称图形,不是中心对称图形,故此选项不符合题意;D、既是轴对称图形,又是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是2 3.6s =甲,2 4.6s =乙,2 6.3s =丙,27.3s =丁,则这4名同学3次数学成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】A 【解析】 【分析】根据方差的意义即方差越小成绩越稳定即可求解. 【详解】解:∵2 3.6s =甲,2 4.6s =乙,2 6.3s =丙,27.3s =丁,且平均数相等,∴2s 甲<2s 乙<2s 丙<2s 丁∴这4名同学3次数学成绩最稳定的是甲, 故选:A . 【点睛】本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若120∠=︒,则∠2的度数是( )A .15°B .20°C .25°D .40°【答案】C 【解析】 【分析】利用平行线的性质求得∠3的度数,即可求得∠2的度数. 【详解】∵AD∥BC,∴∠3=∠1=20︒,∵△DEF是等腰直角三角形,∴∠EDF=45︒,∴∠2=45︒-∠3=25︒,故选:C.【点睛】本题考查了平行线的性质,等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题.6.一组数据1,8,8,4,6,4的中位数是()A.4 B.5 C.6 D.8【答案】B【解析】【分析】先将数据重新按大小顺序排列,再根据中位数的概念求解可得.【详解】解:一组数据1,4,4,6,8,8的中位数是4652+=,故选:B.【点睛】本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A .3000420080x x =- B .3000420080x x += C .4200300080x x=- D .3000420080x x =+ 【答案】D 【解析】 【分析】设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据人数=投递快递总数量÷人均投递数量,结合快递公司的快递员人数不变,即可得出关于x 的分式方程,此题得解.【详解】解:设原来平均每人每周投递快件x 件,则现在平均每人每周投递快件(x +80)件,根据快递公司的快递员人数不变列出方程,得:3000420080x x =+, 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4【答案】B 【解析】 【分析】根据菱形的对角线互相垂直平分求出OB ,OC ,AC ⊥BD ,再利用勾股定理列式求出BC ,然后根据等腰三角形的性质结合直角三角形两个锐角互余的关系求解即可.【详解】∵菱形ABCD 的对角线AC 、BD 相交于点O , ∴OA=OC=12AC=4,OB=OD=12BD=3,AC ⊥BD ,由勾股定理得,5=, ∵OE=CE , ∴∠EOC=∠ECO ,∵∠EOC+∠EOD =∠ECO+∠EDO=90︒, ∴∠EOD =∠EDO , ∴OE=ED , ∴OE=ED=CE , ∴OE=12CD=52. 故选:B . 【点睛】本题考查了菱形的性质,等腰三角形的判定和性质,直角三角形两个锐角互余,勾股定理,熟记性质与定理是解题的关键.9.如图,在Rt ABC ∆中,90ACB ∠=︒,AC BC ==,CD AB ⊥于点D .点P 从点A 出发,沿A D C →→的路径运动,运动到点C 停止,过点P 作PE AC⊥于点E ,作PF BC ⊥于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A 【解析】 【分析】分两段来分析:①点P 从点A 出发运动到点D 时,写出此段的函数解析式,则可排除C 和D ;②P 点过了D 点向C 点运动,作出图形,写出此阶段的函数解析式,根据图象的开口方向可得答案.【详解】解:∵90ACB ∠=︒,AC BC ==, ∴45A ∠=︒,4AB =, 又∵CD AB ⊥,∴2AD BD CD ===,45ACD BCD ∠=∠=︒, ∵PE AC ⊥,PF BC ⊥, ∴四边形CEPF 是矩形,I .当P 在线段AD 上时,即02x <≤时,如解图1∴2sin 2AE PE AP A x ===,∴CE x =,∴四边形CEPF 的面积为2122y x x x ⎛⎫==-+ ⎪ ⎪⎝⎭,此阶段函数图象是抛物线,开口方向向下,故选项CD 错误;II .当P 在线段CD 上时,即24x <≤时,如解图2:依题意得:4CP x =-,∵45ACD BCD ∠=∠=︒,PE AC ⊥, ∴sin CE PE CP ECP ==⨯∠,∴())4sin 454CE PE x x ==-︒=-,∴四边形CEPF 的面积为)22144822x x x y ⎤-=-+⎢⎥⎣⎦=,此阶段函数图象是抛物线,开口方向向上,故选项B 错误;故选:A . 【点睛】本题考查了动点问题的函数图象,分段写出函数的解析式并数形结合进行分析是解题的关键.10.-2的倒数是( ) A .-2 B .12-C .12D .2【答案】B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.若关于x 的一元二次方程220x x k +-=无实数根,则k 的取值范围是_________.【答案】1k <- 【解析】 【分析】方程无实数根,则0<,建立关于k 的不等式,即可求出k 的取值范围. 【详解】∵1a =,2b =,c k =-, 由题意知,()224241440b ac k k =-=-⨯⨯-=+<,解得:1k <-, 故答案为:1k <-. 【点睛】本题考查了一元二次方程20ax bx c ++=(0a ≠,a b c ,,为常数)的根的判别式24b ac =-.当0>,方程有两个不相等的实数根;当0=,方程有两个相等的实数根;当0<,方程没有实数根.12.截至2020年3月底,我国已建成5G 基站198 000个,将数据198 000用科学记数法表示为_________.【答案】51.9810⨯ 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】198000=1.98×105, 故答案为:1.98×105. 【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 13.若一次函数22y x =+的图象经过点(3,)m ,则m =_________.【解析】 【分析】将点(3,)m 代入一次函数的解析式中即可求出m 的值. 【详解】解:由题意知,将点(3,)m 代入一次函数22y x =+的解析式中, 即:232=⨯+m , 解得:8m =. 故答案为:8. 【点睛】本题考查了一次函数的图像和性质,点在图像上,则将点的坐标代入解析式中即可.14.下图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是_________.【答案】59【解析】 【分析】先设阴影部分的面积是5x ,得出整个图形的面积是9x ,再根据几何概率的求法即可得出答案.【详解】解:设阴影部分的面积是5x ,则整个图形的面积是9x , 则这个点取在阴影部分的概率是5599=x x . 故答案为:59. 【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.15.如图,在ABC ∆中,M ,N 分别是AB 和AC 的中点,连接MN ,点E 是CN 的中点,连接ME 并延长,交BC 的延长线于点D ,若4BC =,则CD 的长为_________.【答案】2 【解析】 【分析】依据三角形中位线定理,即可得到MN=12BC=2,MN //BC ,依据△MNE ≌△DCE (AAS ),即可得到CD=MN=2.【详解】解:∵M ,N 分别是AB 和AC 的中点, ∴MN 是△ABC 的中位线, ∴MN=12BC=2,MN ∥BC , ∴∠NME=∠D ,∠MNE=∠DCE , ∵点E 是CN 的中点, ∴NE=CE ,∴△MNE ≌△DCE (AAS ), ∴CD=MN=2. 故答案为:2. 【点睛】本题主要考查了三角形中位线定理以及全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.16.如图,在Rt ABC ∆中,90ACB ∠=︒,2AC BC =,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若3CE =,则BE 的长为_________.【答案】5 【解析】 【分析】由题意可得:直线MN 是AB 的垂直平分线,从而有EA =EB ,然后设BE =AE =x ,则可用含x 的代数式表示出BC ,于是在Rt △BCE 中根据勾股定理可得关于x 的方程,解方程即可求出结果.【详解】解:由题意可得:直线MN 是AB 的垂直平分线,∴EA =EB , 设BE =AE =x ,则AC =x +3, ∵AC =2BC , ∴()132BC x =+, 在Rt △BCE 中,由勾股定理,得222BC CE BE +=, 即()2221334x x ++=,解得:125,3x x ==-(舍去), ∴BE =5. 