大学数学 概率论第一章
概率论知识梳理

是推导过程以及思想。
18. 贝叶斯公式: P(Bi A)
p(A Bi )P Bi
n
,贝叶斯公式主要是根据结果反求
P(A Bj )P Bj
j 1
导致这个结果的某种情形的可能性。贝叶斯公式和全概率公式复习起来光看概
念没什么用,要借助几个较难的例题和做一些往届考题,这样效率会高很多。
是它本身,而是: P(A B C) P(A) P(A B) P(A B C) 。
更加重要的是当事件数量更多的时候如何处理。一句话总结:加多了减,减多 了加。 11. 概率的减法公式: P(A-B)=P(A) -P(AB) P(A-B)=P(A)-P(AB),当 B A 时, P(A-B)=P(A)-P(B),当 A=Ω时,P( B )=1- P(B)。
19. 事件的独立性:简而言之“你关我屁事!”,更重要的是多个事件的情形。
描述性定义:
数学定义:
设 A,B 为两个事件,如果其中任何 P( AB) P( A)P(B)
一个事件发生的概率不受另外一个事 特别注意:
件发生与否的影响(我发生也好,不 概率为 1 或者 0 的事件与任何事件独立。
发生也好,都不受你任何影响,你关 考试题型:
率论的学习,因而在接触这个概念的时候就应该去努力弄懂,弄透彻它。很多书上 有这么一句话:随机变量就是其值会随机而定的变量。有些孩子一看就发宝气了, 我当然知道它是变量呀!其实是抓错了重点,关键在于“随机”二字。我们过去说 的变量往往指不固定的量,虽然不固定,但往往遵循一个确切的法则(取值在内定 义域)。这里的随机变量也是如此,它不太有规律可循,但既然是出现在概率论这个 大背景下,它也不可能算是一匹脱缰的野马。从另一个角度解读这个概念:随机试 验的结果经常是数量,或者可以数量化表示,但是这些数量与以往用来表示时间, 位移等的变量有很大的不同,这就是其取值的变化完全取决于随机试验的结果,因 而是不可以完全预言的,这种随机取值的变量就是随机变量。说白了,随机变量就 是这样的一个家伙:你无法确切的知道他是什么,但是你能知道他很可能会是什么?
概率论第一章课件ppt

概率的性质
1. P(F) 0
2.若 A1, A2,..., An是两两互不相容事件,则有 P ( A 1 A 2 . . . A n ) P ( A 1 ) P ( A 2 ) . . . P ( A n )
3.设 A , B 是两个事件,若 A B , 则有
P(BA)P(B)P(A); P(B)P(A).
概率论的广泛应用几乎遍及所有的科学 领域, 例如天气预报, 地震预报, 产品的抽样 调查; 在通讯工程中可用以提高信号的抗干 扰性,分辨率等等.
概率论的起源
大约400年以前, 欧洲一些赌徒遇到这样的问题
1. 同时掷两枚骰子, 以每个骰子朝上的点数之和 作为赌博的内容, 问赌注下在多少点最有利?
2.甲乙二人赌博,各出赌注30元,共60元,每局甲、 乙胜的机会均等,都为1/2。约定:谁先胜满3局,则 他赢得全部赌注60元。现已赌完3局,甲2胜1负,因 故中断赌博,问这60元如何分给2人才算公平?
= P({e1})+ P({e2})+ … +P({en})= nP({ei}) 所以, P({ei})=1/n, i=1, 2, …, n. 那么, P(A)=P({ei1}∪{ei2}∪ … ∪{eik})
“1”, “2”, “3”, “4”, “5” 或 “6”.
实例4 “从一批含有正品 和次品的产品中任意抽取 一个产品”.
实例5 “过马路交叉口时, 可能遇上各种颜色的交通 指挥灯”.
其结果可能为: 正品 、次品.
实例6 “出生的婴儿可 能是男,也可能是女”.
实例7 “明天的天气可 能是晴 , 也可能是多云 或雨”等都为随机现象.
