第三章间歇釜式反应器PPT课件
合集下载
反应工程ppt课件

h)
试求乙酸转化率xA分别为0.5、0.9、0.99所需的反应时间。 已知乙酸与正丁醇的密度分别为960kg/m3和740kg/m3
解: CH 3COOH C4H9OH CH 3COOC 4H9 H2O
对1kmol A而言,投料情况是:
乙酸(A) 1kmol
60kg
60/960=0.0625m3
化学反应工程
1
第3章 理想反应器
反应工程研究的内容:
反应
反应器:反应器的设计和开发
反应器开发的任务:
(1)根据化学反应的动力学特征来选择合适的反应器型式
(2)结合动力学和反应器两方面特性来确定操作方式和优 化设计
反应器的结构和尺寸有关
反应器内的传热性能
(3)根据给定的产量对反应器进行设计计算,确定反应器 的几何尺寸
零级反应:残余浓度随t直线下降 一级反应:残余浓度随t逐渐下降 二级反应:残余浓度随t慢慢下降
10
【例3-1】以乙酸(A)和正丁醇(B)为原料在间歇反应器 中生产乙酸丁酯,操作温度为100℃,每批进料1kmol 的A和4.96kmol的B,已知反应速率
(rA )V
1.045
c
2 A
k
mol
/(m3
1 kc
1 ln
1 xAf
k 9.52109 exp( 7448.4 ) 0.92(h1) 273 50
t 1 ln 1 1.31h 0.92 1 0.7
则每批操作实际所需要的操作时间为:
t t 0 1.31 0.75 2.06h
反应终了时R的浓度为: CR 2C A0 xA 3.22kmol / m3
t cA0
xAf 0
dxA (rA )V
第三章-釜式反应器

3.1釜式反应器的物料衡算式
根据总的物料衡算式,则有:
写成 其中
M
i ijrj j 1
3.1釜式反应器的物料衡算式
连续釜式反应器
累积速率
代 数 方 程
间歇釜式反应器
微 分 方 程
3.2等温间歇釜式反应器的计算
特点
反应器内浓度处处相等,可排除传质的影响 反应器内温度处处相等,可排除传热的影响 物料同时加入,所有物料具有相同的反应时间
例3.1 酯化反应, 原料配比A:B:S=1:2:1.35, XAf=0.35, 密度1020kg/m3,辅助时间t0=1hr,装填 系数f=0.75,产量12000kg/Day, 求反应体积?
解: 原料处理量
FA0
12000 24M R xAf
12000 16.23 kmolA
2488 0.35
A
CA0
n=1
rA kC A
C A C A0e kt 或
kt
ln
CA0 CA
x A 1 e kt
n=2
rA
kC
2 A
CA
C A0 1 C A0kt
或
kt 1 1
xA
C A0kt 1 C A0kt
C A C A0
速率常数k值的提高将导致相应反应时间减少 即提高反应温度将使反应速率增加
Q 0.5cA2kmol /(m3 h)
反应开始时A和B的浓度均为2kmol/m3,目的产物 为P,试计算反应时间为3h时A的转化率和P的收率。 解:由题知
A p 2Q 2cA 20.5cA2 2cA cA2
将速率表达式代入等温间歇反应器的设计方程式 可有
第三章间歇釜式反应器知识讲解

数
需要设备的总容积为:
Q0t '
V
mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=Q0t’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
解: 每台锅每天操作批数: β=24/17=1.41 每天生产西维因农药数量:
1000×1000÷300=3330Kg(GD)
需要设备总容积: mVm=(3330/1.41)×200×10-3/12.5=37.8m3
取Va为10 m3的最大搪瓷锅4台。
δ=(4-3.78)/3.78×100%=5.82%
10
(3)反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体积。
确定反应器的容积V的前提是确定反应器的有效容 积(反应容积)VR。
如果由生产任务确定的单位时间的物料处理量为Q0,
操作时间为t’(包括反应时间t和辅助操作时间t0 ),则
反应器的有效容积:
VR=Q0 t'
其中 t’ = t + t0
11
(4)*设备装料系数
实际生产中,反应器的容积要比有效容积大,以保 证液面上留有空间。
• 反应器有效体积与设备
实际容积之比称为设备
装料系数,以符号
表示,即:
=VR/V。其值视具体
情况而定
条
件
无搅拌或缓慢搅 拌的反应釜
带搅拌的反应釜
易起泡或沸腾状 况下的反应
釜式反应器化工