故答案为:5. 【点睛】本题考查了线段垂直平分线的尺规作图和性质、勾股定理和一元二次方程的解法等知识,属于常考题型,熟练掌握上述知识、灵活应用方程思想是解题关键.17.如图,在ABC ∆中,AB AC =,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.【答案】3 【解析】 【分析】作AE ⊥BC 于E ,连接OA ,根据等腰三角形的性质得出OC=12CE ,根据相似三角形的性质求得S △CEA =1,进而根据题意求得S △AOE =32,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】解:作AE ⊥BC 于E ,连接OA ,∵AB=AC , ∴CE=BE ,∵OC=15OB , ∴OC=12CE ,∵AE ∥OD , ∴△COD ∽△CEA ,∴2CEA COD4S CE SOC ⎛⎫== ⎪⎝⎭, ∵1BCDS =,OC=15OB ,∴COD1144BCD SS ==,∴CEA1414S=⨯=, ∵OC=12CE , ∴AOC 1122CEA S S ==,∴AOE 13122S =+=,∵AOE 12S k =(0k >),∴3k =, 故答案为:3.【点睛】本题考查了反比例函数系数k 的几何意义,三角形的面积,等腰三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.18.如图,四边形ABCD 是矩形,延长DA 到点E ,使AE DA =,连接EB ,点1F 是CD 的中点,连接1EF ,1BF ,得到1EF B ∆;点2F 是1CF 的中点,连接2EF ,2BF ,得到2EF B ∆;点3F 是2CF 的中点,连接3EF ,3BF ,得到3EF B ∆;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则n EF B ∆的面积为_________.(用含正整数n 的式子表示)【答案】212n n +【解析】 【分析】先计算出1EF B ∆、2EF B ∆、3EF B ∆的面积,然后再根据其面积的表达式找出其一般规律进而求解.【详解】解:∵AE DA =,∴ABE ∆面积是矩形ABCD 面积的一半,∴梯形BCDE 的面积为2+1=3,∵点1F 是CD 的中点,∴11=DF CF∴1111111=22242矩形∆=⋅=⋅=BF C ABCD S BC CF BC CD S , 1111112=12222矩形∆=⋅=⨯⋅=DF E ABCD S DE DF AD DC S ,∴111133122梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S ,∵点2F 是1CF 的中点,由中线平分所在三角形的面积可知, ∴211124∆∆==BF C BF C S S , 且2132=DF DF , ∴213322∆∆==DF EDF E S S ∴2223153244梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S , 同理可以计算出:321128∆∆==BF C BF C S S , 且3174=DF DF , ∴317744∆∆==DF E DF E S S ,∴3337193488梯形∆∆∆=--=--=EF B DF E BF C ABCD S S S S , 故1EF B ∆、2EF B ∆、3EF B ∆的面积分别为:359,,248,观察规律,其分母分别为2,4,8,符合2n ,分子规律为2+1n ,∴n EF B ∆的面积为212n n +.故答案为:212n n +.【点睛】本题考查了三角形的中线的性质,三角形面积公式,矩形的性质等,本题的关键是能求出前面三个三角形的面积表达式,进而找出规律求解.三、解答题19.先化简,再求值:211339x x x x x +⎛⎫-÷⎪---⎝⎭,其中3x .【答案】3x +【解析】 【分析】首先根据分式的加减法法则将括号里面的分式进行计算,然后将除法转化成乘法进行约分化简,最后将x 的值代入化简后的式子进行计算.【详解】211339x x x x x +⎛⎫-÷ ⎪---⎝⎭ 113(3)(3)x x x x x ++=÷-+- 1(3)(3)31x x x x x ++-=⋅-+ 3x =+,当3x =时,原式33=+= 【点睛】本题主要考查了分式的化简求值以及二次根式的加减运算,熟知分式混合运算的法则是解答此题的关键.20.为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x 小时,将它分为4个等级:A (02x ≤<),B (24x ≤<),C (46x ≤<),D (6x ≥),并根据调查结果绘制了如两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了_________名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为_________°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.【答案】(1)50;(2)108;(3)见解析;(4)1 6【解析】【分析】(1)用条形统计图中等级B的人数除以扇形统计图中等级B所占百分比即得本次调查的人数;(2)用扇形统计图中等级D的人数除以总人数再乘以360°即可求出等级D所对应的扇形的圆心角;(3)用总人数减去其它三个等级的人数即得等级C的人数,进而可补全条形统计图;(4)先画出树状图求出所有等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解即可.【详解】解:(1)本次调查的学生人数=13÷26%=50名;故答案为:50;(2)在扇形统计图中,等级D所对应的扇形的圆心角=1536010850⨯︒=︒.故答案为:108;(3)C等级人数为:504131518---=名,补图如下:(4)画树状图得:由图可知:总共有12种结果,且每种结果出现的可能性相同,其中恰好选中甲和乙的结果有2种,所以P(恰好选中甲和乙)21 126 ==.【点睛】本题是统计与概率综合题,主要考查了条形统计图和扇形统计图的相关知识以及求两次事件的概率,属于常考题型,熟练掌握统计与概率的基本知识是解题的关键.21.某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?【答案】(1)每本甲种词典的价格为70元,每本乙种词典的价格为50元;(2)学校最多可购买甲种词典5本【解析】【分析】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据“购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设学校购买甲种词典m本,则购买乙种词典(30-m)本,根据总价=单价×数量结合总费用不超过1600元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【详解】(1)设每本甲种词典的价格为x元,每本乙种词典的价格为y元,根据题意,得217023290x y x y +=⎧⎨+=⎩解得7050x y =⎧⎨=⎩答:每本甲种词典的价格为70元,每本乙种词典的价格为50元.(2)设学校计划购买甲种词典m 本,则购买乙种词典(30)m -本,根据题意,得7050(30)1600m m +-≤解得5m ≤答:学校最多可购买甲种词典5本. 【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.22.如图,我国某海域有A ,B 两个港口,相距80海里,港口B 在港口A 的东北方向,点C 处有一艘货船,该货船在港口A 的北偏西30°方向,在港口B 的北偏西75°方向,求货船与港口A 之间的距离.(结果保留根号)【答案】货船与港口A 之间的距离是海里 【解析】 【分析】过点A 作AD BC ⊥于D ,先求出60ABC ∠=︒,在Rt ABD ∆中,30DAB ∠=︒,由三角函数定义求出AD ,求出45DAC CAB DAB ∠=∠-∠=︒,则ADC ∆是等腰直角三角形,得出AC ==【详解】解:过点A 作AD BC ⊥于点D根据题意,得180754560ABC ∠=︒-︒-︒=︒∵AD BC ⊥ ∴90ADB ∠=︒∴180180906030DAB ADB ABC ∠=︒-∠-∠=︒-︒-︒=︒ 在Rt ABD ∆中∵80AB =,60ABD ∠=︒∴sin 80sin60AD AB ABD =⋅∠=⋅︒=∵304575CAB ∠=+=︒︒︒∴753045DAC CAB DAB ∠=∠-∠=︒-︒=︒ 在Rt ACD ∆中∵AD =,45DAC ∠=︒∴cos ADAC DAC===∠答:货船与港口A 之间的距离是海里. 【点睛】本题考查了解直角三角形的应用-方向角问题、等腰直角三角形的判定与性质等知识;通过作辅助线构造直角三角形是解题的关键.23.