凝固过程的晶体形核和长大

合集下载

纯晶体凝固与晶体长大 知识点解释

纯晶体凝固与晶体长大  知识点解释

1. 2.
3. 4. 5. 6. 7. 8.
9.

10. 11. 12. 13. 14. 15. 16.
17. 18. 19. 20. 21. 22. 23. 24.
25.
凝固是指物质由液态至固态的转变过程。若凝固后的物质是晶体则称为结晶。 液体中原子间的平均距离比固体中略大; 液体中原子的配位数比密排结构晶体的配位数减小通常配位数在 8~11 之间。这导致溶化时体积略为增加。但是对于非密排结构的晶体如 Sb、Bi、Ga、Ge 等,液态时配位数增大, 故溶化时体积略为收缩。 液体结构最主要的特征,原子排列为长程无序,短程有序,并且短程有序原子集团不是固定不变的,它是一种 此消彼长、瞬息万变、尺寸不稳定的结构,这种现象称为结构起伏(这有别于晶体的长程有序的稳定结构) 。 过冷:液体实际温度低于理论凝固温度������������ 的现象。这种过冷称为热过冷。 过冷度:理论凝固温度(熔点)������������ 与实际凝固温度 T 之差(Δ T)Δ T=������������ -T 凝固的热力学条件:需要有过冷度。 界面能最低的液固相有两类:粗糙界面和光滑界面。 粗糙界面:固液两相之间的界面从微观上看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半 数的位置被固相原子所占据(另一半位置是空位) 。由于过渡层很薄,因此,宏观上来看,界面显得平直,不 会出现曲折的小平面,故又称非小平面界面。金属结晶时都为这类界面,又称金属型界面。 光滑界面: 界面以上是液相, 以下是固相, 固相表面为基本完整的原子密排面, 空位极少, 液固两相截然分开, 所以从微观上看是光滑的,宏观上由不同位向的小平面组成,故呈折线状,这类晶面称小平面界面。厚度为一 个原子厚。 晶体的凝固是通过形核和长大两个过程,即固相核心的形成和晶核生长至液相耗尽为止。 液相必须处于一定的过冷条件下才能结晶,液体中存在的结构起伏(相起伏)和能量起伏是促进均匀形核的必 要因素。 (凝固的条件) 当温度低于理论凝固温度������������ 时,单位体积液体内,在单位时间所形成的晶核数(形核率)受两个因素的控制, 即形核因子和原子扩散的几率因子。 体系自由能的降低是相变的驱动力,过冷度越大,体系自由能降低越多,越有利于凝固。 结构起伏 (相起伏) : 液体材料中出现的短程有序原子集团的时隐时现现象。 结构起伏的尺寸大小与温度有关, 温度越低,结构起伏的尺寸越大。 能量起伏:体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象。 均匀形核是在过冷液相中完全依靠相起伏和能量起伏而实现的形核,十分困难。体系自由能和表面自由能的相 对大小,决定着临界晶核半径的大小。 (新相晶核是在母相中均匀地生长的,即晶核由液相中的一些原子团直 接形成,不受杂质粒子或外表面的影响)需要过冷度很大。 形成临界晶核时自由能增高,其增值相当于其表面能的 1/3,即液固之间的体积自由能差值只能补偿形成临界晶 核表面所需能量的 2/3,而不足的 1/3 则需依靠液相中存在的能量起伏来补充。 非均匀形核是依附在液体中的外来固体表面形成晶核,故在相同条件下,比均匀形核更容易。 (新相优先在母 相中存在的异质处形核,即依附于液相中的杂质或外来表面形核) 只有达到临界半径的晶胚才能成为稳定的晶核。 晶体长大涉及长大的形态,长大方式和长大速率。长大的形态常反映出凝固后晶体的性质,长大方式决定了长 大速率,也就是决定晶体动力学的重要因素。晶体长大的形态与液固两相的界面结构有关。 晶体长大与界面结构有关,有连续长大、二维晶核、螺旋位错长大等方式。 连续长大适用于粗糙界面。粗糙界面上约有一半的原子位置空着,故液相中的原子可以进入这些位置与晶体结 合起来,晶体便连续的地向液相中生长,这种长大方式为垂直生长。 动态过冷度:液固界面向液相移动时所需的过冷度。 二维晶核适用于光滑界面。二维晶核是指一定大小的单分子或单原子的平面薄层。平滑界面主要依靠小台阶接 纳原子横向生长方式向前推移;界面光滑,二维晶核在相表面上形成后,液相原子沿着二维晶核侧边所形成的 台阶不断的附着上去,使此薄层很快的扩展到整个表面,这是生长中断,需要在此界面上再形成二维晶核,又 很快的长满一层,如此反复进行。二维晶核长大方式随时间是不连续的。 借螺型位错长大适用于光滑界面,若光滑界面上存在螺型位错时,垂直于位错线的表面呈现螺旋型的台阶,且 不会消失。因为原子很容易填充台阶,而当一个面的台阶被原子进入后,又出现螺旋型的台阶。在最接近位错 处,只需要加入少量原子就完成一周,而离位错较远处需较多的原子加入。这样就使晶体表面呈现由螺旋形台 阶形成的蜷线。由于界面上所提供的缺陷有限,也即是添加原子的位置有限,故长大速率小。