事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果
概率论第一章ppt课件

i1
i1
13
3. 积(交)事件 : 事件A与事件B同时发生,记
作 AB 或AB。
推广:n个事件A1, A2,…, An同时发生,记作
n
n
A1A2…An或 A i 或 A i
i1
i1
14
4. 差事件: A-B称为A与B的差事件, 表示事件 A发生而事件B不发生
15
5. 互不相容事件(也称互斥的事件): 即事件 A与事件B不能同时发生。AB= 。
A 1 “: 至少有一人命中目标 A 2 “: 恰有一人命中目标” A 3 “: 恰有两人命中目标” A 4 “: 最多有一人命中目标 A 5 “: 三人均命中目标” A 6 “: 三人均未命中目标”
”:
ABC
: ABCABCABC
: AC BABC ABC
”: BCACAB
:
ABC
:
ABC
21
小结
P Ak
k 1
k
k 1 k!
e
1 e
.
本题可采用另外一种解法. A A0 { 该地一年内
未发生交通事故} ,于是
P(A) 1 P(A) 1 P( A0) 1 e .
33
小结
• 本节课主要讲授: 1.概率的统计定义; 2.概率的公理化定义; 3.概率的性质(重点)。
34
§1.3 古典概型与几何概型
验,简称试验。随机试验常用E表示。
7
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
8
例1-2:
概率论第一章PPT课件

2021/3/24
-
10
费尔马的解法
费尔马注意到,如果继续赌下去,最多只要再赌4轮便可 决出胜负,如果用“甲”表示甲方胜,用“乙”表示乙方胜, 那么最后4轮的结果,不外乎以下16种排列。
甲甲甲甲 甲甲甲乙 甲甲乙甲 甲乙甲甲 乙甲甲甲 乙甲甲乙
甲甲乙乙 甲乙甲乙 甲乙乙甲 乙乙甲甲 乙甲乙甲
甲乙乙乙 乙甲乙乙 乙乙甲乙 乙乙乙甲 乙乙乙乙
2021/3/24
-
8
直到1654年,一位经验丰富的法国赌徒默勒以自己的 亲身经历向帕斯卡请教“赌金分配问题“,求助其对这种现 象作出解释,引起了这位法国天才数学家的兴趣,帕斯卡接 受了这些问题,但他没有立即去解决它,而是把它交给另一 位法国数学家费尔马。之后,他们频频通信,互相交流,围 绕着赌博中的数学问题开始了深入细致的研究。这些问题后 来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他也开 始就这方面展开研究。
若每次试验中,事件A与事件B不能同时发生, 即A∩B= 。则称事件A与事件B互斥或互不相 容。
有时,我们也称满足以上三个特点的试验为随机 试验。
2021/3/24
-
20
§1.1.2 样本空间 随机事件
一、样本空间
随机试验E的所有可能的结果组成的集合称为E的 样本空间,记为Ω。Ω的每个元素,即Ω的每一个可能 的结果,称为E的一个样本点或基本事件。
指的是基本 结果
2021/3/24
样本点
-
21
特征:条件不能完全决定结果。
确定性现象与随机现象的共同特点是事物本身的含 义确定。随机现象与模糊现象的共同特点是不确定性, 随机现象的不确定性是指试验的结果不确定,而模糊现 象的不确定性有两层含义,一是指事物本身的定义不确 定,二是结果不确定。
同济大学《概率论与数理统计》PPT课件

同济大学数学系 & 人民邮电出版社
四、随机事件之间的关系与运算
第1章 随机事件与概率 10
(1)事件的包含
若事件 A 的发生必然导致事件 B 的发生, 则称事件A 包含在事件 B 中. 记作 A B .
BA
A B
同济大学数学系 & 人民邮电出版社
3
某快餐店一天内接到的订单量;
4
航班起飞延误的时间;
5
一支正常交易的A股股票每天的涨跌幅。
二、样本空间
第1章 随机事件与概率 6
一个随机试验,每一个可能出现的结果称为一个样本点,记为
全体样本点的集合称为样本空间, 记为 , 也即样本空间是随机试验的一切可能结果组成
的集合, 集合中的元素就是样本点. 样本空间可以是有限集, 可数集, 一个区间(或若干区间的并集).