超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x (元)之间满足一次函数关系(其中1015x ≤≤,且x 为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y 与x 之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w 元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?【答案】(1)5150y x =-+(10≤x≤15,且x 为整数);(2)当每瓶洗手液的售价定为15元时,超市销售该品牌洗于液每天销售利润最大,最大利润是375元【解析】 【分析】(1)利用待定系数法求解可得;(2)根据“毛利润=每瓶毛利润×销售量”列出函数解析式,将其配方成顶点式后利用二次函数的性质求解可得.【详解】解:(1)设y 与x 之间的函数关系式为y kx b =+(0k ≠),根据题意,得:12901480k b k b +=⎧⎨+=⎩, 解得5150k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =-+(10≤x≤15,且x 为整数); (2)根据题意,得:(10)(5150)w x x =--+, 252001500x x =-+-,25(20)500x =--+,∵50a =-<,∴抛物线开口向下,w 有最大值, ∴当20x <时,w 随x 的增大而增大, ∵1015x ≤≤,且x 为整数, ∴当15x =时,w 有最大值, 即25(1520)500375w =-⨯-+=,答:当每瓶洗手液的售价定为15元时,超市销售该品牌洗于液每天销售利润最大,最大利润是375元.【点睛】本题主要了考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.24.如图,在平行四边形ABCD 中,AC 是对角线,90CAB ∠=︒,以点A 为圆心,以AB 的长为半径作A ,交BC 边于点E ,交AC 于点F ,连接DE .(1)求证:DE 与A 相切;(2)若60ABC ∠=︒,4AB =,求阴影部分的面积.【答案】(1)见解析;(2)43π【解析】 【分析】(1)证明:连接AE ,根据平行四边形的性质得到AD=BC ,AD ∥BC ,求得∠DAE=∠AEB ,根据全等三角形的性质得到∠DEA=∠CAB ,得到DE ⊥AE ,于是得到结论;(2)根据已知条件得到△ABE 是等边三角形,求得AE=BE ,∠EAB=60°,得到∠CAE=∠ACB ,得到CE=BE ,根据三角形和扇形的面积公式即可得到结论.【详解】(1)证明:连接AE∵四边形ABCD 是平行四边形 ∴AD BC =,//AD BC ∴DAE AEB ∠=∠∵AE AB = ∴AEB ABC ∠=∠ ∴DAE ABC ∠=∠ ∴AED BAC ∆∆≌ ∴DEA CAB ∠=∠ ∵90CAB ∠=︒ ∴90DEA ∠=︒ ∴DE AE ⊥ ∵AE 是A 的半径 ∴DE 与A 相切(2)解:∵60ABC ∠=︒,AB AE = ∴ABE ∆是等边三角形 ∴AE BE =,60EAB ∠=︒ ∵90CAB ∠=︒∴90906030CAE EAB ∠=︒-∠=︒-︒=︒90906030ACB B ∠=︒-∠=︒-︒=︒∴CAE ACB ∠=∠ ∴AE CE = ∴CE BE = ∴12ACE ABE ABC S S S ∆∆∆==∵在Rt ABC ∆中,90CAB ∠=︒,60ABC ∠=︒,4AB =∴tan 4tan60AC AB ABC =⋅∠=⨯︒=∴11422ABC S AB AC ∆=⋅=⨯⨯=∴1122ACEABC S S ∆∆==⨯=∵30CAE ∠=︒,4AE =223030443603603AEF AE S πππ⨯⨯===扇形∴43A A F CE E S S S π∆-==阴影扇形 【点睛】本题考查了切线的判定和性质,平行四边形的性质,全等三角形的判定和性质,等边三角形的判定和性质,扇形的面积的计算,熟练掌握切线的判定定理是解题的关键.25.如图,射线AB 和射线CB 相交于点B ,ABC α∠=(0180α︒<<︒),且AB CB =.点D 是射线CB 上的动点(点D 不与点C 和点B 重合).作射线AD ,并在射线AD 上取一点E ,使AEC α∠=,连接CE ,BE .(1)如图①,当点D 在线段CB 上,90α=︒时,请直接写出AEB ∠的度数;(2)如图②,当点D 在线段CB 上,120α=︒时,请写出线段AE ,BE ,CE 之间的数量关系,并说明理由;(3)当120α=︒,1tan 3DAB ∠=时,请直接写出CE BE的值.【答案】(1)45AEB ∠=︒;(2)AE CE =+,理由见解析;(3)32【解析】 【分析】(1)根据等腰直角三角形的性质求解得∠ACB=45︒,证明A 、B 、E 、C 四点共圆,利用圆周角定理即可求解;(2)在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H ,利用“SAS”证得△ABF ≅△CBE ,求得30BFE BEF ∠=∠=︒,根据三角函数的定义即可求解;(3)分D 在线段CB 上和D 在CB 延长线上两种情况讨论,利用(2)的方法及结论即可求解.【详解】(1)连接AC ,如图:∵∠ABC=90︒,AB=CB, ∴∠ACB=∠CAB=45︒, ∵∠AEC=90︒,又∠ABC=90︒, ∴A 、B 、E 、C 四点共圆,根据圆周角定理:∠AEB=∠ACB=45︒; (2)AE CE =+,理由如下:在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H .∵ABC AEC ∠=∠, ∴A 、B 、E 、C 四点共圆, 根据圆周角定理:A C ∠=∠, 在△ABF 和△CBE 中,AF CE A C BA BC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF CBE ∆∆≌, ∴ABF CBE ∠=∠,BF BE =, ∴ABF FBD CBE FBD ∠+∠=∠+∠, ∴FBE ABC ∠=∠, ∵120ABC ∠=︒,∴120FBE ∠=︒, ∵BF BE =, ∴()()111801801203022BFE BEF FBE ∠=∠=-=︒-︒=︒∠︒, ∵BH EF ⊥于点H , ∴90BHE ∠=︒, ∴在Rt BHE ∆中,cos cos30FH EH BE BEH BE BE ︒==⋅∠=⋅=,∴22FE FH EH BE BE =+=+=, ∵AE AF FE =+,AF CE =,∴AE CE =;(3)当D 在线段CB 上时,如图:∵1tan 3BH DAB AH ∠==, ∴设BH=a ,则AH=3a ,由(2)得:30BFE BEF ∠=∠=︒, ∴BF=BE=2a ,, ∴a ,∴(32a CE BEa==;当D 在CB 延长线上时,在AD 上截取AF CE =,连接BF ,过点B 作BH EF ⊥于点H .如图:同理:设BH=a ,则AH=3a , 同理得:30BFE BEF ∠=∠=︒, ∴BF=BE=2a ,, ∴a ,∴(32a CE BEa+==;综上,CE BE.【点睛】本题考查了圆周角定理,全等三角形的判定和性质,含30度角的直角三角形的性质,解直角三角形的应用,作出辅助线构建全等三角形是解题的关键.26.如图,抛物线2y ax c =-+(0a ≠)过点(0,0)O 和(6,0)A ,点B 是抛物线的顶点,点D 是x 轴下方抛物线上的一点,连接OB ,OD .(1)求抛物线的解析式;(2)如图①,当30BOD ∠=︒时,求点D 的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x 轴于点C ,交线段OD于点E ,点F 是线段OB 上的动点(点F 不与点O 和点B 重合,连接EF ,将BEF ∆沿EF 折叠,点B 的对应点为点B ,EFB '∆与OBE ∆的重叠部分为EFG ∆,在坐标平面内是否存在一点H ,使以点E ,F ,G ,H 为顶点的四边形是矩形?若存在,请直接写出点H 的坐标,若不存在,请说明理由.【答案】(1)2y x =-;(2)5,3D ⎛- ⎝⎭;(3)存在,(32或(52,或(72,) 【解析】 【分析】(1)把点O(0,0)和A(6,0)分别代入解析式即可求解;(2)分别求得点B 、C 、E 的坐标,用待定系数法求得直线OD 的解析式,解方程组即可求得点D 的坐标;(3)分三种情况讨论,利用解直角三角形求解即可. 