0
0
rA VR d(VRCA) dt
即:
rA
VR
d(VRCA)dnA
dt
dt
17
2021/2/8
nAnA0(1xA)
dnAnA0dxA
上式写成转化率的形式:
nA0
dxA dt
(rA)VR
18 2021/2/8
积分得
t nA0
xA dxA 0 VR(rA)
t
CA0
xA 0
dxA rA
2 2021/2/8
研究内容 3.1 等温间歇釜式反应器的计算(单一反应) 3.2 等温间歇釜式反应器的计算(复合反应) 3.3 全混流反应器的设计 3.4 全混流反应器的串联与并联 3.5 釜式反应器中复合反应的收率与选择性 3.6 变温间歇釜式反应器的计算 3.7 全混流反应器的定态操作与分析
CA0CACPC Q
C QC A 0[1k2ex p ( k1 k t1 ) k k1 2ex p ( k2 t)]
反应物系组成随时间的变化关系如图3-4所示,
如果P是目的产物,其值有最优解。通过CP对
时间求导数,可以得到:
令
dC P dt
0
topt
lnk2 k1 k2 k1
2021/2/8
即:
同理:
rP
dnP dt
0
rP
dCP dt
0
2021/2/8
28
d dP C tk1 C Ak1 C A 0ex k p 1k2t
CPkk11C A k021exp k1k2t
同理可得:
CQkk12C A k0 21exp k1k2t
同理可得:
反应物系的组成随时间的变化关系如图3.3所示。
第三章_间歇釜式反应器 ppt课件

•操作灵活性大,便于控制和改变反应条件 •辅助时间占的比例大 ,劳动强度高,生产效率低.
6
2、应用
•适合于多品种、小批量生产 •适应于各种不同相态组合的反应物料 几乎所有有机合成的单元操作
7
3.2.1间歇釜式反应器的容积与数量
确定反应器的容积与数量是车间设计的基础, 是实现化学反应工业放大的关键 1、求算反应器的容积与数量需要的基础数据
24
4390
3.2.2 间歇操作设备间的平衡
保证各道工序每天操作总批次α相等
即
α1 = α2 = …= αn
总操作批数相等的条件是:
①m1β1 = m2β2 = … =mnβn
或
m1 t1'
=mt2'2
=....=mtn'n
即各工序的设备个数与操作周期之比要相等
②各工序的设备容积之间保证互相平衡 即
数
需要设备的总容积为:
FV t '
=V
= mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=FVt’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
小,若标准釜的容积为Va,那么,
V aV10 % 0V m aV m10 % 0
V
V m
16
• 思考 • 选用个数少而容积大的设备有利还是选用
个数多而容积小的设备有利 ?
17
3、计算示例
6
2、应用
•适合于多品种、小批量生产 •适应于各种不同相态组合的反应物料 几乎所有有机合成的单元操作
7
3.2.1间歇釜式反应器的容积与数量
确定反应器的容积与数量是车间设计的基础, 是实现化学反应工业放大的关键 1、求算反应器的容积与数量需要的基础数据
24
4390
3.2.2 间歇操作设备间的平衡
保证各道工序每天操作总批次α相等
即
α1 = α2 = …= αn
总操作批数相等的条件是:
①m1β1 = m2β2 = … =mnβn
或
m1 t1'
=mt2'2
=....=mtn'n
即各工序的设备个数与操作周期之比要相等
②各工序的设备容积之间保证互相平衡 即
数
需要设备的总容积为:
FV t '
=V
= mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=FVt’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
小,若标准釜的容积为Va,那么,
V aV10 % 0V m aV m10 % 0
V
V m
16
• 思考 • 选用个数少而容积大的设备有利还是选用
个数多而容积小的设备有利 ?
17
3、计算示例
第三章 釜式反应器

