浅析离心式压缩机喘振故障原因及解决方法

合集下载

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因分析及解决方案

离心式压缩机喘振产生的原因及解决方案一一离心式压缩机是工业生产中的重要设备,其具有排气量大、结构简单紧凑等优点,但也存在一些缺点如稳定工况区间较窄、容易发生喘振。

喘振给压缩机带来危害极大,为了保障压缩机稳定运行,必须应用有效的防喘振控制。

本文主要介绍了离心式压缩机喘振产生的原因,详细叙述了压缩机防喘振的意义与方法,以离心式空气压缩机为例,基于霍尼韦尔DCS系统如何实现防喘振控制。

离心式压缩机的工作原理随着我国工业的迅速发展,工业气体的需求日益增长,离心式压缩机因其优秀的性能及较大的排气量而被广泛应用于工业生产中。

在离心式压缩机中,汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体会被甩到工作轮后面的扩压器中去。

而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进气部分进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。

气体因离心作用增加了压力,以很高的速度离开工作轮,经扩压器后速度逐渐降低,动能转变为静压能,压力增加,同时气体温度相应升高,在单级压缩不能达到压力要求的情况下,需要经过多级压缩,压缩前需要经过气体冷却器冷却,经过这种多级冷却多级压缩后,最终达到气体压缩的目的。

喘振产生的原因喘振是目前离心式压缩机容易发生的通病。

离心式压缩机的操作工况偏离设计工况导致入口流量减小,使得压缩机内部叶轮、扩压器等部件气流方向发生变化,在叶片非工作面上出现气流的旋转脱离,造成叶轮通道中气流无法通过。

该工况下,压缩机出口压力及与压缩机联合工作的管网压力会出现不稳定波动,进而使得压缩机出口气体反复倒流即“喘振”现象。

另外,压缩机的吸入气体温度发生变化时,其特性曲线也将改变,如图1、图2所示,这是压缩机在某一恒定转速情况下,因吸入气体温度变化时的一组特性曲线。

曲线表明随着温度的升高,压缩机易进入喘振区。

图1离心压缩机的性能曲线图2温度对性能曲线的影响喘振现象的发生,由于气体反复倒流,会打破压缩机原有的运动平衡,导致转子的振动增大,在旋转中与定子接触摩擦,通常监控上的表现为压缩机出口的压力反复波动,轴承温度逐渐升高。

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振-离心式压缩机为什么会发生喘振

浅析什么是喘振/离心式压缩机为什么会发生喘振
什么是喘振
喘振是流体机械及其管道中介质的周期性振荡,是周期性吸入和排出激发下介质的机械振动。

在离心式空气压缩机中,喘振是压缩机运行中常见的故障之一,也是旋转失速的进一步发展。

当离心式压缩机的负荷降低到一定程度时,压缩气体将在叶轮的非工作面上形成分离质量,导致冲击损失急剧增加,不仅增加了流量损失,而且降低了效率,但也导致空气从管道网络流回压缩机,引起机身强烈振荡,并引起“哮喘”或“哮喘”。

“咆哮”声,这种现象被称为离心式压缩机的“浪涌”。

浪涌引起的机械振动频率和振幅与管网的体积密切相关。

管网的体积越大,浪涌频率越低,振幅越大。

离心式压缩机发生喘振时,典型现象有:
1、压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;
2、压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;
3、拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;
4、机器产生强烈的振动,同时发出异常的气流噪声。

目前来说解决喘振常用的方法有三种:
1、在压气机上增加放气活门,使多余的气体能够排出。

2、使用双转子或三转子压气机。

3、使用可调节式叶片。

理论上的偶就说了,喘振的发生区间可以在工况曲线上找到。

主要产生原因:
1、蒸发压力过低,或者蒸发温度过低
引起这个的可能是回水温度低了,导致导叶开度迅速降低以致于压缩机的出口压力和冷凝压力接近,或者节流装置堵塞导致蒸发器里的液态冷媒不足以支持压缩机持续的像冷凝器输出高压气态冷媒。