【详解】(1)把点00O (,)和(60)A ,分别代入2y ax c =-+中,得:360c a c =⎧⎪⎨-=⎪⎩,解得0a c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为23y x =-; (2)如图,设抛物线的对称轴与x 轴相交于点C ,与OD 相交于点E ,∵223)y x x =-=--∴顶点(3B -,,对称轴与x 轴的交点C(3,0),∴OC=3, CB=∵在Rt OCB ∆中,tan BC COB OC ∠=== ∴60COB ∠=︒, ∵30BOD ∠=︒,∴603030COD COB BOD ∠=∠-∠=︒-︒=︒,∴在Rt OCE ∆中,tan 3tan 303CE OC COE =⋅∠=︒==,∴点E 的坐标为(3,,设直线OD 的解析式是y kx =(0k ≠),把点E (3,代入,得:3k =k =,∴直线OD 的解析式是3y x =-,∴233x x -=-, 解得10x =(舍去),25x =,∴当5x =时,3y =-,∴点D 的坐标为(5,); (3)存在,理由如下:由(2)得:∠COE=∠EOB=30︒, ①当∠EFG=90︒时,如图:点B '、G 与点O 重合,此时四边形EFGH 为矩形, 过H 作HP ⊥OC 于P , ∵∠COE=∠EOB=30︒,∴∴∠HOP=90︒-∠COE-∠EOB=30︒,∴HP=1232,点H 的坐标为(32; ②当∠EGF=90︒时,此时四边形EGFH 为矩形,如图:∵∠CEO=90︒-∠COE=60︒,∠OEG=90︒-∠EOB=60︒, ∠BEG=180︒-∠CEO-∠OEG=60︒,根据折叠的性质:∠D 'EF=∠BEF=1BEG 2∠=30︒,在Rt △EGF 中,∠EGF=90︒,∠GEF=30︒,∴GF=GE tan 30⋅︒=1,∴EH=GF=1,过H 作HQ ⊥BC 于Q ,∴∠HEQ=90︒-∠BEG =30︒,∴HQ=12EH=12,点H 的坐标为(123+,2-,即(72,); ③当点G 在OD 上,且∠EGF=90︒时,此时四边形EGFH 为矩形,如图:∵∠BOE=30︒,∴∠OFG=90︒-∠EOB=60︒,根据折叠的性质:∠kg 'E=∠BFE=1BFG 2∠=()1180OFG 2∠︒- =60︒, ∴FG 是线段OE 的垂直平分线,∴OG=GE=12EH=GF=OG tan 30⋅︒=1, 过H 作HK ⊥BC 于K ,∴∠HEK=180︒-∠OEC-∠OEH=30︒,∴HK=12EH=12,点H 的坐标为(132-,2--,即(52,);综上,符合条件的点H 的坐标为(32或(52,)或(72,) .【点睛】本题是二次函数与几何的综合题考查了待定系数法求函数解析式,解直角三角形,含30度角的直角三角形的性质,翻折变换,矩形的性质等知识,解题的关键是注意数形结合思想和分类讨论的思想解决问题,属于中考压轴题.。

2020年辽宁省本溪市中考数学试卷

2020年辽宁省本溪市中考数学试卷

2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2020•本溪)下列各数是正数的是( )A .0B .5C .12-D .2.(3分)(2020•本溪)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.(3分)(2020•本溪)下列计算正确的是( ) A .77x x x ÷=B .224(3)9x x -=-C .3362x x x =D .326()x x =4.(3分)(2020•本溪)2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A .69.5610⨯B .595.610⨯C .70.95610⨯D .495610⨯5.(3分)(2020•本溪)下表是我市七个县(区)今年某日最高气温(C)︒的统计结果:则该日最高气温(C)︒的众数和中位数分别是( ) A .25,25B .25,26C .25,23D .24,256.(3分)(2020•本溪)不等式组30280x x ->⎧⎨-⎩的解集是( )A .3x >B .4xC .3x <D .34x <7.(3分)(2020•本溪)如图所示,该几何体的左视图是( )A.B.C.D.8.(3分)(2020•本溪)下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”C.一组数据的方差越小,则这组数据的波动越小D.在数轴上任取一点,则该点表示的数一定是有理数9.(3分)(2020•本溪)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.360480140x x=-B.360480140x x=-C.360480140x x+=D.360480140x x-=10.(3分)(2020•本溪)如图,点P是以AB为直径的半圆上的动点,CA AB⊥,PD AC⊥于点D,连接AP,设AP x=,PA PD y-=,则下列函数图象能反映y与x之间关系的是()A.B.C.D.二、填空题(本題共8小题,每小题3分,共24分)11.(3分)(2020x的取值范围为.12.(3分)(2020•本溪)函数5y x=的图象经过的象限是.13.(3分)(2020•本溪)如果关于x的一元二次方程240x x k-+=有实数根,那么k的取值范围是.14.(3分)(2020•本溪)在平面直角坐标系中,点A,B的坐标分别是(4,2)A,(5,0)B,以点O为位似中心,相们比为12,把ABO∆缩小,得到△11A B O,则点A的对应点1A的坐标为.15.(3分)(2020•本溪)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE BF=;分别以E,F为圆心,以大于12EF的长为半径作弧,两弧在ABD∠内交于点G,作射线BG交AD于点P,若3AP=,则点P到BD的距离为.16.(3分)(2020•本溪)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD 内自由滚动时,则小球停留在阴影区域的概率为 .17.(3分)(2020•本溪)如图,在平面直角坐标系中,等边OAB ∆和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,ABD S ∆,反比例函数(0)ky x x=>的图象经过点B ,则k 的值为 .18.(3分)(2020•本溪)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过1B 作111B A ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C 延长43B C 交x 轴于点4A ;⋯;按照这个规律进行下去,点n C 的横坐标为 (结果用含正整数n 的代数式表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)(2020•本溪)先化简,再求值222412()4422aa a a a a--÷-+--,其中a满足2320a a+-=.20.(12分)(2020•本溪)某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)(2020•本溪)如图,在四边形ABCD中,//AB CD,AD CD⊥,45B∠=︒,延长CD到点E,使DE DA=,连接AE.(1)求证:AE BC=;(2)若3CD=,求四边形ABCE的面积.AB=,122.(12分)(2020•本溪)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,B,F在AC上,C在DE上,支杆30=,DF cmCDF∠=︒,30∠=︒,请根据以上信息,解决下列向题.CE CD=,45:1:3DCF(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).五、解答题(满分12分)23.(12分)(2020•本溪)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?六、解答题(满分12分)24.(12分)(2020•本溪)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,O是DEF∆的外接圆,连接DP.(1)求证:DP是O的切线;(2)若1tan2PDC∠=,正方形ABCD的边长为4,求O的半径和线段OP的长.七、解答题(满分12分)25.(12分)(2020•本溪)在Rt ABC∆中,90BCA∠=︒,A ABC∠<∠,D是AC边上一点,且DA DB=,O是AB的中点,CE是BCD∆的中线.(1)如图a,连接OC,请直接写出OCE∠和OAC∠的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使MON ADB∠=∠,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若30BAC∠=︒,BC m=,当15AON∠=︒时,请直接写出线段ME的长度(用含m的代数式表示).八、解答题(满分14分)26.(14分)(2020•本溪)抛物线229y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F . (1)求抛物线的解析式;(2)当PCF ∆的面积为5时,求点P 的坐标;(3)当PCF ∆为等腰三角形时,请直接写出点P 的坐标.2020年辽宁省本溪市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是( )A .0B .5C .12-D .