压缩机异常喘振原因分析及有效对策

合集下载

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

喘振的原因及解决方法

喘振的原因及解决方法

喘振的原因及解决方法喘振的原因及解决方法1、负荷过低喘振是离心式压缩机的固有特性。

当压缩机吸气口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致压缩机出口压力降低。

但是系统管网的压力没有瞬间相应的降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于压缩机出口压力时,气体又向管网流动。

如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。

离心冷水机组在低负荷运行时,压缩机导叶开度减小,参与循环的制冷剂流量减少。

压缩机排量减小,叶轮达到压头的能力也减小。

而冷凝温度由于冷却水温未改变而维持不变,则此时就可能发生旋转失速或喘振。

2、冷凝压力过高当机组负荷过高时,冷却水温度不能及时降低,就会造成冷凝温度增高,冷凝压力也就随之增高,当增加至接近于排气压力时,冷凝器内部分制冷剂气体会倒流,此时也会发生喘振。

对于任何一台离心式压缩机,当排量小到某一极度限点或冷凝压力高于某一极度限点时就会发生喘振现象。

冷水机组是否在喘振点区域运行,主要取决于机组的运行工况。

喘振运行时离心式制冷机的一种不稳定运行状态,会导致压缩机的性能显著恶化,能效降低;大大加剧整个机组的振动,喘振使压缩机的转子和定子原件经受交变力的动应力;压力失调引起强烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等;叶轮动应力加大。

1、改变压缩机转速对压缩机加装变频驱动装置,将恒速转动改为变速转动。

在低负荷状态运行时,通过同时调节倒流叶片开度和电机转速,调节机组运行状态,可控制离心机组迅速避开喘振点,避免喘振对机组的伤害,确保机组运行安全。

同时,变频离心机运行在部分负荷工况时,低转速运行,降低了电机噪音,并能缓解与建筑物产生共振现象。

2、降低冷凝温度发生喘振时,一般会认为是吸入口压力过低造成的,但机组在80%以上负荷运转时也会产生喘振,则是由于冷凝压力过高引起的,这时就要想法降低冷却水温度来降低冷凝压力。

工艺空气压缩机的喘振及预防

工艺空气压缩机的喘振及预防

工艺空气压缩机的喘振及预防什么是工艺空气压缩机的喘振?在工业生产过程中,空气压缩机是一种常用的设备。

在运行过程中,压缩机可能会出现喘振现象,这是指系统压力在一定流量条件下发生快速周期性的振荡现象。

喘振的形式有多种,常见的有一次振荡、二次振荡和多次振荡等,喘振的发生会导致压缩机的故障、减少设备寿命、能源浪费等问题,影响产品质量和工厂生产效率。

工艺空气压缩机喘振的原因1.过流和过压设备运行过程中,如果进气流量和阻力非常大,输出的风量不能满足生产需求,这时就需要增大排气压力、减小出口截面积,这两个措施都会增加振荡风动力。

出口截面积变小,进一步缩小进口面积,阻力也会更大,容易出现回流,损失也会更大。

2.群体变幻群体变幻的原因是空气压缩机中的气体具有某种定量的弹性模量,当输入侵蚀力发生变化时,气体颗粒和空气充满了一定的空化,会产生一定的变形,会出现气动不稳定的滞后效应,导致喘振产生。

