数据的离散程度2

合集下载

统计数据的中心与离散程度

统计数据的中心与离散程度

统计数据的中心与离散程度统计学是一门有关数据收集、整理、分析和解释的学科。

统计数据的中心与离散程度是统计学中的两个重要概念,可以用来描述数据的集中程度和变异程度。

本文将介绍统计数据的中心与离散程度的概念及其计算方法,并通过实例进行解释。

一、统计数据的中心统计数据的中心是指数据中的一个代表性指标,用来表示数据集中的位置。

常用的中心指标有均值、中位数和众数。

1. 均值(Mean)均值是指将数据集中的每个观测值相加,然后除以观测值的总个数,得到的平均值。

均值可以用来衡量数据的集中程度,计算公式为:均值 = 总和 / 观测值的个数例如,对于数据集 {1, 2, 3, 4, 5},求均值的计算过程如下:1 +2 +3 +4 +5 = 1515 / 5 = 3因此,该数据集的均值为 3。

2. 中位数(Median)中位数是将数据集按照从小到大的顺序排列后,位于中间位置的数值。

若数据集的个数为奇数,则中位数为排列后的中间值;若数据集的个数为偶数,则中位数为排列后中间两个数的均值。

例如,对于数据集 {1, 2, 3, 4, 5, 6},求中位数的计算过程如下:按照从小到大的顺序排列后,为 {1, 2, 3, 4, 5, 6}由于数据集的个数为偶数,中位数为排列后中间两个数的均值:(3 + 4) / 2 = 3.5因此,该数据集的中位数为 3.5。

3. 众数(Mode)众数是数据集中出现次数最多的数值,一个数据集可以有一个或多个众数。

众数用于描述数据集中的典型值。

例如,对于数据集 {1, 2, 2, 3, 4, 4, 4, 5},求众数的计算过程如下:数据集中,数值 4 出现的次数最多,因此众数为 4。

二、统计数据的离散程度统计数据的离散程度是指数据集中各个数值偏离中心指标的程度,用于衡量数据的变异程度。

常用的离散程度指标有极差、方差和标准差。

1. 极差(Range)极差是指将数据集中的最大值和最小值相减得到的差值。

数据的离散程度2【公开课教案】(含反思)

 数据的离散程度2【公开课教案】(含反思)

6.4 数据的离散程度第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。

质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:质量/g甲厂乙厂(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。

(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。

在学生讨论交流的的基础上,教师结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差。

它是刻画数据离散程度的一个统计量。

目的:通过一个实际问题情境,让学生感受仅有平均水平是很难对所有事物进行分析,从而顺利引入研究数据的其它量度:极差。

注意事项:当一组数据的平均数与中位数相近时,学生在原有的知识与遇到问题情境产生知识碰撞时,才能较好地理解概念。

第二环节:合作探究内容1: 如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:78质量/g(1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距。