材料科学基础-第二章-材料的凝固

材料科学基础-第二章-材料的凝固
材料的制备过程对其力学性能、物理和化学性能都会产生较大的影响。 了解材料制备的基本过程,掌握材料制备的基本理论、技术和工艺方法, 对于材料的选用,进一步提升其使用性能有着重要的意义。
制备材料的典型工艺过程:
金属材料:凝固 陶瓷材料:烧结 聚合物:反应合成
凝固与结晶:
凝固(Solidification) 物质从液态转变为固态的过程。
自由能大于体积自由能,即阻力大于驱动力,
那么尺寸在rK~ r0 范围的晶核能够成为稳定的 晶核吗?
当r = rK 时,G 有极大值GK
GK
4 3

GV
3 GV
4

GV
2 σ
1 3
4

GV
2
σ
1 3
4rK2σ
1 3
SKσ
结论:
晶核半径与G的关系
当形成临界晶核时,体积自由能的降低只补偿了表面自由能的2/3,还有 1/3的表面自由能需要另外供给,即需要对形核做功。称GK为形核功。
③形核率(Nucleation Rate)
单位时间、单位体积液相中形成的晶核数目,即晶核形成的速率,记


N
,单位为cm-3·s-1。
影响形核率的因素:
形核功
随过冷度的增加,即随温度的降低,形核 功减小,形核率增大。
原子扩散能力
随过冷度的增加, 即随温度的降低, 原子
扩散能力下降, 形核困难, 形核率减小。
当 r>rK时,随 r 的增加,体系自由能减 小,晶胚转变为晶核;
当 r=rK时,晶胚处于亚稳状态,即可能消 失,也可能长大成为晶核;
把半径为rK的晶胚称为临界晶核,rK称为临 界晶核半径。

金属材料第三章结晶

金属材料第三章结晶

第三章金属的结晶金属由液态转变为固态的过程称为凝固,由于固态金属是晶体,故又把凝固称为结晶。

§3.1 结晶的过程和条件一、液态金属的结构特点金属键:导电性,正电阻温度系数近程有序:近程规则排列的原子集团结构起伏:近程规则排列的原子集团是不稳定的,处于时聚时散,时起时伏,此起彼伏,不断变化和运动之中,称为结构起伏。

结晶的结构条件:当近程规则排列的原子集团达到一定的尺寸时,可能成为结晶核心称为晶核, 即由液态金属的结构起伏提供了结晶核心。

结构起伏是金属结晶的结构条件。

二、结晶过程形核:液相中出现结晶核心即晶核;晶核长大:晶核形成后不断长大,同时新晶核不断形成并长大;不断形核、不断长大;晶体形成:各晶核相互碰撞,形成取向各异、大小不等的等轴晶粒组成的多晶体形核与长大是晶体形成的一般规律。