3.流向的变化和节流当压缩机在运行过程中遇到节流或流量变化时,会出现流方向的变化,这种转换会改变压缩机过滤物的动力性质,引起喘振现象。

4.非完全气体压缩机可能在设备或管路中加入了一些液体或固体物质,它们会突然随着气流经过时变化,这个突变会引起气体流的不稳定性,导致喘振。

工艺空气压缩机喘振的预防经过上述对工艺空气压缩机喘振原因的分析,以下是一些有效的预防措施。

1.控制进气及排气流量要预防喘振问题,就需要控制进气流量和排气流量,这样可以减少气体压缩程度,降低气体流动的剧烈程度。

此外,还应根据工艺需要进行有效的处理大量的空气。

2.流量约束在设计或安装空气压缩机时,应该对流量进行约束。

这可以通过增加流量容量,增加气室容积、阀门调节、分流减少气流量、缩小进排气口等措施来实现。

3.安装振动杀器振动杀器一般采用振动减震弹性体,能吸收压力波,而且不影响空气压缩机的输出,并且可以降噪,提高工艺设备的运行效率。

4.增加进气管路及附加装置进气口和出气口的大小比应该尽可能的小,进口管道直径应该比出口大,这样可以起到一定的减小压差,降低流速,减小输出封堵荷载,从而减少喘振概率。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施
压缩机防喘振系统是用于防止压缩机在工作过程中出现喘振现象的一种控制系统。

喘振是指压缩机在运行过程中由于压力倒挂和气阀开闭不当等原因,使得压缩机出现杂音、振动加剧,甚至引起设备损坏的现象。

1. 振动增大:喘振会使得压缩机的振动加剧,导致设备整体的振动增大,从而造成设备寿命降低、设备故障增多等问题。

2. 噪音增大:喘振会使得压缩机发出较大的噪音,影响工作环境和工人的身心健康。

3. 能耗增加:喘振会使得压缩机的工作效率下降,从而导致能耗增加,造成能源的浪费。

4. 设备损坏:喘振会使得压缩机的工作过程不稳定,从而可能导致设备的损坏,增加维修和更换的成本。

1. 定期检修:定期检修压缩机,对机械设备、气阀等进行维护和修理,确保其正常工作。

2. 合理选型:在选用压缩机时,需要根据实际工况和设备需要,选择合适的型号和规格,减少喘振的可能性。

3. 安装调试:在安装压缩机时,需要严格按照厂家的要求进行安装和调试,确保设备的稳定运行。

4. 加装减振装置:在压缩机的进出口处加装减振装置,减少设备振动对周围环境和设备的影响。

5. 增加控制系统:增加喘振控制系统,可以监测和控制压缩机的工作状态,及时采取措施避免喘振的发生。

6. 做好运行维护:在压缩机工作过程中,要做好运行控制和维护,及时清洁设备和更换损坏的部件,确保设备的正常工作。

7. 培训工作人员:对使用压缩机的工作人员进行培训,提高其对喘振现象的识别和处理能力,减少人为操作引起的喘振问题。

通过采取上述防范措施,可以有效降低压缩机防喘振系统出现问题的可能性,提高设备的安全性和稳定性,延长设备的使用寿命,减少生产成本。

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施

压缩机喘振原因及预防措施压缩机喘振原因及预防措施0 引言压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振曾经造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废,这在国内外已经发生过了。

喘振在运行中是必须时刻提防的问题。

在运行时,喘振的迹象一般是首先流量大幅度下降,压缩机排量显著降低,出口压力波动,压力表的指针来回摆动,机组发生强烈振动并伴有间断低沉的吼声,好像人在于咳一般。

判断喘振除了凭人的感觉外,还可以根据仪表和运行参数配合性能曲线查出。

1 喘振发生的条件根据喘振原理可知,喘振在下述条件下发生:1.1 在流量小时,流量降到该转速下的喘振流量时发生压缩机特性决定,在转速一定的条件下,一定的流量对应于一定的出口压力或升压比,并在一定的转速下存在一个极限流量——喘振流量。

当流量低于这个喘振流量时压缩机便不能稳定运行,发生喘振。

上述流量,出口压力,转速和喘振流量综合关系构成压缩机的特性线,也叫性能曲线。

在一定转速下使流量大于喘振流量就不会发生喘振。

1.2 管网系统内气体的压力,大于一定转速下对应的最高压力是发生喘振如果压缩机与管网系统联合运行,当系统压力大大高出压缩机该转速下运行对应的极限压力时,系统内高压气体便在压缩机出口形成恒高的“背压”,使压缩机出口阻塞,流量减少,甚至管网气体倒流,造成压缩机喘振。

