第1节 离子选择电极及其分类汇总
《离子选择电极》课件

晶体膜电极的制备
要点一
总结词
晶体膜电极通常采用沉淀法或气相沉积法制备,其制备过 程相对复杂,需要精确控制反应条件和结晶过程。
要点二
详细描述
晶体膜电极的制备通常包括以下步骤:首先选择适当的反 应物和溶剂,并控制反应条件,如温度、压力、浓度等; 然后通过沉淀法或气相沉积法使反应物在基底上形成结晶 ;接着对这些结晶进行热处理和退火处理,以优化结晶结 构和性能;最后对结晶进行研磨和抛光,制成敏感膜。
环境监测
离子选择电极可用于检测水体、土壤等环境样品中的离子 浓度,如pH值、氯离子、氟离子等,有助于环境质量的 评估和污染治理。
医学诊断
离子选择电极在医学诊断中用于监测体液中离子的浓度变 化,如血液中的钾离子、钠离子等,对于诊断和治疗疾病 具有重要意义。
食品分析
在食品分析中,离子选择电极可用于检测食品中的矿物质 、添加剂和有害物质,如硝酸盐、亚硝酸盐等,以确保食 品的安全和品质。
液体膜电极的制备
总结词
液体膜电极通常采用涂布法或浸渍法制备,其制备过程 相对简单,需要选择合适的液态敏感膜材料和基底。
详细描述
液体膜电极的制备通常包括以下步骤:首先选择适当的 液态敏感膜材料和基底;然后将液态敏感膜材料涂布或 浸渍在基底上;接着对这些涂布或浸渍后的基底进行干 燥和固化处理;最后对固化后的膜进行研磨和抛光,制 成敏感膜。
离子选择电极的原理
离子选择电极的敏感膜对目标离子具有选择性响应,能够结合目标离子,从而改变膜电位。膜电位的 变化与目标离子的浓度成一定关系,通过测量膜电位的变化可以推算出目标离子的浓度。
内参比电极的作用是提供稳定的电位参考点,而内参比溶液则维持一定的离子强度,以便进行准确的 浓度测量。
大学仪器分析教学课件(电位分析及离子选择电极)

二、离子选择性电极的 种类、 种类、原理和结构
type, principle and structure of ion selective electrode
三、离子选择电极的性 能参数
Capability parameter of ion selective electrode
23:37:28
一、电位分析原理
E膜 = E外 - E内 = 0.059 lg( a1 / a2)
如果: 如果 a1= a2 ,则理论上E膜=0,但实际上E膜≠0 , 产生的原因: 玻璃膜内、外表面含钠量、 产生的原因: 玻璃膜内、外表面含钠量、表面张力以及 机械 和化学损伤的细微差异所引起的。长时间浸泡(24hr) 和化学损伤的细微差异所引起的。长时间浸泡( ) 恒定( ~ 恒定(1~30mV); ) (2) 酸差:测定溶液酸度太大(pH<1)时, 电位值偏离线性 酸差:测定溶液酸度太大(pH<1) 关系,pH的测量值比实际 的测量值比实际高 产生误差; 关系,pH的测量值比实际高,产生误差; 碱差(或钠差) pH>10产生误差 主要是Na 产生误差, (3) 碱差(或钠差) : pH>10产生误差,主要是Na+参与相 界面上的交换所致,pH降低 降低; 界面上的交换所致,pH降低;
第八章 电位分析法
potentiometry and conductometry
一、电位分析原理
principle of potentiometry analysis
第一节 电位分析原理与离子 选择性电极
principle of potentio-metry analysis and ion selective electrode
23:37:28
仪器分析:电化学分析-离子选择性电极(ISE电极)

电化学分析(二) 凌悦菲
目
录
Contents
1 2 3 4
指示电极 电极分类 离子选择性电极 常用离子选择性电极
仪器分析
二、离子选择性电极(ISE电极)
电化学分析(二)
组成:电极管、内参比电极、内参比溶液、敏感膜
膜电位(Ф膜):敏感膜内外两个相界面处由于 离子交换、扩散产生的电位差。
仪器分析
二、离子选择性电极(ISE电极)
电化学分析(二)
Ф膜=K± lnai=K±
lgai(25℃)
n:离子电荷数,若离子带负电荷前面取“-”
ISE的电极电位 ФISE=Ф内参+Ф膜
仪器分析
电化学分析(二)
ISE的性能:选择性、响应时间、稳定性 选择性系数K =
ij
式中 :i—待测离子;
j—共存干扰离子
稳定性:漂移程度、重现性(三次测定值的平均偏差)
仪器分析
思是否越有利?为什么? 电极的稳定性和响应时间,是否是同一意思?