01 在相同的条件下试验可以重复进行;
OPTION
02 每次试验的结果不止一个, 但是试验之前可以明确;
OPTION
03 每次试验将要发生什么样的结果是事先无法预知的.
OPTION
一、随机试验
例1
随机试验的例子
第1章 随机事件与概率 5
1 抛掷一枚均匀的硬币,有可能正面朝上,也有可能反面朝上;
2
抛掷一枚均匀的骰子,出现的点数;
(互斥).
同济大学数学系 & 人民邮电出版社
2、随机事件之间的运算
第1章 随机事件与概率 12
(1)事件的并
事件 A 或 B至少有一个发生时, 称事件 A 与事件B 的并事件发生, 记为 A U B .
(2)事件的交(积)
第一章概率论基本概念

在古典概型中, 2.概率的古典定义: 概率的古典定义: 概率的古典定义 在古典概型中,设 Ω={ω1, 2, , n} A = {ωi , i , , i } ω Lω ω2 L ωm 1 则
m 事件 包含的样本点数 事件A P( A) = . = n 样本点总数
n
事实上, 事实上, Q Ω = U {ω k } ∴ P (Ω ) = ∑ P ({ω k }) = nP ({ω k }) k =1 k =1 1 又 P (Ω ) = 1,所以 P ({ω 1 }) = P ({ω 2 }) = L = P ({ω n }) = . n
指每次试验都发生的事 件, Ω表示 5. 必然事件: 必然事件: . 用
6. 不可能事件: 不可能事件: 事件, 指每次试验都不发生的 事件,
用φ表示 .
注意: 必然事件和不可能事件不具有随机性, 注意: 必然事件和不可能事件不具有随机性, 但为了今后研究的方便, 但为了今后研究的方便,我们把它们作为随机事件 的特殊情形来处理。 的特殊情形来处理。
随机事件、 第一节 随机事件、频率与概率
样本空间与随机事件 一、
1、随机试验:指满足以下条件的试验 、随机试验: 1)试验可以在相同条件下重复进行; )试验可以在相同条件下重复进行; 2)试验的可能结果不止一个,但事先知道试验 )试验的可能结果不止一个, 的所有可能结果; 的所有可能结果; 3)每次试验恰好出现所有可能结果中的一个, )每次试验恰好出现所有可能结果中的一个, 但究竟出现哪个结果,试验前不能确切预言 不能确切预言。 但究竟出现哪个结果,试验前不能确切预言。 2、样本点:指随机试验中每一个可能的结果 、样本点: 也称基本事件, 也称基本事件, 通常用ω表示, 3、样本空间:指样本点的全体组成的结果; 、样本空间:指样本点的全体组成的结果; 结果
大学概率论与数理统计第一章(2)-56页PPT资料

练习
等可能概型
解:从袋中取两球,每一种取法就是一个基本事件。
设 A= “ 取到的两只都是白球 ”,
B= “ 取到的两只球颜色相同 ”,
C= “ 取到的两只球中至少有一只是白球”。
有放回抽取:
42
4222
P(A) 62 0.444 P(B) 62 0.556
22 P(C)1P(C)1620.889
例(会面问题) 两人约定在早上8点至9点在某地会
面,先到者等15分钟离去。假定每人在1小时的任 何时刻到达都是等可能的,求两人会面的概率。
解:设两人的到达时刻分别为x和y,则
0 x 6,0 0 y 60
两人能会面的充要条件是
xy 15
如图,问题转化为平面区域:
{x ( ,y)0x 6,0 0 y 6}0
n! n 1 !.... n m !