单晶体与多晶体三、结晶的过冷现象用热分析法获得液态金属在缓慢冷却时温度随时间的变化关系,即冷却曲线。

由冷却曲线可知,结晶时有过冷现象:实际结晶温度Tn 低于理论结晶温度Tm 的现象称为过冷。

液态金属过冷是结晶的必要条件。

过冷度:△ T=Tm -Tn ,其大小除与金属的性质和纯度有关外,主要决定于冷却速度,一般冷却速度愈大,实际结晶温度愈低,过冷度愈大。

四、结晶的热力学条件热力学:研究热现象中物态转变和能量转换规律的学科,主要研究平衡状态的物理、化学过程。

热力学第二定律:在等温等压下,自发过程自动进行的方向是体系自由焓降低的方向,这个过程一直进行到自由焓具有最低值为止,称为最小自由焓原理。

利用最小自由焓原理分析结晶过程。

两相自由焓差是相变的驱动力。

金属结晶的热力学条件:固相自由焓必须低于液相自由焓。

热力学条件与过冷条件的一致性。

§3.2 形核的规律形核方式:均匀形核(自发形核)与非均匀形核(非自发形核)。

一、均匀形核均匀形核:当液态金属很纯净时,在相当大的过冷度下,固态晶核依靠液相内部的结构起伏直接从液相中自发形成。

铸件成形原理第3章 晶体形核与生长

铸件成形原理第3章 晶体形核与生长
铸件来自形原理第3章 晶体形核与生长
3.1 引言 3.2 液-固相变驱动力及过冷度 3.3 凝固形核 3.4 晶体生长
3.1 引言
凝固是指物质由液体转变为固体的相变过程,凝固过程的现象、 规律和基本理论既涉及多学科交叉的基础科学,又涉及应用性 极强的众多工程技术和高科技领域,尤其对金属铸件、铸锭、 焊接熔池的成形技术,以及各类新材料研究与开发具有重要意 义。严格地说,凝固包括由液体向晶态固体转变(结晶),以及 向非晶态固体转变(玻璃化转变)两种过程方式。常用工业合金 和金属的凝固过程一般只涉及前者。结晶过程是从形核开始的, 而后通过晶体生长使得整个系统逐步由液体转变为固体。为此, 在讨论形核条件和晶体生长的影响因素及其规律之前,有必要 首先了解结晶凝固的一般过程。
2.冷却速度的影响
在金属液体中往往存在着形核能力不同的多种物质,其形核行 为与冷速有关。对特定性质的金属熔体而言,冷速越大则过冷 度越大,能促使非均匀形核的外来质点的种类和数量越多,非 均质形核能力越强。说明具有一定形核能力的杂质颗粒,其形 核行为与冷速有关。
3.结晶相枝晶熔断和游离的作用
在许多铸造条件下,与异质基底形核的情况类似,熔体对流或 某些外场作用可使在浇注期间形成的激冷晶或生长着的结晶相 枝晶臂熔断或折断,它们游离到熔体中,可作为新生晶粒的现 成晶核。如在钢的连铸过程中,可通过电磁搅拌等措施来获得 枝晶臂折断或熔断效应。这类方法是非常有效的,因为所产生 的晶核为同相晶体因而完全共格,也没有阻碍润湿的表面氧化 层。
1.粗糙界面与光滑界面
图3-14 晶体生长两种微观界面结构类型 a)粗糙界面(Nonfaceted Interfaces) b)光滑界面(Faceted Interfaces)
(2) 光滑界面

合金的平衡凝固过程形核和晶粒的长大能量起伏

合金的平衡凝固过程形核和晶粒的长大能量起伏

m ab m ac
例:求30%Ni合金在1280 时相的相对量
解:作成分线和
T,C
L
1500
1400 1300
a1 b1L+ c1
1200
1100a 1000
1083