Kij的取值范围应该是多少?由其值可以说明什么?
感谢观看
离子选择性电极的种类和性能

§4-6离子选择性电极的种类和性能离子选择性电极的种类繁多,且与日俱增。
1975年国际纯化学与应用化学协会(IUPAC)基于离子选择性电极绝大多数都是膜电极这一事实,依据膜的特征,推荐将离子选择性电极分为以下几类*:原电极(primary electrodes):晶体(膜)电极(crystalline(membrane) electrodes) 均相膜电极(homogeneous membrane electrodes)非均相膜电极(heterogeneous membrane * IUP AC,Pure. Appl.Chem. 48,129(1976)electrodes)非晶体(膜)电极(non-crystalline(membrane) electrodes):刚性基质电极(rigid matrix electrodes)活动载体电极(electrodes with a mobile carrier) 敏化电极(sensitized electrodes):气敏电极(gas sensing electrodes)酶(底物)电极(enzyme(substrate) electrodes)1. 晶体(膜)电极这类电极的薄膜一般都是由难溶盐经过加压或拉制成单晶、多晶或混晶的活性膜。
由于制备敏感膜的方法不同,晶体膜又可分为均相膜和非均相膜两类。
2均相模电极的敏感膜由一种或几种化合物的均匀混合物的晶体构成,而非均相膜则除了电活性物质外,还加入某种惰性材料,如硅橡胶、聚氯乙烯、聚苯乙烯、石蜡等,其中电活性物质对膜电极的功能起决定性作用。
电极的机制是,由于晶格缺陷(空穴)引起离子的传导作用。
接近空穴的可移动离子移动至空穴中,一定的电极膜,按其空穴大小、形状、电荷分布,只能容纳一定的可移动离子,而其它离子则不能进入。
晶体膜就是这样限制了除待测离子外其它离子的移动而显示其选择性。
因为没有其它离子进入晶格,干扰只是由于晶体表面的化学反应而引起的。
离子选择性电极的分类及响应机理课件

酶电极由固定化酶膜、内参比溶液和 内参比电极组成。酶对特定底物具有 高选择性催化作用,同时将底物转化 成可测量的电信号,通过电化学方法 测量底物浓度。
02
离子选择性电极的响应机理
电位响应机理
总结词
电位响应机理是离子选择性电极的主要响应机理之一,通过测量电极电位的变化来检测离子的浓度。
详细描述
05
结论
离子选择性电极的重要性和应用价值
离子选择性电极是一种电化学传感器,用于检测溶液中的离子浓度。它 具有响应速度快、检测范围广、操作简便等优点,因此在环境监测、生 物医学、食品分析等领域得到了广泛应用。
离子选择性电极的原理是基于膜电位理论,通过测量膜电位的变化来推 算溶液中离子的浓度。膜电位的变化与待测离子的活度有关,因此离子
液体膜电极
总结词
液体膜电极是一种常用的离子选择性电极,其工作原理基于 液态膜的选择性透过性质。
详细描述
液体膜电极由敏感膜、内参比溶液和内参比电极组成,敏感 膜通常为液态有机膜或聚合物膜,对特定离子具有高选择性 透过性。当液膜与被测溶液接触时,透过液膜的离子产生电 位响应。
酶电 极
总结词
酶电极是一种生物传感器,其工作原 理基于酶的催化作用和电化学性质。
当离子选择性电极与被测溶液接触时,由于离子选择电极的敏感膜对特定离子的高选择性,使得敏感 膜表面的离子浓度与溶液中的离子浓度之间产生差异,从而引起膜电位的变化。通过测量这种电位变 化,可以推算出溶液中离子的浓度。
电流响应机理
总结词
电流响应机理是通过测量流过电极的电流来检测离子的浓度。
详细描述
在一定的电位下,离子选择性电极对特定离子的透过率是一定的,当溶液中的离子浓度发生变化时,透过电极的 离子数量也会相应改变,从而引起电流的变化。通过测量这种电流的变化,可以推算出溶液中离子的浓度。
电位分析原理与离子选择电极

(6) 冠醚化合物也可用作为中性载体。
2021/3/16
液膜电极应 用一览表
2021/3/16
4.敏化电极
敏化电极是指气敏电极、酶电 极、细菌电极及生物电极等。
产生的原因: 玻璃膜内、外表面含钠量、表面张力以及 机械 和化学损伤的细微差异所引起的。长时间浸泡后(24hr) 恒定(1~30mV);
2021/3/16
讨论:
( 4) 高选择性 :膜电位的产生不是电子的得失。其它离子 不能进入晶格产生交换。当溶液中Na+浓度比H+浓度高1015 倍时,两者才产生相同的电位;