2、冷凝压力过高,或者冷凝温度过高。

离心式空压机喘振因素研讨及防范措施

离心式空压机喘振因素研讨及防范措施

离心式空压机喘振因素研讨及防范措施摘要:由于离心式空压机结构简单,排气量大,效率高,目前广泛应用于冶金、化工以及空分等行业。

但离心式空压机在运行过程中,对气体的压力、流量以及温度变化较为敏感,容易发生“喘振”现象。

离心空压机喘振具有较大的危害性,是造成空压机损坏的主要原因之一。

因此,研究和预防喘振的发生,弄清和掌握喘振的机理,采取有效控制措施避免喘振的发生是离心空压机控制中的重要任务关键词:离心式;空气压缩机;喘振1引言离心式空气压缩机属于动力式空气压缩机。

其基本工作原理是用高速回转的叶轮提升气体分子动能, 再经过扩压器使气体分子的动能转化为压力能。

它具有排气量大, 效率高, 结构简单, 体积小, 气体不受油污染以及正常工况下运转平稳、压缩气流无脉动等特点。

然而, 离心式空气压缩机对气体的压力、流量、温度变化较敏感, 易发生喘振。

特别在夏季气温高时, 喘振现象尤为频繁。

2喘振的机理喘振是流体机械及其管道中介质的周期性振荡, 是介质受到周期性吸入和排出的激励作用而发生的机械振动。

对于离心机来说, 喘振是压缩机运行中的常见故障之一, 是旋转失速的进一步发展。

当离心式压缩机在负荷降低到一定程度时,被压缩气体将会在叶轮的非工作面形成脱流团, 造成冲击损失急剧增加, 这不仅使流量损失增加, 效率下降, 还会导致气流从管网倒回压缩机, 引起机身强烈振荡, 并发出"哮喘"或"吼叫"声, 这种现象叫做离心式压缩机的"喘振"。

如图1所示, 离心式压缩机具有这样的特性, 对于一个确定的转速, 总对应一个流量值, 压缩机效率达到最高点。

当流量大于或小于此值时, 效率都将下降。

一般常以此流量的工况点为设计工况点。

压缩机的性能曲线左边受到喘振工况(Qmin)的限制, 右边受到堵塞工况的限制, 在这二者之间的区域, 称为压缩机的稳定工况区域。

稳定工况区域的大小, 是衡量压缩机性能的重要指标。

离心式压缩机喘振原因及其预防措施分析

离心式压缩机喘振原因及其预防措施分析

离心式压缩机喘振原因及其预防措施分析发布时间:2022-11-08T05:39:57.849Z 来源:《工程管理前沿》2022年第14期作者:赵钧[导读] 喘振是离心式压缩机运行期间常见危害性现象,设计不当、赵钧开封空气液化有限公司河南省开封市顺河回族区 475000摘要:喘振是离心式压缩机运行期间常见危害性现象,设计不当、调试不佳、运行失误等均可引发喘振,阻碍正常生产工作,因此必须重视离心式压缩机的喘振预防工作。

在离心式压缩机设计阶段,应搭建完整的防喘振控制系统,合理设计结合尺寸与逆止阀,并按规定做好试运行与设备调试工作,最后于离心式压缩机运行期间时作为维护保养,以此全方位避免喘振现象的产生。

关键词:离心式压缩机;喘振原因;预防措施1离心式压缩机构造研究离心压缩机结构可细分两部分即静子和转子,其中,静子结构有隔板、机壳、级间密封等;转子包括大量旋转零件,如平衡盘、叶轮、主轴等。

机械具体构造如下:(1)水平轴向部分型。

静子有密封、焊接机壳;转子包含联轴器、推力盘、隔套、轴套、叶轮。

(2)垂直径向部分型。

静子为隔板、内机壳、端盖、机壳;转子与水平轴向构造相同。

(3)整体齿轮增速。

静子有型环、扩压器、蜗壳、齿轮箱体;转子包括叶轮、联轴器、低速齿轮轴、低速齿轮、高速齿轮。

2离心式压缩机喘振现象分析2.1喘振现象分析喘振现象应从以下3个角度入手,全方位了解离心式压缩机喘振现象:①观察离心式压缩机进出口压力数值及入口流量,运用CCS软件得出数值波动幅度轨迹趋势图,分析CCS趋势图特征,若此时存在较大波动或周期性波动,则离心式压缩机可能出现喘振现象;②采用“听”的方式判断喘振,若离心式压缩机进出气管出现“呼哧呼哧”的气流噪声,则证明离心式压缩机运行不稳定,机组存在喘振问题;③根据离心式压缩机实际情况分析其轴系振动图,若发现离心式压缩机内出现轴系急剧振动的情况,且振动相对明显,则说明离心式压缩机存在喘振现象。