【分析】此题利用正数和负数的概念即可解答.【解答】解:0既不是正数,也不是负数;5是正数;12-和故选:B .2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形、中心对称图形的定义即可判断.【解答】解:A 、不是中心对称图形,是轴对称图形,故本选项不符合题意;B 、既是轴对称图形又是中心对称图形,故本选项符合题意;C 、是中心对称图形,不是轴对称图形,故本选项不符合题意;D 、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:B .3.(3分)下列计算正确的是( ) A .77x x x ÷=B .224(3)9x x -=-C .3362x x x =D .326()x x =【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案. 【解答】解:A 、76x x x ÷=,故此选项错误;B 、224(3)9x x -=,故此选项错误;C 、336x x x =,故此选项错误;D 、326()x x =,故此选项正确;故选:D .4.(3分)2020年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为( ) A .69.5610⨯B .595.610⨯C .70.95610⨯D .495610⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将数据9560000科学记数法表示为69.5610⨯. 故选:A .5.(3分)下表是我市七个县(区)今年某日最高气温(C)︒的统计结果:则该日最高气温(C)︒的众数和中位数分别是( ) A .25,25B .25,26C .25,23D .24,25【分析】根据众数和中位数的概念求解即可.【解答】解:在这7个数中,25(C)︒出现了3次,出现的次数最多,∴该日最高气温(C)︒的众数是25;把这组数据按照从小到大的顺序排列位于中间位置的数是25, 则中位数为:25; 故选:A .6.(3分)不等式组30280x x ->⎧⎨-⎩的解集是( )A .3x >B .4xC .3x <D .34x <【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:30280x x ->⎧⎨-⎩①②,由①得:3x >, 由②得:4x ,则不等式组的解集为34x <, 故选:D .7.(3分)如图所示,该几何体的左视图是( )A .B .C .D .【分析】根据从左边看得到的图形是左视图,可得答案. 【解答】解:从左边看是一个矩形,中间有两条水平的虚线, 故选:B .8.(3分)下列事件属于必然事件的是( ) A .打开电视,正在播出系列专题片“航拍中国” C .一组数据的方差越小,则这组数据的波动越小 D .在数轴上任取一点,则该点表示的数一定是有理数 【分析】直接利用随机事件以及必然事件的定义分析得出答案.【解答】解:A 、打开电视,正在播出系列专题片“航拍中国”,是随机事件,不合题意; C 、一组数据的方差越小,则这组数据的波动越小,是必然事件,符合题意;D 、在数轴上任取一点,则该点表示的数一定是有理数,是随机事件,不合题意;故选:C.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.360480140x x=-B.360480140x x=-C.360480140x x+=D.360480140x x-=【分析】设甲种型号机器人每台的价格是x万元,根据“用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同”,列出关于x的分式方程.【解答】解:设甲型机器人每台x万元,根据题意,可得:360480140x x=-,故选:A.10.(3分)如图,点P是以AB为直径的半圆上的动点,CA AB⊥,PD AC⊥于点D,连接AP,设AP x=,PA PD y-=,则下列函数图象能反映y与x之间关系的是()A.B.C.D .【分析】设圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==,则211sin 22PD AP x x x R Rα==⨯=,即可求解. 【解答】设:圆的半径为R ,连接PB ,则1sin 22AP ABP x R R∠==, CA AB ⊥,即AC 是圆的切线,则PDA PBA α∠=∠=,则211sin 22PD AP x x x R Rα==⨯=, 则212y PA PD x x R=-=-+, 图象为开口向下的抛物线, 故选:C .二、填空题(本題共8小题,每小题3分,共24分)11.(3x 的取值范围为 2x . 【分析】根据二次根式有意义的条件可得20x -,再解即可. 【解答】解:由题意得:20x -, 解得:2x , 故答案为:2x .12.(3分)函数5y x =的图象经过的象限是 一、三 .【分析】利用这个比例函数的性质结合比例系数的符号直接回答即可. 【解答】解:函数5y x =的图象经过一三象限, 故答案为:一、三13.(3分)如果关于x 的一元二次方程240x x k -+=有实数根,那么k 的取值范围是4k .【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k 的不等式,求出不等式的解集即可得到k 的范围. 【解答】解:根据题意得:△1640k =-, 解得:4k . 故答案为:4k .14.(3分)在平面直角坐标系中,点A ,B 的坐标分别是(4,2)A ,(5,0)B ,以点O 为位似中心,相们比为12,把ABO ∆缩小,得到△11A B O ,则点A 的对应点1A 的坐标为 (2,1)或(2,1)-- .【分析】根据位似变换的性质计算即可. 【解答】解:以点O 为位似中心,相们比为12,把ABO ∆缩小,点A 的坐标是(4,2)A , 则点A 的对应点1A 的坐标为1(42⨯,12)2⨯或1(42-⨯,12)2-⨯,即(2,1)或(2,1)--,故答案为:(2,1)或(2,1)--.15.(3分)如图,BD 是矩形ABCD 的对角线,在BA 和BD 上分别截取BE ,BF ,使BE BF =;分别以E ,F 为圆心,以大于12EF 的长为半径作弧,两弧在ABD ∠内交于点G ,作射线BG交AD 于点P ,若3AP =,则点P 到BD 的距离为 3 .【分析】首先结合作图的过程确定BP 是ABD ∠的平分线,然后根据角平分线的性质求得点P 到BD 的距离即可.【解答】解:结合作图的过程知:BP 平分ABD ∠, 90A ∠=︒,3AP =,∴点P 到BD 的距离等于AP 的长,为3,故答案为:3.16.(3分)如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形ABCD内自由滚动时,则小球停留在阴影区域的概率为1516.【分析】如图所示,AD 与直线的交点为E ,AB 与直线的交点为F ,分别求出AE 、AF 所占边长的比例即可解答.【解答】解:如图所示,AD 与直线的交点为E ,AB 与直线的交点为F ,根据题意可知12AE AB =,14AF AB =, ∴211111222416AEF S AE AF AB AB AB ∆==⨯⨯=, ∴小球停留在阴影区域的概率为:11511616-=. 故答案为:151617.(3分)如图,在平面直角坐标系中,等边OAB ∆和菱形OCDE 的边OA ,OE 都在x 轴上,点C 在OB 边上,ABD S ∆=,反比例函数(0)ky x x =>的图象经过点B ,则k 的值为【分析】连接OD ,由OAB ∆是等边三角形,得到60AOB ∠=︒,根据平行线的性质得到60DEO AOB ∠=∠=︒,推出DEO ∆是等边三角形,得到60DOE BAO ∠=∠=︒,得到//OD AB ,求得BDO AOD S S ∆∆=,推出AOB ABD S S ∆∆==B 作BH OA ⊥于H ,由等边三角形的性质得到OH AH =,求得OBH S ∆= 【解答】解:连接OD , OAB ∆是等边三角形, 60AOB ∴∠=︒,四边形OCDE 是菱形, //DE OB ∴,60DEO AOB ∴∠=∠=︒, DEO ∴∆是等边三角形, 60DOE BAO ∴∠=∠=︒, //OD AB ∴, BDO AOD S S ∆∆∴=,ADO ABD BDO AOB ABDO S S S S S ∆∆∆∆=+=+四边形,AOB ABD S S ∆∆∴==过B 作BH OA ⊥于H , OH AH ∴=,OBH S ∆∴=, 反比例函数(0)ky x x =>的图象经过点B ,k ∴18.