(9)缺点:是电极内阻很高,电阻随温度变化。
2021/3/16
3.流动载体膜电极(液膜电极)
钙电极:内参比溶液为含 Ca2+ 水溶液。内外管之间装的是 0.1mol/L二癸基磷酸钙(液体离子交 换剂)的苯基磷酸二辛酯溶液。其极 易扩散进入微孔膜,但不溶于水, 故不能进入试液溶液。
二癸基磷酸根可以在液膜-试液两相界面间传递钙离子,直至达到 平衡。由于Ca2+在水相(试液和内参比溶液)中的活度与有机相中的 活度差异,在两相之间产生相界电位。液膜两面发生的离子交换反应:
当氟电极插入到F-溶液中时,F-在 晶体膜表面进行交换。25℃时:
E膜 = K - 0.059 lgaF- = K + 0.059 pF
具有较高的选择性,需要在pH5~7之间使用,pH高时, 溶液中的OH-与氟化镧晶体膜中的F-交换,pH较低时,溶液 中的F -生成HF或HF2 - 。
离子选择性电极介绍

硫化银电极可测定 Ag+,其电极电位可表达为
E k ln t
(1-8)
硫化银电极除了测定 Ag+以外,还可以测定 S2-。当电极与试液接触时,存在以下平衡
Ag2S ═ 2Ag+ + S2-
由于氟离子活度梯度存在而引起的扩散电位。这些值均与它们各自相关的氟离子活度有关。可
得到:
ln
(1-3)
式中,R 为气体常数;T 为热力学温度;F 为法拉第常数;, , 分别为膜外测和内测溶液 与膜接触的界面溶液中氟离子的活度。由于膜内测的 式固定不变的,式(1-3)可写为
ln Ⅰ
(1-4)
式中, 为与膜内测氟离子活度有关的常数; 即为试液中氟离子活度 。
5×10-7~1×10-1
Cl-
AgCl+Ag2S
5×10-5~1×10-1
5~6.5 2~12
Br-
AgBr+Ag2S
5×10-6~1×10-1
2~12
(1-10)
主要干扰离子 OH-
Br-,S2O32-,I-,CN-,S2S2O32-,I-,CN-,S2-
ICNAg+,S2Cu2+ Pb2+ Cd2+
近年来,离子选择性薄膜电极得到了极大的发展,一大批粒子选择性电极倍研制出来。按 照 IUPAC 推荐,以敏感膜材料为基础对离子选择性电极进行分类:
原电极是指敏感膜直接与试液接触的离子选择性电极。敏化离子选择性电极是以原电极为 基础,利用复合膜界面敏化反应的一类离子选择性电极。下面主要介绍晶体膜电极和刚性基质 电极。
离子选择电极

电极介绍
离子选择性电极:(电极结构、晶体电极(均相晶膜电极(F-、Ag2S)、多相晶膜电极)、流动载体电极(K+、 Ca2+)、敏化离子(灵敏度、响应范围、选择性系数、响应时间、稳定性、内阻、准确性)
电极构造
离子选择电极的构造主要包括: 电极腔体――玻璃或高分子聚合物材料做成 内参比电极――通常为Ag/AgCl电极 内参比溶液――由氯化物及响应离子的强电解质溶液组成 敏感膜――对离子具有高选择性的响应膜
离子选择电极
利用膜电位测定溶液中离子活度或浓度的电化学传感器
01 电极介绍
03 电极构造 05 响应范围
目录
02 基本特性 04 发展历史 06 其它应用
离子选择电极又称离子电极。一类利用膜电位测定溶液中离子活度或浓度的电化学传感器。1906年由R.克里 默最早研究,随后由德国哈伯(F.Harber)等人制成的测量溶液PH的玻璃电极是第一种离子选择电极,到60年代 末,离子选择电极的商品已有20多种。离子选择电极具有将溶液中某种特定离子的活度转化成一定电位的能力, 其电位与溶液中给定离子活度的对数成线性关系。离子选择电极是膜电极,其核心部件是电极尖端的感应膜。按 构造可分为固体膜电极、液膜电极和隔膜电极。离子选择电极法是电位分析的分支,一般用于直接电位法,也可 用于电位滴定。该法的特点是:①测定的是溶液中特定离子的活度而不是总浓度;②使用简便迅速,应用范围广, 尤其适用于对碱金属、硝酸根离子等的测定;③不受试液颜色、浊度等的影响,特别适于水质连续自动监测和现 场分析。PH和氟离子的测定所采用的离子选择电极法已定为标准方法,水质自动连续监测系统中,有10多个项目 采用离子选择电极法。
发展历史
离子选择性电极的分类 1906年发现玻璃膜电位现象,1929年制成实用的玻璃pH电极;上世纪50年代末制成 了碱金属玻璃电极;1965年制成了卤离子电极;随后,有选择性响应的各种电极得到迅速发展。1976年,IUPAC 建议将这类电极称为离子选择性电极(SIE),并作详细分类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