2 在运行中造成喘振的原因在运行中可能造成喘振的各种原因有:2.1 系统压力超高造成这种情况有:压缩机紧急停机,气体为此进行放空或回流;出口管路上的单向逆止阀门动作不灵活关闭不严;或者单向阀距压缩机出口太远,阀前气体容量很大,系统突然减量,压缩机来不及调节,防喘系统未投自动等等。

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施压缩机作为工业制造的重要设备,在生产过程中扮演着非常重要的角色。

随着使用时间的延长,压缩机防喘振系统出现的问题也随之而来。

这些问题不仅会影响生产效率,还可能会对设备造成严重的损坏,给企业带来经济损失。

及时发现并解决压缩机防喘振系统的问题,以及采取有效的防范措施,对于保障设备的稳定运行、提高生产效率具有非常重要的意义。

1. 压缩机防喘振系统工作不稳定:在使用过程中,由于设备长时间运行或操作不当等原因,导致压缩机防喘振系统工作不稳定,出现频繁的起伏和抖动现象,影响了设备的正常运行。

2. 压缩机防喘振系统噪音大:在运行中,压缩机防喘振系统发出噪音过大,不仅影响了生产员工的工作环境,还可能会干扰周围的环境、甚至影响到其他设备的正常运行。

过大的噪音还可能会对设备本身造成损害。

以上问题的出现,不仅会影响到生产效率,还可能会对设备的寿命和稳定性造成影响,我们必须及时采取措施来解决这些问题。

二、防范措施:1. 定期检查和维护:压缩机防喘振系统作为设备的重要部分,必须经常进行维护和检查,及时发现并解决一些潜在的问题,保障设备的正常运行和稳定性。

2. 保持设备清洁:定期清洁设备表面和内部的灰尘和杂物,保持设备的清洁,减少设备的摩擦和损耗,从而减少防喘振系统的问题出现。

3. 定期更换易损件:对于一些易损件,比如密封件、软管等,需要定期进行更换,以保证设备的正常运行和防喘振系统的稳定性。

也可以增加易损部分的使用寿命,减少设备故障的发生。

4. 合理安装和使用设备:在设备安装和使用过程中,要根据设备的使用说明书进行安装和使用,避免不当的操作导致的设备问题和损坏。

5. 清理并调整设备周围环境:设备周围的环境也会对设备的运行和防喘振系统产生影响,因此需要定期清理设备周围的杂物,保持设备周围的通风良好,减少设备的运行噪音和震动。