dcP 0 dt
t0 pt
ln( k1 / k 2 ) 代入式( 6 ) k1 k 2 k
cP max
k1 c A0 k2
k k 2 1
2
cP max YP max = cA0
3.4 连续釜式反应器反应体积的计算
物料衡算式:Q0Ci0=QCi-RiV r 因为釜式反应器大多数进行液相反应 所以视作为恒容过程 Q=Q0
dcA 对A : ( RA ) k1cA (1) dt dcP 对P : RP k1cA k2cP (2) dt
cA cA0 exp(k1t )(4)
dcP 带入式(2)得: k1cA0 exp(k1t ) k2cP dt
dcP k2cP k1c A0 exp(k1t )(5) dt
Vr=
Q 0( c i,0 - c 0 )
-R
i
i = 1,2,...,k
Q0( c A,0 - c A ) Q0( c A,0 - c A ) Q0c A,0( x A, f - c A,0 ) = = 2 - R Ac A, f -R A x A, f
Vr=
-R
A
空时 V r
Q0
单位时间处理单位体积无聊所需的空间体积 空时越大,反应器的生产能力越小
∵ cA0 cA cP cQ
k2 c A0 ∴ cQ cA0 cA cP 1 exp (k1 k2 )t k1 k2
cP k1 常数 cQ k2
可推广到M个一级平行反应: 对反应物A:
cA cA0 exp ( - k1 +k2 +... +km)t
t0 pt
ln( k1 / k 2 ) 代入式( 6 ) k1 k 2 k
cP max
k1 c A0 k2
k k 2 1
2
cP max YP max = cA0
3.4 连续釜式反应器反应体积的计算
物料衡算式:Q0Ci0=QCi-RiV r 因为釜式反应器大多数进行液相反应 所以视作为恒容过程 Q=Q0
dcA 对A : ( RA ) k1cA (1) dt dcP 对P : RP k1cA k2cP (2) dt
cA cA0 exp(k1t )(4)
dcP 带入式(2)得: k1cA0 exp(k1t ) k2cP dt
dcP k2cP k1c A0 exp(k1t )(5) dt
Vr=
Q 0( c i,0 - c 0 )
-R
i
i = 1,2,...,k
Q0( c A,0 - c A ) Q0( c A,0 - c A ) Q0c A,0( x A, f - c A,0 ) = = 2 - R Ac A, f -R A x A, f
Vr=
-R
A
空时 V r
Q0
单位时间处理单位体积无聊所需的空间体积 空时越大,反应器的生产能力越小
∵ cA0 cA cP cQ
k2 c A0 ∴ cQ cA0 cA cP 1 exp (k1 k2 )t k1 k2
cP k1 常数 cQ k2
可推广到M个一级平行反应: 对反应物A:
cA cA0 exp ( - k1 +k2 +... +km)t
第三章 釜式反应器

26
连串反应组分浓度与反应时间关系示意图
3.4 等温CSTR 的计算
对连续釜式反应器,稳态操作,有: 则物料衡算通式变为:
Q0 ci 0 Qci Vr
dni dt
0
j 1
M
ij
rj
i 1,2, K
无时间变量,液相反应体积变化不显著,
假定进出口流量相等连续釜式反应器反应体积计算公式
21
cQ
等温 BR 的计算
c A0
AP AQ
A
P
cP k1 cQ k2
成立的条件: 各反应的速率方程形 式相同; 反应物中各反应组分 的化学计量系数均相 等
22
c
Q
0
t
平行反应物系组成与反应时间关系示意图
等温 BR 的计算
复合反应
将上述结果推广到含有M个一级反应的平行反应系统:
累积速率=0, dni
dt
0
可简化为代数方程:
Q0ci 0 Qci iVr i 1,2, K
7
间歇釜式反应器的特点是分批装料和卸料,因此操作方式灵活,
特别适用于多品种、小批量的化学品生产。因此,在医药、试 剂、助剂、添加剂等精细化工部门得到了广泛的应用。
间歇反应器操作时间由两部分组成:一是反应时间,即装料完
连续釜式反应器操作:定态 等温、等浓度下反应等反应速率下反应,rA定值
28
3.4 等温CSTR 的计算
对连续釜式反应器体积计算公式
单一反应
Q0 (c A0 c A ) Vr rA
对连续釜式反应器体 积由物料衡算式可直 接计算得到
Vr
Q0 c A0 X Af rA ( X Af )
连串反应组分浓度与反应时间关系示意图
3.4 等温CSTR 的计算
对连续釜式反应器,稳态操作,有: 则物料衡算通式变为:
Q0 ci 0 Qci Vr
dni dt
0
j 1
M
ij
rj
i 1,2, K
无时间变量,液相反应体积变化不显著,
假定进出口流量相等连续釜式反应器反应体积计算公式
21
cQ
等温 BR 的计算
c A0
AP AQ
A
P
cP k1 cQ k2
成立的条件: 各反应的速率方程形 式相同; 反应物中各反应组分 的化学计量系数均相 等
22
c
Q
0
t
平行反应物系组成与反应时间关系示意图
等温 BR 的计算
复合反应
将上述结果推广到含有M个一级反应的平行反应系统:
累积速率=0, dni
dt
0
可简化为代数方程:
Q0ci 0 Qci iVr i 1,2, K
7
间歇釜式反应器的特点是分批装料和卸料,因此操作方式灵活,
特别适用于多品种、小批量的化学品生产。因此,在医药、试 剂、助剂、添加剂等精细化工部门得到了广泛的应用。
间歇反应器操作时间由两部分组成:一是反应时间,即装料完
连续釜式反应器操作:定态 等温、等浓度下反应等反应速率下反应,rA定值
28
3.4 等温CSTR 的计算
对连续釜式反应器体积计算公式
单一反应
Q0 (c A0 c A ) Vr rA
对连续釜式反应器体 积由物料衡算式可直 接计算得到
Vr
Q0 c A0 X Af rA ( X Af )
3-釜式反应器