喘振原因及常用解决办法

喘振原因及常用解决办法

喘振是透平式压缩机也叫叶片式压缩机在流量减少到一定程度时所发生的一种非正常工况下的振动;离心式压缩机是透平式压缩机的一种形式,喘振对于离心式压缩机有着很严重的危害离心式压缩机发生喘振时,典型现象有:1压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动;2压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道;3拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动;4机器产生强烈的振动,同时发出异常的气流噪声; 5离心机在极端部分负荷、冷却有问题时会发生目前来说解决喘振常用的方法:①在压气机上增加放气活门,使多余的气体能够排出;②使用可调节式叶片;③确保压气机足够流量;喘振的内部原因当气体流量减少到一定程度时,压缩机内部气流的流动方向与叶片的安装方向发生严重偏离,使进口气流角与叶片进口安装角产生较大的正冲角,从而造成叶道内叶片凸面气流的严重脱离;此外,对于离心式压缩机的叶轮而言,由于轴向涡流等的存在和影响,更极易造成叶道里的速度不均匀,上述气流脱离现象进一步加剧;气流脱离现象严重时,叶道中气体滞流,压力突然下降,引起叶道后面的高压气流倒灌,以弥补流量的不足和缓解气流脱离现象,并可使之暂恢复正常;但是,当将倒灌进来的气体压出时,由于流量缺少补给,随后再次重复上述现象;这样,气流脱离和气流倒灌现象周而复始地进行,使压缩机产生一种低频高振幅的压力脉动,机器也强烈振动,并发出强烈的噪声,管网有周期性振荡振幅大频率低并伴有周期性吼叫声,压缩机振动强烈机壳轴承均有强烈振动并发出强烈的周期性的气流声,由于振动强烈轴承液体润滑条件会遭到破坏,轴瓦会烧坏转子与定子会产生摩擦碰撞密封元件将严重破坏;离心式压缩机在生产运行过程中有时会突然产生强烈振动气体介质的流量和压力也出现大幅度脉动并伴有周期性沉闷的呼叫声以及气流波动在管网中引起的呼哧呼哧的强噪声这种现象通称为压缩机的喘振工况,压缩机不能在喘振工况长时间运行一旦压缩机进入喘振工况操作人员应立即采取调节措施降低出口压力或增加入口流量使压缩机工况点脱离喘振区实现压缩机的稳定运行;从上述分析可以看出喘振不仅与叶轮流道中气体的旋转脱离有关而且与管网容量有密切关系管网容量愈大喘振的振幅也愈大,振频愈低管网容量愈小则喘振的振幅就小喘振频率愈高这就是喘振的内部原因;。

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理

离心式压缩机喘振的原因分析及处理摘要:离心式压缩机喘振现象的发生主要取决于管网的特性曲线和离心式压缩机的特性曲线。

本文对离心式压缩机特点、喘振现象、产生的危害、判断方法、发生原因进行了总结,并提出了相应的预防措施。

关键词:压缩机;喘振;预防措施喘振是离心压缩机特有的一种现象,它是危害压缩机结构的主要原因之一,在工艺流程中应尽力避免压缩机喘振现象的出现。

根据石化企业压缩机机组现场应用反馈,机组发生喘振现象比较普遍,有些机组甚至频繁发生喘振,给企业安稳生产及经济效益造成了一定的影响。

1.喘振原因喘振作为离心式压缩机运行中的一-种特殊现象,易造成气流往复强烈冲击,严重影响压缩机运行部件,是造成运行事故的主要因素。

喘振是离心式压缩机本身固有的特性,导致喘振产生的因素有两方面:内在因素是由于离心式压缩机中的气流在一定的条件下出现了“旋转脱离”这种状况:而外在因素是由于离心式压缩机管网系统的特性。