压缩机防喘振系统的问题不容忽视,只有及时发现和解决这些问题,采取有效的防范措施,才能保证设备的正常运行和稳定性。

压缩机喘振 压差

压缩机喘振 压差

压缩机喘振:原因、影响与解决方法一、引言压缩机在工业领域中的应用十分广泛,特别是在石油、化工、制冷和空调等行业。

然而,压缩机在运行过程中可能会遇到喘振问题,这不仅会影响压缩机的性能,严重时甚至可能导致压缩机损坏。

本文将对压缩机的喘振现象进行详细介绍,包括其产生原因、影响及解决方法。

二、压缩机喘振的产生原因喘振是压缩机的一种特有现象,主要发生在低流量、高压力比的情况下。

当压缩机的流量减少时,叶轮叶片的背面会产生涡流,导致气流周期性地倒流,从而引起压缩机的振动和噪声。

此外,压缩机的喘振还与其设计、安装、运行工况等因素有关。

三、压缩机喘振的影响压缩机喘振会产生一系列负面影响。

首先,喘振会导致压缩机的振动和噪声,严重时甚至可能损坏压缩机。

其次,喘振会影响压缩机的效率,使其性能下降。

此外,喘振还可能引起流体机械的疲劳裂纹,缩短压缩机的使用寿命。

四、解决压缩机喘振的方法针对压缩机喘振问题,有多种解决方法。

首先,可以通过改变压缩机的工作点来避免喘振。

例如,通过降低压缩机的入口压力或提高出口压力,可以将压缩机的工作点移至喘振区之外。

此外,还可以通过优化压缩机的设计来降低喘振的可能性。

例如,优化叶轮和扩压器的设计,降低流体在叶轮中的旋转速度,从而减小离心力和减小流体在进入扩压器前的速度。

同时,增加一级或多级中间冷却器可以有效降低温度和减小温差,从而减小气体的密度差和减小压差。

五、结论通过对压缩机喘振的深入研究,可以发现其产生原因主要与流体的物理性质、压缩机的设计、运行工况等因素有关。

喘振会导致压缩机的振动和噪声,影响其性能和寿命。

因此,采取有效的解决方法来避免或减小喘振是十分必要的。

这需要我们在实践中不断探索和创新,以实现压缩机的安全、高效和长寿命运行。

同时,加强对于流体机械内部流场的监测和控制也是未来研究的重要方向。

六、展望随着科技的不断发展,未来对于压缩机喘振的研究有望在多个方面取得突破。

首先,数值模拟和实验研究将更加深入,为解决喘振问题提供更精确的理论依据和实践指导。

17喘振发生的原因及解决方案

17喘振发生的原因及解决方案
制逻辑提供信号,使其减少导流叶片的开度。
c随着冷负荷的继续下降,来自压缩机的转速信号继继关闭导流叶片,并提高电动机的转速。工作原理如
下图所示。
喘振会带来的后果:
1) 使压缩机的性能显著恶化,气体参数(压力、排量)产生大幅度脉动
2) 噪声加大。
3) 大大加剧整个机组的振动,喘振使用压缩机的转子和定子的元件经受交变的动应力,压力失调引起强
烈的振动,使密封和轴承损坏,甚至发生转子和定子元件相碰等,叶轮动应力加大;
4) 电流发生脉动;
凝器中的压力下降到等于压缩出口压力为止。这时压缩机又开始向冷凝器送气,压缩机恢复正常工作。但
当冷凝器中的压力也恢复到原来的压力时,压缩机的流量又减小,压缩机出口压力又下降,气体又产生倒
流,如此周而复始,产生周期性的气流振荡现象。
喘振是压缩机一种不稳定的运行状态,压缩机周期性的发生间断的吼响声,整个机组出现强烈的热气排到蒸发器,降低压比,同时提高排气量,从而避免喘振的发生。
2)变频防喘振措施
VSD是Varialbe Speed Drives的简称,译为变频驱动装置,通过调节电动机的转速和优化压缩机导流叶片
的位置,使机组在各种工况下,尤其是部分负荷情况下,始终保持最佳效率。
喘振发生的原因及解决方案
1、喘振的原因
离心机组运行在部分负荷时,压缩机导叶开度减小,制冷剂的流量变得很小,压缩机流道中出现严重的
气体脱流,压缩抽的出口压力突然下降。由于压缩机和冷凝器联通工作,而冷凝器中气体的压力并不同时
降低,于是冷凝器中的气体压力反大于压缩机出口外的压力,造成冷凝器中的气体倒流回压缩机,直至冷
VSD控制的基本参数是是冷水出水温度实际值与设定值的温差。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩机异常喘振原因分析及有效对策1、引言在多年对电力、冶金、石油化工、煤化工、油田、航空等行业轴流式压缩机和离心压缩机的状态监测及故障诊断工作中,发现不论是新投产的机组、还是运行多年的机组,都由于各种不同原因引起喘振或旋转分离,经常看到因为喘振问题造成机组振动过大,联锁停机、推力瓦磨损、径向瓦磨损、叶轮开裂、叶片断裂、部件磨损、管线开裂等等问题,引起问题的原因很多,本文列举了13种,并给出7种典型喘振原因案例,包括相应对策和效果,案例和方法基本都是笔者独创和首次提出应用的,没有资料可以参考和借鉴,而应用效果验证了解决问题方法的正确性。