1455 c 1280 C
温度线如图。
根据杠杆定律推 论, Q / Q= a1b1 /a1c1 =12/48=1/4
2 固溶体合金的平衡结晶 与纯金属结晶的比较
① 相同点:基本过程:形核-长大 ; 热力学条件:⊿T>0 ; 能量条件:能量起伏 ; 结构条件:结构起伏 。
② 不同点:合金在一个温度范围内结晶; 形核时除需要结构起伏和能量起伏外,还 需要一定的成分起伏; 成分的变化必然依赖于两组元原子的扩散 来完成;
3
固溶体合金的平衡凝固
• 在每一温度下,固溶体的平衡凝固实质包 括三个过程,即液相内的扩散过程、固相 的继续长大以及固相内的扩散过程。固溶 体平衡凝固时,由于在每一温度下扩散均 可充分进行,故各个晶粒内的成分是均匀 一致的。因此,平衡凝固得到的固溶体显 微组织中,除了晶界外,各晶粒之间和晶 粒内部的成分都是相同的。
答:所求合金在
1280 时相的
Cu
18 20
30 40
66 60 80
Ni 相对质量为1/4。
100
Ni%
例:固溶体合金的相图如图所示, 试根据相图确定:
(a)成分为40%B的合金首先凝 固出来的固体成分;
(b)若首先凝固出来的固体成分 含60%B,合金的成分为多 少?
(c)成分为70%B的合金最后凝 固的液体成分;
第二节 二元匀晶相图
1、(铜1)镍匀合晶金转相变:图由相液区相分直接析结晶出单相固溶体的转变。

纯晶体的凝固

纯晶体的凝固

内容提要由一种元素或化合物构成的晶体称为单组元晶体或纯晶体,该体系称为单元系。

某组元由液相至固相的转变称为凝固。

如果凝固后的固体是晶体,则凝固又称为结晶。

研究纯晶体的凝固,首先必须了解晶体凝固的热力学条件。

在恒压条件下,晶体凝固的热力学条件是需要过冷度,即实际凝固温度应低于熔点T m。

晶体的凝固经历了形核与长大两个过程。

形核又分为均匀形核与非均匀(异质)形核。

对于均匀形核,当过冷液体中出现晶胚时,一方面,体系的体积自由能下降,这是结晶的驱动力;另一方面,由于晶胚构成新的表面而增强了表面自由能,这成为结晶的阻力。

综合驱动力和阻力的作用,可导出晶核的临界半径r*,其物理意义是,当半径小于r*的晶胚是不稳定的,不能自发长大,最终熔化而消失,而半径等于或大于r*的晶胚可以自发长大成为晶核。

临界半径对应的自由能称为形核功。

理论推导表明,是大于零的,其值等于表面能的三分之一,因此,这部分的能量必须依靠液相中存在的能量起伏来提供。

综合所述可知,结晶条件需要过冷度、结构起伏(出现半径大于r*的晶胚)和能量起伏。

在研究结晶问题时,形核率是一个重要的参数,它涉及到凝固后的晶粒的大小,而晶粒尺寸对材料的性能有重要影响。

形核率受两个因素控制,即形核功因子核和扩散几率因子。

对纯金属均匀形核研究发现,有效形核温度约在0.2T m,表明均匀形核所需的过冷度很大。

而纯金属在实际凝固中,所需过冷度却很小,其原因是实际凝固是非均匀(异质)形核。

异质基底通常可有效地降低单位体积的表面能,从而降低形核功,这种异质基底的催化作用使非均匀(异质)形核的过冷度仅为0.02T m。

形核后地长大涉及到长大的形态、长大的方式和长大的速率。

影响晶体长大特征的重要因素是液——固界面的构造。

液——固界面的结构可分为光滑界面和粗糙界面。

晶体的长大速率与其长大方式有关。

连续长大方式对应的是粗糙界面,其长大速率最大,与动态过冷度(液——固界面向液体推移时所需的过冷度)成正比;而二维形核+z长大(螺形位错形核对应)是光滑界面,它们的生长速率均小于连续长大方式的生长速率。