2.离心机的特点离心式压缩机是具有处理气量大、体积小、结构简单、运转平稳、维修方便等特点,应用范围广。

但由于离心机本身结构所限,仍然存在短板,在压力高、流量小的场合会发生喘振,且不能从设计上予以消除。

3.离心式压缩机喘振的危害、现象及判断3.1喘振的危害喘振是当离心式压缩机的进口流量减少至一定程度时所发生的一种非正常工况下的振动,气体流量、进出口压力出现波动,从而引起压缩机转速及工艺气在系统中产生周期性振荡现象。

喘振的危害:(1)由于气流强烈的脉动和周期性振荡,会使供气参数(压力、流量等)大幅波动,破坏了工艺系统的稳定性;(2)使压缩机叶片发生强烈振动,叶轮应力大幅增加,噪声加剧;(3)引起动静部件的摩擦与碰撞,使压缩机的轴发生弯曲变形,严重时会产生轴向窜动,使轴向推力增大,发生烧毁止推轴瓦甚至扫膛事故;(4)加剧轴承、轴瓦的磨损,破坏润滑油膜的稳定性,使轴瓦合金产生疲劳裂纹,甚至发生烧瓦抱轴等事故;(5)损坏压缩机的机械密封及轴封,使压缩机效率降低,同时由于密封的损坏会造成工艺气泄漏,极易引发火灾、爆炸等事故;(6)影响驱动机的正常运转,干扰操作人员的正常操作,使一些仪表、仪器的测量准确性降低甚至损坏。

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法

离心式压缩机喘振现象与调节方法一、什么是喘振喘振是离心式压缩机的一种特有的异常工作现象,归根揭底是由旋转失速引起的,气体的连续性受到破坏,其显著特征是:流量大幅度下降,压缩机出口排气量显著下降;出口压力波动较大,压力表的指针来回摆动;机组发生强烈振动并伴有间断的低沉的吼声,好像人在干咳一般。

判断是否发生喘振除了凭人的感觉以外,还可以根据仪表和运行参数配合性能曲线查出。

压缩机发生喘振的原因:由于某些原因导致压缩机入口流量减小,当减小到一定程度时,整个扩压器流道中会产生严重的旋转失速,压缩机出口压力突然下降,当与压缩机出口相连的管网的压力高于压缩机的出口压力时,管网的气流倒流回压缩机,直到管网的压力下降到比压缩机的出口压力低时,压缩机才重新开始向管网排气,此时压缩机恢复到正常状态。

当管网压力恢复到正常压力时,如果压缩机入口流量依然小于产生喘振工况的最小流量,压缩机扩压器流道中又产生严重的旋转失速,压缩机出口压力再次下降,管网压力大于压缩机排气压力,管网中的气流再次倒流回压缩机,如此不断循环,压缩机系统中产生了一种周期性的气流喘振现象,这种现象被称之为“喘振”。

二、离心式压缩机特性曲线对于一定的气体而言,在压缩机转速一定时,每一流量都对应一个压力,把不同流量下对应的每一个压力连成一条曲线,即为压缩机的性能曲线。

如图1所示,对每一种转速,都可以用一条曲线描述压缩机入口流量Q1与压缩比P2/P1的关系(P2、P1分别为压缩机出口绝对压力和入口绝对压力)。

图1为离心式压缩机特性曲线压缩机特性线是压缩机变动工况性能的图像表示,它清晰地表明了各种工况下的性能、稳定工作范围等,是操作运行、分析变工况性能的重要依据。

(1)转速一定,流量减少,压力比增加,起先增加很快,当流量减少到一定值开始,压比增加的速度放慢,有的压缩机级的特性压比随流量减少甚至还要减少。

(2)流量进一步减少,压缩机的工作会出现不稳定,气流出现脉动,振动加剧,伴随着吼叫声,这个现象称为喘振现象,这个最小流量称为喘振流量。

离心式压缩机喘振发生的机理、原因及预防措施!

离心式压缩机喘振发生的机理、原因及预防措施!