同时本文提出一点设想。

2、旋转分离与喘振常见的与不常见的原因对于离心与轴流式压缩机,由于入口流量低于性能曲线对应的转速下的流量,因为叶片入口安装角的微小误差,会在某只或某几只叶片的非工作面发生边界层分离,并且沿着旋转方向依次发生,故称为:旋转分离,当流量进一步降低,旋转分离在所有流道和整级、整机发生,并和出口罐及管系联合作用,就会发展成喘振;造成喘振的物理机理很简单,而对于一起起发生在具体机组上的喘振故障,所引起喘振的具体原因,却是形形色色、各种不同的存在。

比如发生在西南地区某石化乙烯气透平压缩机进口管线、或出口管线、及机内通流截面局部堵塞引起的,发生在中油辽宁某石化的乙烯气离心压缩机组的喘振是防喘系统控制逻辑问题造成,每天损失产值过亿圆,中石化武汉中韩石化开工过程中乙烯气透平压缩机组喘振是由于入口罐引液不足问题造成,损坏了干气密封;中油东北某石化空分装置透平压缩机的喘振是因为环境湿度过大造成;山东某石化丙烯气透平压缩机喘振是入口气体温度过低造成的;华能公司某电厂的多轴式离心压缩机引起的喘振是环境粉尘造成的,造成机组无法运行;神华某煤化工企业甲醇气透平压缩机喘振是工艺系统反应收率低引起的,每年损失1.8亿圆;西南某石化丙烯气循环压缩机喘振是机后换热器管束粘结物料问题引起的;东北某石化甲烷气透平压缩机喘振是降速过程转速与流量不匹配问题引起的,中海油某石化透平压缩机喘振是现场没有进行实际气体防喘标定造成的,东北某石化焦化装置透平压缩机喘振是选型过大引起,中油、中石化多台新比隆二氧化碳透平压缩机喘振是设计问题造成的,西北某煤化工企业透平压缩机喘振是改造问题引起的,等等。

3、引起喘振的7种原因及解决方案和效果验证因为篇幅关系,上述13种引起喘振原因及解决办法不能全部列出,这里仅通过近几年完成的7个效益显著的案例,介绍引起喘振的不同原因的解决方案;3.1、案例1 中油辽宁某石化防喘系统控制逻辑问题造成的乙烯气离心压缩机组的喘振案例该机组2012年10月与80万吨乙烯装置同步投产运行,刚刚投入正常生产,突然出现因为振动过大,联锁停机的问题,每天一到三次振动过大联锁停机,我们利用机组的互联网远程在线监测系统及时进行了远程监测诊断分析,根据远程数据分析,立即给出书面分析报告,振动联锁停机原因是属于喘振引起的;但是数次发出书面诊断报告后,现场采取相应措施后,喘振一直没有得到抑制。

每停机一次就会损失1仟多万元的乙烯气原料,每天停机两次就会造成一亿多圆人民币的产值损失,面临着严重的经济效益和环保等社会效益问题。

急生产所急,立即赶到现场,进一步解决问题。

现场调取在线监测系统历史数据,确认故障性质与远程诊断一致。

然后在控制室调取DCS数据,发现机组发生喘振时,控制系统中的防喘控制系统,已经动作,防喘系统执行了降速、提流量控制程序,但是我们根据历史流量趋势曲线、降速趋势曲线、联锁停机时间点等数据综合分析,防喘控制系统程序的逻辑存在问题,不适合该机组。

于是我们与压缩机控制系统提供商3C公司进行了沟通,立即修改了防喘控制逻辑参数,此后再没有因此造成喘振停机问题,为企业赢取了明显的经济效益和社会效益!由此改变了一个日产值过亿圆的大型化工装置开工过程的命运。