(3分)如图,点1B 在直线1:2l y x =上,点1B 的横坐标为2,过1B 作111B A ⊥,交x 轴于点1A ,以11A B 为边,向右作正方形1121A B B C ,延长21B C 交x 轴于点2A ;以22A B 为边,向右作正方形2232A B B C ,延长32B C 交x 轴于点3A ;以33A B 为边,向右作正方形3343A B B C 延长43B C 交x 轴于点4A ;⋯;按照这个规律进行下去,点n C 的横坐标为 173()22n -+ (结果用含正整数n 的代数式表示)【分析】根据点1B 的横坐标为2,在直线1:2l y x =上,可求出点1B 的坐标,由作图可知图中所有的直角三角形都相似,两条直角边的比都是1:2,然后依次利用相似三角形的性质计算出1C 、2C 、3C 、4C ⋯⋯的横坐标,根据规律得出答案.【解答】解:过点1B 、1C 、2C 、3C 、4C 分别作1B D x ⊥轴,11C D x ⊥轴,22C D x ⊥轴,33C D x ⊥轴,44C D x ⊥轴,⋯⋯垂足分别为D 、1D 、2D 、3D 、4D ⋯⋯ 点1B 在直线1:2l y x =上,点1B 的横坐标为2,∴点1B 的纵坐标为1,即:2OD =,11B D =,图中所有的直角三角形都相似,两条直角边的比都是1:2, 1111121111112B D DA C D D A OD B D A D C D =====⋯ ∴点1C 的横坐标为:0132()22++, 点2C 的横坐标为:001011331353532()()()()()222422242+++⨯+=+⨯+ 点3C 的横坐标为:00112012133133135353532()()()()()()()()22242242224242+++⨯++⨯+=+⨯+⨯++ 点4C 的横坐标为:012353535353()()()()22424242=+⨯+⨯+⨯+⋯⋯点n C 的横坐标为:012341535353535353()()()()()()224242424242n -=+⨯+⨯+⨯+⨯+⨯⋯⋯+ 01234155333333[()()()()()]()24222222n -=++⨯+++⋯⋯+ 173()22n -=+ 故答案为:173()22n -+三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值222412()4422a a a a a a--÷-+--,其中a 满足2320a a +-=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后根据2320a a +-=,可以求得所求式子的值.【解答】解:222412()4422a a a a a a--÷-+-- 2(2)(2)1(2)[](2)22a a a a a a +--=+-- 21(2)()222a a a a a +-=+-- 3(2)22a a a a +-=-(3)2a a +=232a a+=, 2320a a +-=, 232a a ∴+=,∴原式212==. 20.(12分)某中学为了提高学生的综合素质,成立了以下社团:A .机器人,B .围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36︒.根据以上信息,解答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.【分析】(1)由A类有20人,所占扇形的圆心角为36︒,即可求得这次被调查的学生数;(2)首先求得C项目对应人数,即可补全统计图;(3)该校1000学生数⨯参加了羽毛球社团的人数所占的百分比即可得到结论;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式即可求得答案.【解答】解:(1)A类有20人,所占扇形的圆心角为36︒,∴这次被调查的学生共有:3620200360÷=(人);故答案为:200;(2)C项目对应人数为:20020804060---=(人);补充如图.(3)601000300200⨯=(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,P∴(选中甲、乙)21 126==.四、解答题(第21题12分,第22题12分,共24分)21.(12分)如图,在四边形ABCD中,//AB CD,AD CD⊥,45B∠=︒,延长CD到点E,使DE DA=,连接AE.(1)求证:AE BC=;(2)若3AB=,1CD=,求四边形ABCE的面积.【分析】(1)通过证明四边形ABCE是平行四边形,可得结论;(2)由平行四边形的性质可求2DE AD==,即可求四边形ABCE的面积.【解答】证明:(1)//AB CD,45B∠=︒180C B∴∠+∠=︒135C ∴∠=︒DE DA =,AD CD ⊥45E ∴∠=︒180E C ∠+∠=︒//AE BC ∴,且//AB CD∴四边形ABCE 是平行四边形AE BC ∴=(2)四边形ABCE 是平行四边形3AB CE ∴==2AD DE AB CD ∴==-=∴四边形ABCE 的面积326=⨯=22.(12分)小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图①,②分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE ,箱长BC ,拉杆AB 的长度都相等,B ,F 在AC 上,C 在DE 上,支杆30DF cm =,:1:3CE CD =,45DCF ∠=︒,30CDF ∠=︒,请根据以上信息,解决下列向题.(1)求AC 的长度(结果保留根号);(2)求拉杆端点A 到水平滑杆ED 的距离(结果保留根号).【分析】(1)过F 作FH DE ⊥于H ,解直角三角形即可得到结论;(2)过A 作AG ED ⊥交ED 的延长线于G ,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)过F 作FH DE ⊥于H ,90FHC FHD ∴∠=∠=︒,30FDC ∠=︒,30DF =,1152FH DF ∴==,DH ==45FCH ∠=︒,15CH FH ∴==,∴15CD CH DH =+=+:1:3CE CD =,4203DE CD ∴==+, AB BC DE ==,(40AC cm ∴=+;(2)过A 作AG ED ⊥交ED 的延长线于G ,45ACG ∠=︒,AG AC ∴==答:拉杆端点A 到水平滑杆ED 的距离为cm .五、解答题(满分12分)23.(12分)某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y (元)与一次性批发量x (件)(x 为正整数)之间满足如图所示的函数关系.(1)直接写出y 与x 之间所满足的函数关系式,并写出自变量x 的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?【分析】(1)认真观察图象,分别写出该定义域下的函数关系式,定义域取值全部是整数;(2)根据利润=(售价-成本)⨯件数,列出利润的表达式,求出最值.【解答】解:(1)当020x <且x 为整数时,40y =;当2060x <且x 为整数时,1502y x =-+; 当60x >且x 为整数时,20y =;(2)设所获利润w (元),当020x <且x 为整数时,40y =,(4016)20480w ∴=-⨯=元,当020x <且x 为整数时,40y =,∴当2060x <且x 为整数时,1502y x =-+, 1(16)(5016)2w y x x x ∴=-=-+-, 21342w x x ∴=-+, 21(34)5782w x ∴=--+, 102-<, ∴当34x =时,w 最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.六、解答题(满分12分)24.(12分)如图,点P 为正方形ABCD 的对角线AC 上的一点,连接BP 并延长交CD 于点E ,交AD 的延长线于点F ,O 是DEF ∆的外接圆,连接DP .(1)求证:DP 是O 的切线;(2)若1tan 2PDC ∠=,正方形ABCD 的边长为4,求O 的半径和线段OP 的长.【分析】(1)连接OD ,可证CDP CBP ∆≅∆,可得CDP CBP ∠=∠,由90CBP BEC ∠+∠=︒,BEC OED ODE ∠=∠=∠,可证出90ODP ∠=︒,则DP 是O 的切线;(2)先求出CE 长,在Rt DEF ∆中可求出EF 长,证明DPE FPD ∆∆∽,由比例线段可求出EP 长,则OP 可求出.【解答】(1)连接OD ,正方形ABCD 中,CD BC =,CP CP =,45DCP BCP ∠=∠=︒, ()CDP CBP SAS ∴∆≅∆,CDP CBP ∴∠=∠,90BCD ∠=︒,90CBP BEC ∴∠+∠=︒,OD OE =,ODE OED ∴∠=∠,OED BEC ∠=∠,BEC OED ODE ∴∠=∠=∠,90CDP ODE ∴∠+∠=︒,90ODP ∴∠=︒,DP ∴是O 的切线;(2)CDP CBE ∠=∠,1tan tan 2CE CBE CDP BC ∴∠=∠==, 1422CE ∴=⨯=, 2DE ∴=,90EDF ∠=︒,EF ∴是O 的直径,90F DEF ∴∠+∠=︒,F CDP ∴∠=∠,在Rt DEF ∆中,12DE DF =, 4DF ∴=,∴EF∴OE =F PDE ∠=∠,DPE FPD ∠=∠,DPE FPD ∴∆∆∽, ∴PE PD DE PD PF DF==, 设PE x =,则2PD x =,∴2((2)x x x +=,解得x ,OP OE EP ∴=+=. 