φ =φOx/Red +
23:46:23
RT ln aOx nF aRed
Apparatus: reference electrode indicator electrode microammeter 实际测量时,都是通过测定由 indicating electrode 和 reference electrode 组成的Cell 的电动势(electromotive force)来完成的。 When measuring, the reference electrode does
将膜电极和参比电极一起插到被测溶液中,则电池结
构为: 外参比电极‖被测溶液( ai未知)∣ 内充溶液( ai一定)∣ 内参比电极
(敏感膜)
23:46:23
1.Glass membrane(Non-crystalline membranes)electrode
varying the composition of the glass membrane can cause the hydrated glass to acquire an increased affinity for various monovalent cations。
管之间装的是0.1mol/L二癸基磷酸
钙(液体离子交换剂)的苯基磷酸二辛 酯溶液。其极易扩散进入微孔膜,
但不溶于水,故不能进入试液溶液。
二癸基磷酸根可以在液膜-试液两相界面间传递钙离子,直至达到 平衡。由于Ca2+在水相(试液和内参比溶液)中的活度与有机相中的
活度差异,在两相之间产生相界电位。液膜两面发生的离子交换反应:
Glass Membrane Structure: SiO44- framework with charge balancing cations
SiO2 72 %, Na2O 22 %, CaO 6 %
After soaked in water,the sodium ions of the outer layer are exchanged for protons in the solution:
The glass membrane is usually 0.03 to 0.1mm thick, and the hydrated layers are 0.01~10 μm。在水化层表面上的H+与 溶液中H+发生离子交换而产生两个相界电位。
≡SiO-H+(表面)+H20(溶液)
23:46:23
SiO-Na++H+
23:46:23
SiO-H+ + Na+
玻璃膜电极
23:46:23
玻璃膜电位的形成
for the electrode to become operative, it must be soaked in water, during the process, the outer surface of the membrane becomes hydrated. The inner surface is already hydrated:
(6)改变玻璃膜的组成,可制成对其它阳离子响 应的玻璃膜电极; (7) 优点:是不受溶液中氧化剂、还原剂、颜色 及沉淀的影响,不易中毒; (8)缺点:是电极内阻很高,电阻随温度变化。
23:46:23
例:经常使用的pH电极在使用前应用下
列哪种溶液活化 A. 纯水 B. 0.1mol/LKCl 溶液 C. pH4溶液 D. 0.1mol/LHCl溶液
=k* -0.0592pH
23:46:23
讨论:
ions in the solution can exchange for the Na+ ions, but the equilibrium constant for the above exchange is very large because of the large affinity of the glass for protons.
given ion, but each will possess a certain selectivity toward
a given ion or ions. 膜电极的关键:是一个称为选择膜的敏感元件。 敏感元件:单晶、混晶、液膜、功能膜及生物膜等构 成。 膜电位:膜内外被测离子活度的不同而产生电位差。
not respond to analyte, while the potential of the indicating electrode changes with analyte concentration.