3.2案例2 中石化武汉中韩石化开工过程中由于入口罐引液不足问题造成乙烯气透平压缩机组喘振案例2013年7月,中石化武汉中韩石化开工,年产80万吨乙烯装置的乙烯气透平压缩机组投入运行,开机时间不长,带负荷运行了数分钟,发生了多次振动过大现象,只好停机分析原因。

当时指挥开工的企业副总经理,在机组发生强烈振动时,他恰好位于单向阀附近,感觉单向阀振动非常大,建议拆检单向阀,其他人没有异议,最后设备监测诊断人员,根据在线监测系统采集的数据和图谱,分析认为机组强烈振动不是单向阀的问题,例如,振动信号中20Hz 的低频分量远远高于转频分量等迹象,说明机组发生了喘振!此时自控专业开工领导认为:防喘系统调试得非常正常,不会喘振;我们认为:防喘系统正常并不能完全防止喘振,关键是要有足够的体积流量,就如同人饿了,仅仅张开嘴,并不解决饥饿问题,必须有食物进入口中并咽下,才起作用!此时工艺专业开工专家指出:主机厂负责人担心降温太快造成转子弯曲,不允许操作人员引足够介质液进入入口缓冲罐;证实了引起喘振的原因是机组入口流量不足,防喘系统也无法真正发挥作用。

第二天发现干气密封及动环已经由于喘振过大而损坏!现场无法修复,返厂修复。

3.3案例3 神华某煤化工企业因为工艺系统反应收率问题引起的甲醇气透平压缩机喘振案例2015年4月,神华某煤化工企业的甲醇气透平压缩机组出现振动过大问题,无法满负荷运行,只能带50%负荷运行,造成每天派出30台大罐车长途运回甲醇,满足后续生产,每年经济损失1.8亿人民币,同时还存在极大的安全环保隐患!我们应邀去分析原因和解决问题。

初步的信息是:机组一加负荷就会振动过大停机。

我们对该机组不同转速工况的振动信号进行了分别采集分析,现场实际情况是,一台汽轮机驱动一台离心压缩机,压缩机一个缸内一根转子分为两段:合成段,压缩输送新鲜甲醇气体、循环段,压缩输送反应塔内反应后剩余的甲醇气体,工艺包设计为合成段+循环段总流量,在同一工况下为常数,我们监测到的数据说明,转速即负荷一提高合成段就会发生喘振,因为负荷一旦提高,来自合成反应塔的循环段气体流量就增加,合成段流量就会随之下降,造成合成段发生喘振。

这种状况下负荷需要增大,循环段需要提流量增速,而为了保证系统的总流量,合成段需要降低流量及降速,汽轮机只有一台,压缩机转子只有一根,不可能循环段升速、合成段降速;企图在机组本体上解决喘振问题是不可能的!于是我们想到一个降低循环段流量的办法,循环段流量能降低,合成段流量就可以提高,也就能消除喘振问题!据此我们向企业提出提高合成反应塔收率即提高反应塔内温度的办法,第一步提高10℃,神华包头煤化工企业人员立即咨询国外的反应塔生产商,外商回复是:合成反应塔可以提高10℃。

我们在现场立即出具分析书面诊断报告,给出诊断结论和解决方案;结论:1、通过升降速排除油膜涡动和油膜震荡问题;2、振动过大属于因合成段流量过小、循环段流量过大,造成的合成段旋转分离和喘振问题;建议:1、合成反应塔温度提高10℃;2、尽量保证合成段质量流量约在300T/H(根据组成略作调整),循环段尽量保证流量在额定流量。

企业采用我们的措施后,负荷提高到95%以上。

企业再也不需要每天30台大罐车长途运回甲醇啦!每年可节省1.8亿圆人民币,取得明显的经济效益和社会效益。

3.4 案例4西南某石化因为机后换热器管束粘结物料引起的离心压缩机喘振案例2018年3月5日8:40到9:30,该企业一台丙烯气循环离心压缩机,突然出现异常振动,轴振动峰峰值达到85微米以上,该压缩机轴振动报警值60微米、联锁停机值80微米,转速999转/分,之前多年运行时正常轴振动峰峰值20-35微米之间,振幅正常时频谱中主要是转频分量,频率16.54Hz、幅值22.4微米,而振动增大时,仅可明显见到15Hz分量、幅值达到51.9微米,高于正常时的通频振幅。