4 随机取数问题
例4 从1到200这200个自然数中任取一个,
(1)求取到的数能被6整除的概率 (2)求取到的数能被8整除的概率 (3)求取到的数既能被6整除也能被8整除的概率
解:N(S)=200, N(1)=[200/6]=33,
N(2)=[200/8]=25
频率的性质
(1) 0 fn(A) 1; (2) fn(S)=1; fn( )=0 (3) 可加性:若AB= ,则
fn(AB)= fn(A) +fn(B).
实践证明:当试验次数n增大时, fn(A) 逐渐 趋向一个稳定值。可将此稳定值记作P(A),即可将 P(A)作为事件A的概率
四. 概率的公理化定义(数学定义)
练习
等可能概型
例 2 一口袋装有6只球,其中4只白球、2只红球。从 袋中取球两次,每次随机的取一只。考虑两种取球方 式:
概率论第一、二章主要内容——西南财经大学数学专业

概率论主要内容第一章 随机事件与概率主要内容:一.事件的运算:交、并、补等二.概率的性质:加法公式等三.三种概型:古典概型、几何概型、伯努利概型古典概型,满足有限性(样本点总数有限)、等可能性,计算概率用样本点个数之比; 几何概型,满足有限性(样本空间测度有限)、等可能性,计算概率用测度之比; 伯努利概型,满足两种结果、相互独立,概率不变,计算概率用伯努利定理,n k p p C k X P k n k k n ,,1,0,)1(}{L =−==−。
四.条件概率及其三个公式:乘法公式、全概率公式、贝叶斯公式乘法公式,事件积的概率等于一个事件的概率乘以另一事件的条件概率;全概率公式,用于一个结果可在多种原因下发生,根据原因求结果,∑==ni i i B A P B P A P 1)|()()(; 贝叶斯公式,用于一个结果可在多种原因下发生,结果发生了,问原因,∑==n i ii k k k B A P B P B A P B P A B P 1)|()()|()()|(。
五.事件独立性重点:条件概率及其三个公式;事件独立性。
第二章 随机变量及其分布主要内容:一.三类变量:离散、连续、混合离散随机变量,全部可能取值为有限个或可列无限个,分布函数为阶梯形函数,一般用概率函数刻画,求概率时用概率函数求和;连续随机变量,分布函数为连续函数且不可导的点最多只有可列无限个,一般用密度函数刻画,求概率时用密度函数积分;混合随机变量,分布函数不连续也不是阶梯形函数且不可导的点最多只有可列无限个,只能用分布函数刻画,求概率时用斯蒂阶积分。
二.三个函数:概率函数、密度函数、分布函数概率函数,L ,2,1,}{===k p x X P k k ,基本性质-非负性、正则性,适用于离散随机变量; 密度函数,)(x p ,基本性质-非负性、正则性,适用于连续随机变量;分布函数,}{)(x X P x F ≤=,基本性质-单调性、正则性、右连续性,适用于所有随机变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 随机事件及其概率
一、填空题
1.一批(N 个)产品中有M 个次品、从这批产品中任取n 个,其中恰有个m 个次品的概率是 .
2.某地铁车站, 每5分钟有一趟列车到站,乘客到达车站的时刻是任意的,则乘客侯车时间不超过3分钟的概率为 .
3.在区间(0, 1)中随机地取两个数,则事件“两数之和小于
56 ”的概率为 . 4.已知P (A )=0.4, P(B )=0.3,
(1) 当A ,B 互不相容时, P (A ∪B )= ; P(AB )= .
(2) 当B ⊂A 时, P(A+B )= ; P (AB )= ;
5. 事件C B A ,,两两独立, 满足21)()()(<
===C P B P A P ABC ,φ,且P (A+B+C )=16
9, )(A P 则= . 6.已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P ,及条件概率8.0)|(=A B P ,则和事件B A +的概率=+)(B A P .
7.假设一批产品中一、二、三等品各占60%、30%、10%,从中随机取一件结果不是三等品,则取到一等品的概率为 .
8. 一批产品共10个正品,2个次品,任取两次,每次取一件(取后不放回),则第2次抽取为次品的概率 .