23:46:23
一) types , principle and structure of ion selective electrode 离子选择性电极(又称膜电极)。
23:46:23
K+0.0592 lg
外H 内H
+
+
玻璃膜电位
φM = K + 0.0592 lg a1 = K - 0.0592 pH试液
讨论:
(1) 玻璃膜电位与试样溶液中的pH成线性关系。式中K是 由玻璃膜电极本身性质决定的常数;
(2) 电极电位应是内参比电极电位和玻璃膜电位之和; pH玻璃电极电位φISE=φ内参+φM
结构:右图
敏感膜:(氟化镧单晶)
掺有EuF2 的LaF3单晶切片;
内参比电极:Ag-AgCl电极(管内)。
内参比溶液:0.1mol/L的NaCl和0.1mol/L的NaF混合溶 液(F-用来控制膜内表面的电位,Cl-用以固定内参比电极 的电位)。
23:46:23
原理:
LaF3的晶格中有空穴,在晶格上的 F-可以移入晶格邻近的空穴而导电。对 于一定的晶体膜,离子的大小、形状和 电荷决定其是否能够进入晶体膜内,故 膜电极一般都具有较高的离子选择性。 当氟电极插入到 F- 溶液中时, F- 在 晶体膜表面进行交换。25℃时: E膜 = K - 0.059 lgaF- = K + 0.059 pF
electrodes with a mobile carrier(流动载体电极)
sensitized electrodes (敏化电极) gas sensing electrodes (气敏电极)
enzyme electrodes (酶电极)
23:46:23
principle and structure of ion selective electrode
≡SiO- +H30+
A.在水化层表面上的H+与溶液中H+发生离子交换而产生两个 相界电位。 B.在内外两水化凝胶层与干玻璃之间离子的相对移动产生两 个diffusion potential(扩散电位), φd 内 =- φd 外 相界电位和扩散电位两者之和构成膜电位。 φM = φD外 + φd 内 + φd 外 +φD内= φD外 +φD内 =K+0.0592lgα外,H+= K -0.0592pH 玻璃电极使用前,必须在水溶液中浸泡。
第十章 电位分析法
potentiometry
一、离子选择性电极的 种类、原理和结构
type, principle and structure of ion selective eon selective electrode and classification
在相内自由移动,与试样中待测离子发生交换产生膜电位;
O Ox/Red
0.0592 aOx lg n aRe d
对于金属电极(还原态为金属,活度定为1):
23:46:23
O M n /M
0.0592 lg aM n n
Potentiometric methods: we measure
the potential at zero current and the relative concentrations of the species
( 3) 高选择性 :膜电位的产生不是电子的得失。Other
当溶液中Na+浓度比H+浓度高1015倍时,两者才产生相同的 电位; (4) Acid error(酸差):In very acid solutions, the activity of water is less than unity, and a positive error in the pH reading results;
[(RO)2PO]2 - Ca2+ (有机相) = 2 [(RO)2PO]2 -(有机相) + Ca2+ (水相) 钙电极适宜的pH范围是5~11,可测出10-5 mol/L的Ca2+ 。
23:46:23
流动载体膜电极(液膜电极)的讨论
(1) 流动载体膜电极(液膜电极)的机理与玻璃膜电极相似;
(2) 离子载体(有机离子交换剂)被限制在有机相内,但可
具有较高的选择性,a pH range of 5~7 is claimed,pH
高时,溶液中的OH-与氟化镧晶体膜中的F-交换,pH较低时, 溶液中的F -生成HF或HF2 - 。
23:46:23
3.流动载体膜电极(液膜电极)
Calcium –selective electrode: 内参比溶液为含 Ca2+水溶液。内外
23:46:23
例2:测水样pH值时,甘汞电极是
A. 工作电极 B. 指示电极 C. 参比电极 D. 内参比电极 例3.膜电位的产生是由于 _____________________________的 结果。 溶液和膜界面离子发生交换
23:46:23
2.晶体膜电极 (Fluoride electrode)
being measured at the indicating