离⼼式压缩机喘振发⽣的机理、原因及预防措施!⼀、喘振发⽣的机理当离⼼式压缩机的操作⼯况发⽣变动并偏离设计⼯况时,如果⽓体流量减少则进⼊叶轮或扩压器流道的⽓流⽅向就会发⽣变化。

当流量减少到⼀定程度,由于叶轮的连续旋转和⽓流的连续性,使这种边界层分离现象扩⼤到整个流道,⽽且由于⽓流分离沿着叶轮旋转的反⽅向扩展,从⽽使叶道中形成⽓流漩涡,再从叶轮外圆折回到叶轮内圆,此现象称为⽓流旋离,⼜称旋转失速。

发⽣旋转脱离时叶道中的⽓流通不过去,级的压⼒也突然下降,排⽓管内较⾼压⼒的⽓体便倒流回级⾥来。

瞬间,倒流回级中的⽓体就补充了级流量的不⾜,使叶轮⼜恢复了正常⼯作,从⽽从新把倒流回来的⽓体压出去。

这样⼜使级中流量减少,于是压⼒⼜突然下降,级后的压⼒⽓体⼜倒流回级中来,如此周⽽复始,在系统中产⽣了周期性的⽓体振荡现象,这种现象称为“喘振”。

⼆、喘振发⽣的原因1、流量图1 不同转速下出⼝压⼒与流量的关系每台离⼼式压缩机在不同转速n下都对应着⼀条出⼝压⼒P与流量Q之间的曲线,如图1所⽰。

随着流量的减少,压缩机的出⼝压⼒逐渐增⼤,当达到该转速下最⼤出⼝压⼒时,机组进⼊喘振区,压缩机出⼝压⼒开始减⼩,流量也随之减⼩,压缩机发⽣喘振。

从曲线上看,流量减⼩是发⽣喘振的根本原因,在实际⽣产中尽量避免压缩机在⼩流量的⼯况下运⾏。

2、⽓体相对分⼦质量图2 不同相对分⼦质量时的性能离⼼压缩机在相同转速、不同相对分⼦质量下恒压进⾏的曲线,从曲线中可以看出,在恒压运⾏条件下,当相对分⼦质量M=20的⽓体发⽣喘振时,相对分⼦质量为M=25和M=28的⽓体运⾏点还远离喘振区。

因此,在恒压运⾏⼯况下,相对分⼦质量越⼩,越容易发⽣喘振。

3、⼊⼝压⼒图3 不同⼊⼝压⼒时的性能压缩机的⼊⼝压⼒P1>P2>P3,在压缩机恒压的运⾏⼯况下,⼊⼝压⼒越低,压缩机越容易发⽣喘振,这也是⼊⼝过滤器压差增⼤时,要及时更换滤⽹的原因。

4、⼊⼝温度图4 不同⼊⼝温度时的性能恒压恒转速下进⾏的离⼼式压缩机在不同⼊⼝⽓体温度时的进⾏曲线,从曲线上可以看出在恒压运⾏⼯况下,⽓体⼊⼝温度越⾼,越容易发⽣喘振。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析离心式压缩机喘振故障原因及解决方法
喘振问题作为离心式压缩机最常见的问题之一,严重影响着压缩机的运行,也是造成压缩机损坏的主要原因之一。

在实际生产中,往往由于对喘振故障认识不足,可能会出现压缩机发生喘振故障时没有得到及时的判断和处理,造成压缩机硬件损坏,甚至危及压缩机使用寿命及功能的情况发生。

一、离心式压缩机控制系统现状
离心压缩机控制系统主要是保障压缩机的安全、稳定运行,充分应用压缩机工艺区域,在工艺压力与流量范围内,保障工况稳定运行,提升离心压缩机操作的便捷性与自动化水平。

通过应用控制系统,可将离心压缩机的工作状态实时展现出来,促使操作人员掌握相应的信息,实时储存运行数据,为后期查询与分析奠定基础。

受到某些原因的影响,若离心式压缩机运行不稳定,控制系统可及时预测各类影响因素,在出现故障与问题的情况下,通知操作人员。

系统能够依据不同的情形,采取针对性的解决对策,合理做出动作,促使离心式压缩机迅速恢复到正常的运行轨道。

离心式压缩机控制系统设计本身属于关键性问题,本文主要从以下三方面入手,深入分析离心式压缩机控制系统设计现状,主要包括:(1)选择控制系统硬件平台,目前国内是在经典压缩机控制系统基础上,选择模拟调节器,实现运行参数(比如:排气量、排气压力等)调节,以此实现对保护装置安全运行提供保障,更好的满足实际工艺需求。