凝固

凝固

1 * 1 * G* A V GV 3 2
均匀形核时液固两相体积吉布斯自由能差只能补偿界面能的 2/3,余下的1/3表面能只能靠液相中能量分布的涨落提供。
10
一定的过冷度对应一定的临界晶核尺寸,实际上这恰好反映 了不同曲率的晶体具有不同的熔点。
T * , 球状临界晶核的平均曲率κ*=1/r*。 因 r * 2 Tm / H m 把κ*代入曲率与熔点的关系式子,得
13
形核率(Nucleation Rate):
单位时间单位体积内形成的核心数目
控制因素: ①系统中的能量涨落(Fluctuation),即原子集团具有超额 能量为△G*的几率,它和exp(-△G*/kT)因子成正比; ②原子扩散能力,即形核率取决于exp(-Q/kT)因子,其中Q 为扩散激活能。 形核率I写成如下形式:
3
ΔG 就是凝固的驱动力,根据热力学原理,只有ΔG <0,凝固才会 自发进行。 在温度变化不大时,近似地认为HS-HL和SS-SL不随温度而改 变,则
式中 ΔT=Tm-T,称为过冷度。 熔化时系统从环境吸热, ΔHm(=HL-HS )必大于零。因此只有 ΔT>0时, ΔG 才小于零,凝固相变才能自发进行
5.1.2 压力对熔点的影响
根据克拉贝龙-克劳修斯方程
在熔点附近,近似认为△S= △Sm ,上式可写成:
一般的金属的△V<0,所以,熔点随压力增加而升高。多 数金属的dT/dp仅约为10-2K/105Pa,所以压力对熔点的影响 是很小的。
6
5.1.3 曲率(Curvature)对熔点的影响
设κ为平均曲率 VS是固相摩尔体积
粗 糙 型 界 面
光 滑 型 界 面
23
5.3.2晶核长大机制

第04章 凝固与结晶

第04章 凝固与结晶
2. 熔融液体的粘度:粘度表征流体中发生相对运动的阻力,随
温度降低,粘度不断增加,在到达结晶转变温度前,粘度增加 到能阻止在重力作用物质发生流动时,即可以保持固定的形状, 这时物质已经凝固,不能发生结晶。例如玻璃、高分子材料。
3. 熔融液体的冷却速度:冷却速度快,到达结晶温度原子来不
及重新排列就降到更低温度,最终到室温时难以重组合成晶体, 可以将无规则排列固定下来。金属材料需要达到106℃/s才能获 得非晶态。
第一节 晶体形成的一般过程
第二节 形核
一、自发形核
存在过冷的液体,依靠自身的原子运动可 能形成晶核,这种方式称为自发形核。
1. 能量变化
在一定的过冷度下,液体中若出现一固 态的晶体,该区域的能量将发生变化,一方 面一定体积的液体转变为固体,体积自由能 会下降,另一方面增加了液-固相界面,增 加了表面自由能,因此总的吉布斯自由能变
在一般生产过程的冷却条件下,金属材料凝固为晶体,这时的凝固过 程也是结晶过程。
第一节 晶体形成的一般过程
二、结晶的热力学条件
结晶过程不是在任何情况下都 能自动发生。自然界的一切自发转 变过程总是向着自由能降低的方向 进行。在单一的组元情况下:
G H-TS dG Vdp-SdT
在恒压下,dp = 0,因此
第三节 晶核的长大
四、负温度梯度下晶体的长大
关于树枝晶:按 树枝方式生长的 晶体称为树枝晶, 先凝固的称为主 干,随后是分支, 再分支。值得指 出的是:
①纯净的材料结晶完毕见不到树枝晶,但凝固过程中一 般体积收缩,树枝之间若得不到充分的液体补充,树枝 晶可保留下来; ②生长中晶体分支受液体流动、温差、 重力等影响,同方向的分支可能出现小的角度差,互相 结合时会留下位错; ③或材料中含有杂质,在结晶时固 体中的杂质比液体少,最后不同层次的分枝杂质含量不 相同,其组织中可见树枝晶。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档