(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

数据的集中趋势与离散程度统计学中,描述和衡量数据分布特征的两个重要方面是集中趋势和离散程度。

集中趋势指的是数据集中在哪个数值附近,而离散程度描述了数据的分散程度。

在本文中,我将详细介绍集中趋势和离散程度的定义、常用的衡量指标和如何应用。

一、集中趋势集中趋势是指数据集中在哪个数值处的趋势或位置,常用的衡量指标包括均值、中位数和众数。

1. 均值均值是数据集所有观测值的算术平均数。

它是最常用的衡量集中趋势的指标。

计算均值的方法是将所有观测值相加,再除以观测值的个数。

均值受极端值的影响较大。

2. 中位数中位数是将数据集按照大小排序后,位于中间位置的观测值。

如果数据集的个数是奇数,则中位数就是排序后位于中间的观测值;如果数据集的个数是偶数,则中位数是中间两个观测值的平均数。

中位数对极端值不敏感,更能反映数据的典型情况。

3. 众数众数是数据集中出现频率最高的观测值。

一个数据集可能存在一个众数,也可能存在多个众数,或者没有众数。

众数主要用于描述离散型数据。

二、离散程度离散程度是描述数据分散程度的指标,常用的衡量指标包括极差、方差和标准差。

1. 极差极差是数据集中最大观测值和最小观测值之间的差值。

极差越大,表示数据的离散程度越大;极差越小,表示数据的离散程度越小。

极差对极端值非常敏感。

2. 方差方差是数据集观测值与均值之差的平方的平均值。

方差衡量了数据与其均值之间的离散程度,数值越大表示数据的离散程度越大,反之亦然。

方差对极端值非常敏感。

3. 标准差标准差是方差的平方根,用于衡量数据集的离散程度。

标准差具有与原始数据相同的度量单位,比方差更容易解释和理解。

标准差越大,表示数据的离散程度越大,反之亦然。

三、应用集中趋势和离散程度的概念和指标在各个领域具有广泛的应用。

在金融领域,通过分析股票价格的均值和离散程度,可以评估股票的风险和收益。

在市场调研中,通过分析产品价格的中位数和标准差,可以了解市场需求和产品价值的稳定性。

20.2.2 数据的离散程度

20.2.2 数据的离散程度
目标与资源
思考与记录
主题(课时)
数据的离散程度
学习目标
1、会利用方差公式计算简单数据的方差.
2、能充分体会理解方差是刻画一组数据离散程度的量.
3.学会用计算器计算方差。
评价任务
学习资源
学习经历
课前预习
课中学习
知识点:数据的离散程度
一、课前复习
平均数、中位数和众数分别表示什么?怎样求一组数据的平均数,中位数和众数?
课堂练习
教材第130页练习。
教材第13说说公式中每一个元素的意义.
根据方差的公式,计算一下机床A和B的方差,根据结果你知道哪台机床生产的零件更精确吗?
一组数据的方差越大,说明这组数据的离散程度_______.
用计算器计算方差的步骤都有哪些?你会用计算器计算方差吗?试着计算教材第131页例5,完成后与讲解对照,检查你的操作是否与教材相同,结果是否相同?
二、学习新知
阅读教材第128页问题⑥,计算出机床A和机床B这10个数据的平均数,你发现了什么?
当数据的平均数相同时,应该选择一种表示数据离散程度的量区分这两组数据。
描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小:设在一组数据 中,各数据与它们的平均数 的差的平方分别是 ,那么我们求它们的平均数,即用

20.2.2数据的离散程度(教案)

20.2.2数据的离散程度(教案)
2.培养学生掌握极差、方差、标准差等离散程度的计算方法,提升数学运算能力;
3.培养学生通过分析数据离散程度,发现数据规律和关联性,增强数据推理和解决问题的能力;
4.引导学生运用所学知识解决实际问题,培养数学在实际生活中的应用意识,提高数学建模素养。
三、教学难点与重点
1.教学重点
(1)理解离散程度的定义及意义,明确离散程度反映数据波动情况的特性;
(1)方差、标准差的计算过程:学生需要理解方差、标准差的计算公式,并能正确运用公式计算;
(2)离散系数的应用:学生需理解离散系数的意义,能够运用离散系数对不同数据集的离散程度进行比较;
(3)实际问题中的数据离散程度分析:学生需要将所学知识应用于实际问题,分析数据离散程度,并提出合理的结论。
举例:
(1)方差计算的难点:解释方差计算过程中平方的意义,以及为何要除以数据个数减一(n-1);
五、教学反思
在上完这节课后,我深感数据离散程度这一部分内容对学生来说既有挑战性也有实际意义。通过教学,我发现以下几个方面的亮点和需要改进之处:
1.亮点:学生们对数据离散程度的概念和意义有了较为清晰的认识,能够理解极差、方差、标准差等统计量的含义。在实践活动和小组讨论中,他们积极投入,表现出较高的学习兴趣。
4.实践活动:通过实践活动,我发现学生们能够将所学知识应用到实际问题中,这让我很欣慰。但在活动过程中,部分学生操作不够熟练,这说明我们在课堂上还需要加强实践操作的训练。
5.小组讨论:小组讨论环节,学生们表现出了很好的合作精神和思考能力。但在分享成果时,有些小组的表达不够清晰,这提示我在今后的教学中,要关注学生们的表达能力和逻辑思维能力的培养。
3.重点难点解析:在讲授过程中,我会特别强调极差、方差、标准差的计算方法以及离散系数的应用。对于难点部分,我会通过举例和比较来帮助大家理解。

6.4 数据的离散程度2

6.4 数据的离散程度2

6.4 数据的离散程度第一环节:情境引入内容:(1)回顾:什么是极差、方差、标准差?方差的计算公式是什么?一组数据的方差与这组数据的波动有怎样的关系?(2)计算下列两组数据的方差与标准差:①1,2,3,4,5;②103,102,98,101,99。

目的:复习极差、方差、标准差等概念及计算,巩固学生对刻画数据离散程度的三个统计量的认识。

注意事项:复习的内容主要让中下等学生来回答和反馈信息,掌握上节课的教学效果,及时鼓励学生或校正偏差。

第二环节:合作探究内容1:试一试:如图是某一天A、B两地的气温变化图,请回答下列问题:(1)这一天A、B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A、B两地的气候各有什么特点?B地目的:通过两地气温的变化的例子,培养学生从图表中读取信息、分析数据的能力,更准确地理解方差及其在现实生活中的应用。