我们快速排除其他不可能原因,认为该压缩机发生了喘振,在再次出现过大振动之前,我们向客户提交了分析诊断结论:机组因为体积流量过小发生了喘振;原因是介质入口温度偏低、并且机组气流通流系统通流截面存在减小问题。

确认该机组振动原因的难点在于,出现振动变化前后,见图(5),频率之比是15Hz(异常频率)/16.5Hz(转频)=0.91倍频,这种情况下,下喘振的结论,受到国内外设备状态监测及故障诊断专业书籍、资料、案例的约束!国内外资料、书籍,给出的喘振频率及旋转分离频率都在0.8倍频之下,那么这起喘振案例的0.91倍频,属于史上少见、颠覆传统的存在。

我们认真全面分析之后,冲破约束、打破现有资料的条条框框,从故障机理与离心压缩机的气动热力分析原理的角度大胆给出结论,3月12日再次从技术角度与业主沟通,达成共识,决定进一步查清引起罕见喘振的原因。

3月16日停机,全面检查压缩机通流系统:阀门、管线、机后冷却器等部位,检查发现机组的列管式后冷却器的管束被物料堵塞、反应器内大量结块物料堵塞流道,验证了我们的结论。

3.5 案例5中油、中石化多台透平压缩机因为设计问题引起的喘振案例前些年,中石油、中石化等从国外引进的十三套大化肥装置,其中关键的五大机组中的二氧化碳透平压缩机,机组是由一台汽轮机驱动压缩机的低压缸、再连接增速箱驱动压缩机的高压缸,高压缸工作转速13900-15000转/分,出口压力150kg/cm2,均由意大利新比隆压缩机公司设计制造(之前是美国的技术)。

在对该机组进行长达二十多年的离线与在线监测过程中,我们发现机组无论在任何工况下运行,都避不开轻度的喘振即旋转分离状态,在任何工况下监测机组高压缸的振动信号中都存在0.75倍频的分量,转频231.8Hz,同时始终存在一个低频170.835Hz,170.835/231.8=0.74倍频。

我们对该机组高压缸的额定流量、压力、级数、效率、压比分配等,采用流道法进行了气动热力校核,模拟现场运行环境,得出结果是,在该机高压缸的特定介质、流量、压力等参数下,常规设计方法,试图保证运行时不发生轻度喘振即旋转分离是很难做到的。

二十多年后,对装置进行扩能改造,在该机前增加了一台增压机,使入口体积流量和压力增加,转速略有降低之后,实际特性曲线适度向左移动,防喘安全度提高,该机高压缸“天生”轻度喘振即旋转分离问题得到解决,见下图;此时再无170.835Hz的低频的旋转分离分量出现。

3.6 案例6某煤化工企业因为改造引起的喘振案例这是一台煤化工企业的丙烯气透平压缩机组,额定转速3618转/分,工作转速3455转/分,6级5段。

2018年该压缩机投入使用后流量和压力达不到设计和生产的需求;为此进行改造,增加了1级叶轮的直径及隔板尺寸,以及3、4级的隔板几何尺寸。

改造后运行时发现轴振动增大轴振动报警值63.5微米,实际振幅达到88.7微米以上,并且振动信号中出现了之前不存在的29Hz分量,而且幅值明显大于59Hz的转频分量幅值,同时压缩机的轴位移值也出现30微米以上的振幅波动,我们分析认为振动过大的原因是,压缩机流道改造时,一级叶轮直径的设计尺寸过大,工艺系统工况的实际体积流量,不能满足叶轮改造后的体积流量,压缩机内发生了喘振。

相关文档
最新文档