七、解答题(满分12分)25.(12分)在Rt ABC ∆中,90BCA ∠=︒,A ABC ∠<∠,D 是AC 边上一点,且DA DB =,O 是AB 的中点,CE 是BCD ∆的中线.(1)如图a ,连接OC ,请直接写出OCE ∠和OAC ∠的数量关系: OCE OAC ∠=∠ ;(2)点M 是射线EC 上的一个动点,将射线OM 绕点O 逆时针旋转得射线ON ,使MON ADB ∠=∠,ON 与射线CA 交于点N .①如图b ,猜想并证明线段OM 和线段ON 之间的数量关系; ②若30BAC ∠=︒,BC m =,当15AON ∠=︒时,请直接写出线段ME 的长度(用含m 的代数式表示).【分析】(1)结论:ECO OAC ∠=∠.理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可.(2)①只要证明()COM AON ASA ∆≅∆,即可解决问题.②分两种情形:如图31-中,当点N 在CA 的延长线上时,如图32-中,当点N 在线段AC 上时,作OH AC ⊥于H .分别求解即可解决问题.【解答】解:(1)结论:ECO OAC ∠=∠.理由:如图1中,连接OE .90BCD ∠=︒,BE ED =,BO OA =,12CE ED EB BD ===,CO OA OB ==, OCA A ∴∠=∠,BE ED =,BO OA =,//OE AD ∴,12OE AD =, CE EO ∴=.∴∠=∠=∠,EOC OCA ECO∴∠=∠.ECO OAC故答案为:OCE OAC∠=∠.(2)如图2中,=,OC OA=,DA DB∴∠=∠=∠,A OCA ABD∴∠=∠,COA ADB∠=∠,MON ADBAOC MON∴∠=∠,∴∠=∠,COM AON∠=∠,ECO OACMCO NAO∴∠=∠,=,OC OA∴∆≅∆,()COM AON ASA∴=.OM ON②如图31-中,当点N在CA的延长线上时,AON∠=︒,∠=︒=∠+∠,15CAB OAN ANO30∴∠=∠=︒,15AON ANOOA AN m ∴==,OCM OAN ∆≅∆,CM AN m ∴==,在Rt BCD ∆中,BC m =,60CDB ∠=︒,BD ∴=, BE ED =,12CE BD ∴==,EM CM CE m ∴=+=. 如图32-中,当点N 在线段AC 上时,作OH AC ⊥于H .15AON ∠=︒,30CAB ∠=︒,153045ONH ∴∠=︒+︒=︒,12OH HN m ∴==, 3AH =,12CM AN m ∴==-, 3EC =,11)22EM EC CM m m ∴=-=--=-,综上所述,满足条件的EM 的值为m +或12m . 八、解答题(满分14分) 26.(14分)抛物线229y x bx c =-++与x 轴交于(1,0)A -,(5,0)B 两点,顶点为C ,对称轴交x 轴于点D ,点P 为抛物线对称轴CD 上的一动点(点P 不与C ,D 重合).过点C 作直线PB 的垂线交PB 于点E ,交x 轴于点F .(1)求抛物线的解析式;(2)当PCF ∆的面积为5时,求点P 的坐标;(3)当PCF ∆为等腰三角形时,请直接写出点P 的坐标.【分析】(1)函数的表达式为:2(1)(5)9y x x =+-,即可求解;(2)确定PB 、CE 的表达式,联立求得点2(23mF -,0),112(2)(22)5223PCF m S PC DF m ∆=⨯⨯=---=,即可求解;(3)分当CP CF =、CP PF =、CP PF =三种情况,分别求解即可.【解答】解:(1)函数的表达式为:222810(1)(5)9999y x x x x =+-=-++;(2)抛物线的对称轴为1x =,则点(2,2)C , 设点(2,)P m ,将点P 、B 的坐标代入一次函数表达式:y sx t =+并解得: 函数PB 的表达式为:1533my mx =-+⋯①,CE PE ⊥,故直线CE 表达式中的k 值为3m ,将点C 的坐标代入一次函数表达式, 同理可得直线CE 的表达式为:36(2)y x m m =+-⋯②,联立①②并解得:223mx =-, 故点2(23mF -,0),112(2)(22)5223PCF mS PC DF m ∆=⨯⨯=---=,解得:5m =或3-(舍去5), 故点(2,3)P -;(3)由(2)确定的点F 的坐标得: 22(2)CP m =-,222()43m CF =+,2222()3m PF m =+, ①当CP CF =时,即:22(2)()43m m -=+,解得:0m =或365(均舍去), ②当CP PF =时,2222(2)()3m m m -=+,解得:32m =或3(舍去3), ③当CF PF =时,同理可得:2m =±(舍去2), 故点3(2,)2P 或(2,2)-.。

2020年辽宁省本溪市中考数学试卷及答案

2020年辽宁省本溪市中考数学试卷及答案

2020年辽宁省本溪市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣2的倒数是()A.−12B.﹣2C.12D.22.(3分)如图是由一个长方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.3.(3分)下列运算正确的是()A.m2+2m=3m3B.m4÷m2=m2C.m2•m3=m6D.(m2)3=m5 4.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(3分)某校九年级进行了3次数学模拟考试,甲、乙、丙、丁4名同学3次数学成绩的平均分都是129分,方差分别是s 甲2=3.6,s 乙2=4.6,s 丙2=6.3,s 丁2=7.3,则这4名同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁6.(3分)一个等腰直角三角尺和一把直尺按如图所示的位置摆放,若∠1=20°,则∠2的度数是( )A .15°B .20°C .25°D .40°7.(3分)一组数据1,8,8,4,6,4的中位数是( ) A .4B .5C .6D .88.(3分)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x 件,根据题意可列方程为( ) A .3000x =4200x−80B .3000x +80=4200xC .4200x=3000x−80D .3000x=4200x+809.(3分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,AC =8.BD =6,点E 是CD 上一点,连接OE ,若OE =CE ,则OE 的长是( )A .2B .52C .3D .410.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2√2,CD ⊥AB 于点D .点P 从点A 出发,沿A →D →C 的路径运动,运动到点C 停止,过点P 作PE ⊥AC 于点E ,作PF ⊥BC 于点F .设点P 运动的路程为x ,四边形CEPF 的面积为y ,则能反映y 与x 之间函数关系的图象是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)截至2020年3月底,我国已建成5G基站198000个,将数据198000用科学记数法表示为.12.(3分)若一次函数y=2x+2的图象经过点(3,m),则m=.13.(3分)若关于x的一元二次方程x2+2x﹣k=0无实数根,则k的取值范围是.14.(3分)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是.15.(3分)如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为.16.(3分)如图,在Rt △ABC 中,∠ACB =90°,AC =2BC ,分别以点A 和B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点M 和N ,作直线MN ,交AC 于点E ,连接BE ,若CE =3,则BE 的长为 .17.(3分)如图,在△ABC 中,AB =AC ,点A 在反比例函数y =kx (k >0,x >0)的图象上,点B ,C 在x 轴上,OC =15OB ,延长AC 交y 轴于点D ,连接BD ,若△BCD 的面积等于1,则k 的值为 .18.(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为 .(用含正整数n 的式子表示)三、解答题(第19题10分,第20题12分,共22分)19.(10分)先化简,再求值:(xx−3−13−x)÷x+1x2−9,其中x=√2−3.20.