9. 甲、乙、丙三人入学考试合格的概率分别是5
2 ,21 ,32,三人中恰好有两人合格的概率为 .
10. 一次试验中事件A 发生的概率为p , 现进行n 次独立试验, 则A 至少发生一次的概率为 ;A 至多发生一次的概率为 . 二、选择题
1.以A 表示事件“甲种产品畅销,乙种产品滞销”则其对立事件A 为( ).
(A )“甲种产品畅销,乙种产品滞销”; (B )“甲、乙两种产品均畅销”;
(C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销”.
2. 对于任意二事件A 和B 有=-)(B A P ( ).
(A) )()(B P A P -; (B ))()()(AB P B P A P +-;
(C ))()(AB P A P -; (D ))()()()(B A P B P B P A P -++.
3. 当事件A 、B 同时发生时,事件C 必发生则( ).
(A)()()()1;(B)()()()1;
(C)()(); (D)()().P C P A P B P C P A P B P C P AB P C P A B ≤+-≥+-==+
4. 设则下列等式成立的是是三随机事件,且、、,0)(>C P C B A ( ).
() (|)(|)1; () (|)(|)(|)(|);
() (|)(|)1; () (|)(|)(|).
A P A C P A C
B P A B
C P A C P B C P AB C C P A C P A C
D P A B C P A C P B C +==+-+== 5. 袋中有5个球,其中2个白球和3个黑球,又有5个人依次从袋中任取一球,取后不放回,则第二人取到白球的概率为( ).
1212() ; () ; () ; () .4455A B C D
6. 设则,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P ( ).
(A) 事件B A 和互不相容; (B) 事件B A 和互相对立;
(C) 事件B A 和互不独立; (D) 事件B A 和相互独立.
7. 某人向同一目标重复射击,每次射击命中目标的概率为)10(<<p p ,则此人第4次射击恰好第2次命中目标的概率为( ).
222222(A)3(1); (B)6(1);
(C)3(1); (D)6(1).p p p p p p p p ----
三、解答题
1. 从数字1,2,3,…,10中任意取3个数字,
(1)求最小的数字为5的概率;
(2)求最大的数字为5的概率。
2.已知10只晶体管中有2只次品,在其中取二次,每次随机取一只,作不放回抽样,求下列事件的概率。
(1)两只都是正品;(2)两只都是次品;(3)一只是正品,一只是次品;(4)至少一只是正品。
3.从0 ~ 9中任取4个数构成电话号码(可重复取)求:
(1)有2个电话号码相同,另2个电话号码不同的概率p;
(2)取的至少有3个电话号码相同的概率q.
4. 某门课只有通过口试及笔试两种考试,方可结业. 某学生通过口试概率为80%,通过笔试的概率为65%,至少通过两者之一的概率为75%,问该学生这门课结业的可能性有多大?
5. 已知16
1)()(,0)(,41)()()(====
==BC P AC P AB P C P B P A P ,求事件C B A ,,全不发生的概率.
6. 某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?
7. 某一工厂有C B A ,,三个车间生产同一型号螺钉,每个车间的产量分别占该厂螺钉总产量的25 %、35 %、40 %,每个车间成品中的次品分别为各车间产量的5 %、4 %、2 %,如果从全厂总产品中抽取一件产品螺钉为次品,问它是C B A ,,车间生产的概率.
8. 已知男人中有5 %的色盲患者,女人中有0.25 %的色盲患者,今从男女人数中随机地挑选一人,恰好是色盲患者,问此人是男性的概率是多少?
9. 某类电灯泡使用时在1000小时以上的概率为0.2,求三个灯泡在使用1000小以后最多只有一个坏的概率.
10. 一射手对同一目标独立进行了四次射击,若至少命中一次的概率为
81
80, 求该射手的命中率.
11. 设有三门火炮同时对某目标射击,命中概率分别为0.2、0.3、0.5,目标命中一发被击毁的概率为0.2,命中二发被击毁的概率为0.6,三发均命中被击毁的概率为0.9,求三门火炮在一次射击中击毁目标的概率.。