注意事项:由于读取的数据多且复杂,引导学生利用计算器来高效完成。

内容2:我们知道,一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据越好呢?我们通过实例来探讨。

议一议:某校从甲、乙两名优秀选手中选一名选手参加全市中学生运动会跳远比赛,该校预先对这两名选手测试了10次,测试成绩如下表:1 2 3 4 5 6 7 8 9 10604 600 613 601 选手甲的成绩(cm)585 596 610 598 612 597选手乙的成绩(cm)613 618 580 574 618 593 585 590 598 624 (1)他们的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?目的:针对不少同学认为的方差越小越好的错误认识,课本设计了一个现实生活中的例子,旨在消除学生的这种不正确的看法,从而认识到要针对具体情况来分析方差对于问题的影响,体会数据的波动是广泛而有特点的。

鲁教版数学八年级上册3.4《数据的离散程度》教学设计2

鲁教版数学八年级上册3.4《数据的离散程度》教学设计2

鲁教版数学八年级上册3.4《数据的离散程度》教学设计2一. 教材分析《数据的离散程度》是鲁教版数学八年级上册3.4节的内容,这部分内容是学生在学习了数据的收集、整理和表示的基础上,进一步探究数据的离散程度。

通过这部分的学习,学生能够了解离散程度的含义,掌握离散程度的大小与数据波动大小之间的关系,学会使用方差、标准差等量化的方法来描述数据的离散程度。

教材通过实例引入离散程度的概念,然后引导学生通过探究活动,自主发现离散程度与数据波动的关系,最后介绍方差、标准差的概念和计算方法。

二. 学情分析学生在学习这部分内容时,已经有了一定的数学基础,掌握了数据的收集、整理和表示的方法,能够进行简单的数据分析。

但是,学生对数据的离散程度的概念和意义可能比较难以理解,同时,方差、标准差的计算方法也需要通过实例进行讲解和练习。

因此,在教学过程中,需要通过生动的实例和实际操作,让学生感受和理解离散程度的概念,以及通过大量的练习,掌握方差、标准差的计算方法。

三. 教学目标1.了解离散程度的含义,能说出方差、标准差的意义。

2.会计算简单数据的方差、标准差。

3.体会方差、标准差在实际生活中的应用。

四. 教学重难点1.教学重点:离散程度的概念,方差、标准差的计算方法。

2.教学难点:离散程度的概念的理解,方差、标准差的计算方法的掌握。

五. 教学方法采用“实例引入——探究活动——讲解讲解——练习巩固”的教学方法,通过生动的实例和实际操作,引导学生理解离散程度的概念,通过讲解和大量的练习,使学生掌握方差、标准差的计算方法。

六. 教学准备1.教师准备:离散程度的实例,方差、标准差的计算方法的讲解,练习题。

2.学生准备:笔记本,尺子,计算器。

七. 教学过程导入(5分钟)教师通过一个实例引入离散程度的概念,例如,比较两组数据:数据一:3, 5, 7, 9, 11数据二:5, 5, 5, 5, 5引导学生观察两组数据的波动情况,引发学生对离散程度的思考。

6.4.2数据的离散程度(教案)

6.4.2数据的离散程度(教案)
1.数据观念:通过学习数据的离散程度,培养学生对数据的敏感性,形成数据观念,能够运用平均数、中位数、众数等描述数据集中趋势,运用极差、方差、标准差等描述数据离散程度;
2.探索能力:培养学生运用数学方法对数据进行整理、分析和解决问题的探索能力,掌握数据分析的基本方法,能从数据中提取有用信息,为决策提供依据;
五、教学反思
在今天的教学中,我发现学生们对数据的离散程度这一概念的理解程度参差不齐。在导入新课的时候,通过提问的方式引起了学生的兴趣,他们能够积极地参与到课堂讨论中来。在理论介绍环节,我尽量用简单明了的语言解释了平均数、中位数、众数等概念,并通过案例分析让学生看到了这些指标在实际中的应用。
在讲授重点难点时,我发现有些学生对方差和标准差的计算步骤掌握不够牢固,需要我在这里多花一些时间,用更多的例子和练习来巩固他们的理解。同时,我也注意到,将学生分组讨论和进行实验操作,能够帮助他们更好地消化和吸收知识。他们在小组合作中能够互相学习,共同解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据离散程度在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在总结回顾环节,我鼓励学生提出疑问,很高兴看到他们能够大胆地提出自己的问题。这让我意识到,在今后的教学中,应该更多地给予学生表达自己想法的机会,让他们在思考中学习,在学习中思考。
-例如:给出某班级学生的身高数据,引导学生计算平均身高、中位数身高以及众数身高,理解这三种指标在描述数据集中的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档