但就实际情况而言,这类调节器难以应变大负荷,就突发工况变化无法精准应对,难以使机组处于最佳运行状态中。

(2)合理选择控制系统软件,国外进口的压缩机组,供货商一般会选择配套的控制系统,这类系统的针对性较强,且控制效果比较理想。

也可购买第三方厂家的主要控制软件,将其直接应用在上位机监控系统内,可实现开发周期缩短,但这类方式会增加开发成本。

(3)选择控制策略,在离心式压缩机控制系统设计工作中,应当将防喘振数字划分为直接控制,实现最小流量控制,就不同故障情形,采取不同的解决对策。

不断引入先进的控制技术,比如:模糊控制、神经网络控制技术,为后期压缩机智能控制奠定良好基础。

在智能化技术背景下,传统的控制方式已经难以满足上述控制需求,只有积极引入先进的PDI控制技术,才可实现离心压缩机控制水平的提升。

二、离心式压缩机喘振故障的解决方法
喘振故障虽然危害巨大,且发生喘振时时间紧、喘振初期不易被发现。

但是,在日常生产中还是有些有许多方法可以避免喘振故障的发生,为了防止离心式压缩机发生喘振故障,可以采用以下几种方式:
(一)提高压缩机入口流量和入口压力的参数
在运行过程中,提高压缩机入口流量和入口压力的参数,在流量不变时可通过降低离心压缩机排气压力,提高入口压力或两者相结合的方式,减少出口入口压差,以防止压缩机发生喘振。

(二)在离心压缩机上设置自动防喘系统
目前,大多数压缩机已设置了防喘振系统,比如,阿特拉斯科普柯生产的ZH-10000型压缩机所设置的DP/DP喘振预测系统可以实时监测压缩机的实际状况,最大限度地减少放空。

另外,DP/DP系统配置有额外的传感器和相应的控制逻辑,对预防喘振能够起到很好的作用。

当然,防喘系统虽然具有优点,但同时具备一定的风险,比如,可能会发生报告喘振的虚假信号,为生产稳定带来不利影响,因此,需要定期地对防喘系统进行测试和维护保养。

(三)定期清理入口管线及过滤器
日常维护中应及时对压缩机入口管线和压缩机过滤器进行清理,防止入口管线、过滤器堵塞或结冰情况的出现,必要时更换新过滤器,以确保压缩机吸入空气质量和压缩机入口压差在压缩机要求范围内,也是有效避免和维护压缩机高效运行的重要工作。

(四)定期对压缩机零部件进行检修维护
由于在压缩机生产过程中,叶轮、扩压器、转子会产生一定的腐蚀和结垢,因此,压缩机特性曲线会随着机组的变化而发生转移,引起压缩机原有喘振线移位,长此以往,压缩机最初的防喘振线就不能再起到防止喘振发生的作用。

因此若想提高设备的使用效率,延长使用寿命,最好的方法便是定期进行检修与维护,通常根据生产与设备实际运行情况分为4000h、8000h、16000h、40000h等不同等级,定期对压缩机进行不同程度的维护和保养,并且确保压缩机检修过程中零部件的安装精度及检修质量,以确保压缩机内部零部件的良好,使压缩机的实际喘振线与最初喘振线不发生位移,确保压缩机不发生喘振故障。

(五)压缩系统与生产系统之间要保持一致
在实际生产中,会发生生产用户流量调节过快,所需要的压缩空气量突然大幅度降低,导致系统压力迅速升高,导致发生喘振。

因此,防止压缩机喘振故障
的发生不仅要靠本岗位人员进行关注,还需要所有与压缩系统相关联的单位共同完成。

遇到较大的调整时,一定要相互沟通或和调度进行协调联系,防止用气量的急剧变化造成压缩机喘振故障的发生。

喘振问题作为离心式压缩机最常见的问题之一,严重影响着压缩机的运行,也是造成压缩机损坏的主要原因之一。

在实际生产中,往往由于对喘振故障认识不足,可能会出现压缩机发生喘振故障时没有得到及时的判断和处理,造成压缩机硬件损坏,甚至危及压缩机使用寿命及功能的情况发生。

本文通过对压缩机实际生产中发生喘振故障时的常见特征及原因进行总结,并提出预防及解决压缩机喘振故障的方法,进而达到预防压缩机喘振故障发生或压缩机喘振故障发生时能够及时得到控制的目的,以确保实际生产中压缩机安稳运行的效果。

相关文档
最新文档