(12分)为培养学生的阅读习惯,某中学利用学生课外时间开展了以“走近名著”为主题的读书活动.为了有效了解学生课外阅读情况,现随机调查了部分学生每周课外阅读的时间,设被调查的每名学生每周课外阅读的总时间为x小时,将它分为4个等级:A(0≤x<2),B(2≤x<4),C(4≤x<6),D(x≥6),并根据调查结果绘制了如图两幅不完整的统计图:请你根据统计图的信息,解决下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,等级D所对应的扇形的圆心角为°;(3)请补全条形统计图;(4)在等级D中有甲、乙、丙、丁4人表现最为优秀,现从4人中任选2人作为学校本次读书活动的宣传员,用列表或画树状图的方法求恰好选中甲和乙的概率.四、解答题(第21题12分,第22题12分,共24分)21.(12分)某校计划为教师购买甲、乙两种词典.已知购买1本甲种词典和2本乙种词典共需170元,购买2本甲种词典和3本乙种词典共需290元.(1)求每本甲种词典和每本乙种词典的价格分别为多少元?(2)学校计划购买甲种词典和乙种词典共30本,总费用不超过1600元,那么最多可购买甲种词典多少本?22.(12分)如图,我国某海域有A,B两个港口,相距80海里,港口B在港口A的东北方向,点C处有一艘货船,该货船在港口A的北偏西30°方向,在港口B的北偏西75°方向,求货船与港口A之间的距离.(结果保留根号)五、解答题(满分12分)23.(12分)超市销售某品牌洗手液,进价为每瓶10元.在销售过程中发现,每天销售量y (瓶)与每瓶售价x(元)之间满足一次函数关系(其中10≤x≤15,且x为整数),当每瓶洗手液的售价是12元时,每天销售量为90瓶;当每瓶洗手液的售价是14元时,每天销售量为80瓶.(1)求y与x之间的函数关系式;(2)设超市销售该品牌洗手液每天销售利润为w元,当每瓶洗手液的售价定为多少元时,超市销售该品牌洗手液每天销售利润最大,最大利润是多少元?六、解答题(满分12分)24.(12分)如图,在平行四边形ABCD中,AC是对角线,∠CAB=90°,以点A为圆心,以AB的长为半径作⊙A,交BC边于点E,交AC于点F,连接DE.(1)求证:DE与⊙A相切;(2)若∠ABC=60°,AB=4,求阴影部分的面积.七、解答题(满分12分)25.(12分)如图,射线AB和射线CB相交于点B,∠ABC=α(0°<α<180°),且AB =CB.点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使∠AEC=α,连接CE,BE.(1)如图①,当点D在线段CB上,α=90°时,请直接写出∠AEB的度数;(2)如图②,当点D在线段CB上,α=120°时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当α=120°,tan∠DAB=13时,请直接写出CEBE的值.八、解答题(满分14分)26.(14分)如图,抛物线y=ax2﹣2√3x+c(a≠0)过点O(0,0)和A(6,0).点B是抛物线的顶点,点D是x轴下方抛物线上的一点,连接OB,OD.(1)求抛物线的解析式;(2)如图①,当∠BOD=30°时,求点D的坐标;(3)如图②,在(2)的条件下,抛物线的对称轴交x轴于点C,交线段OD于点E,点F是线段OB上的动点(点F不与点O和点B重合),连接EF,将△BEF沿EF折叠,点B的对应点为点B',△EFB'与△OBE的重叠部分为△EFG,在坐标平面内是否存在一点H,使以点E,F,G,H为顶点的四边形是矩形?若存在,请直接写出点H的坐标,中考数学试题若不存在,请说明理由.中考数学试题2020年辽宁省本溪市中考数学试卷参考答案一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.A ; 2.C ; 3.B ; 4.D ; 5.A ; 6.C ; 7.B ; 8.D ; 9.B ; 10.A ; 二、填空题(本题共8小题,每小题3分,共24分)11.1.98×105; 12.8; 13.k <﹣1; 14.59; 15.2; 16.5; 17.3; 18.2n +12n;三、解答题(第19题10分,第20题12分,共22分) 19. ; 20.50;108;四、解答题(第21题12分,第22题12分,共24分) 21. ; 22. ; 五、解答题(满分12分) 23. ;六、解答题(满分12分) 24. ;七、解答题(满分12分) 25. ;八、解答题(满分14分) 26. ;。

辽宁省本溪市2020年中考数学试卷D卷

辽宁省本溪市2020年中考数学试卷D卷

辽宁省本溪市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法:①在1和3之间的无理数有且只有,,,这4个;②近似数7.30所表示的准确数a的范围是:7.295≤a<7.305;③一个数的绝对值必大于这个数的相反数;④大于-2.5而小于π的整数共有6个;⑤平方根是本身的数是1和0;⑥有理数可以分为正数和负数;⑦的值是3或-3.其中正确的是()A . 5个B . 4个C . 3个D . 2个2. (2分)(2011·成都) 近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为()A . 20.3×104人B . 2.03×105人C . 2.03×104人D . 2.03×103人3. (2分)(2016·攀枝花) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上D . 为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查4. (2分)(2017·兰州模拟) 下面所给几何体的俯视图是()A .B .C .D .6. (2分)某学校把学生的期末测试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小明实践能力的得分是80分,期末测试的得分是90分,则小明的学期总成绩是()A . 80分B . 85分C . 86分D . 90分7. (2分) (2017九上·遂宁期末) 如图,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A . mB . mC . mD . m8. (2分)若x3=(﹣2)3 , y2=(﹣1)2 ,则x+y的值为()A . -3B . -1C . 3D . ﹣1或﹣39. (2分)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中a•c≠0,a≠c.下列四个结论中,错误的是()A . 如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B . 如果方程M的两根符号相同,那么方程N的两根符号也相同C . 如果5是方程M的一个根,那么是方程N的一个根D . 如果方程M和方程N有一个相同的根,那么这个根必是x=110. (2分)(2017·兰州模拟) 如图,直线l1∥l2 , AF:FB=2:3,BC:CD=2:1,则AE:EC是()A . 5:2B . 4:1C . 2:1D . 3:211. (2分)一元二次方程x2﹣x﹣1=0的两个实数根中较大的根是()A . 1+B .C .D .12. (2分)(2019·河南模拟) 如图,点P在平面直角坐标系中按图中箭头所示的方向运动,每次运动一个单位,△A3A4A5和△A8A9A10都是等边三角形.第一次从(0,1)运动到点A1(0,2),第二次接着运动到点A2(1,2),第三次运动到点A3(1,1),…,经过2019次运动,动点P所在位置A2019的坐标是()A . (807,)B . (,2﹣)C . (,)D . (807,2﹣)二、填空题 (共4题;共5分)13. (1分)(2017·肥城模拟) 分解因式:﹣3x3+12x2﹣12x=________.14. (1分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.15. (1分)(2018·张家界) 在一个不透明的袋子里装有3个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸岀一个乒乓球,恰好是黄球的概率为,则袋子内共有乒乓球的个数为________.16. (2分)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,请直接写出的结果为________.(2)利用上面所提供的解法,求值:=________ .三、解答题 (共12题;共77分)17. (5分) (2015九上·福田期末) 2cos60°﹣sin245°+(﹣tan45°)2016 .18. (7分) (2017八上·双城月考) 已知多边形的内角和等于1440°,求:(1)这个多边形的边数;(2)过一个顶点有________条对角线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档