一、连续釜式反应器的特点:
反应器的参数不随时间变化 不存在时间自变量,也没有空间自变量 多用于液相反应,恒容操作
出口处的C, T=反应器内的C, T 。由物料恒算式
得 (3.40)
假定物料进出口的流量相等, 则
(3.41)
3.4连续釜式反应器的反应体积
若反应器内只有一个反应,且关键组分为A,则
最后得到连续釜式反应器的计算方程为
最后解出:
(3-
38)
(3-39)
反应物系组成随时间的变化关系如图3-4所示,如果P 是目的产物,其值有最优解。通过CP 对时间求导数,可 以得到:
3.3等温间歇釜式反应器的计算(复合 反应)
如果 例题3.3
3.4连续釜式反应器的反应体积
•间歇釜:,有进有出。
该式可用于均相、多相,等温或非等温过程。
对于间歇反应器,由于dV=0,若为均相
则
(否则不行)
3.2等温间歇釜式反应器的计算(单一 反应)
设反应速率方程为
(不可逆反应),
则
,在等温下有
XAf
∫ 1
t=
0
kcA0a-1
dXA (1-XA)a
=
(1-XAf)1-a-1
(a-1) kcA0a-1
(a≠1)
3.3等温间歇釜式反应器的计算(复合 反应)
对于均相,恒容过程方程进一步变为:
设初值条件为:t=0时,CA=CAO,CP=0,CQ=0,则方程的解为 进一步:
3.3等温间歇釜式反应器的计算(复合 反应)
反应物系的组成随时间的变化关系如图3.3所示,由图可见,t ↑,CA↓, 而CP↑、CQ↑。 图3-3 平行反应组成随时间的变化关系
当温度T↑时,反应速率常数k↑,导致达到规定转化率所 用的反应时间t↓。对于可逆放热反应,是上面的结论仍然 正确吗?
反应器的参数不随时间变化 不存在时间自变量,也没有空间自变量 多用于液相反应,恒容操作
出口处的C, T=反应器内的C, T 。由物料恒算式
得 (3.40)
假定物料进出口的流量相等, 则
(3.41)
3.4连续釜式反应器的反应体积
若反应器内只有一个反应,且关键组分为A,则
最后得到连续釜式反应器的计算方程为
最后解出:
(3-
38)
(3-39)
反应物系组成随时间的变化关系如图3-4所示,如果P 是目的产物,其值有最优解。通过CP 对时间求导数,可 以得到:
3.3等温间歇釜式反应器的计算(复合 反应)
如果 例题3.3
3.4连续釜式反应器的反应体积
•间歇釜:,有进有出。
该式可用于均相、多相,等温或非等温过程。
对于间歇反应器,由于dV=0,若为均相
则
(否则不行)
3.2等温间歇釜式反应器的计算(单一 反应)
设反应速率方程为
(不可逆反应),
则
,在等温下有
XAf
∫ 1
t=
0
kcA0a-1
dXA (1-XA)a
=
(1-XAf)1-a-1
(a-1) kcA0a-1
(a≠1)
3.3等温间歇釜式反应器的计算(复合 反应)
对于均相,恒容过程方程进一步变为:
设初值条件为:t=0时,CA=CAO,CP=0,CQ=0,则方程的解为 进一步:
3.3等温间歇釜式反应器的计算(复合 反应)
反应物系的组成随时间的变化关系如图3.3所示,由图可见,t ↑,CA↓, 而CP↑、CQ↑。 图3-3 平行反应组成随时间的变化关系
当温度T↑时,反应速率常数k↑,导致达到规定转化率所 用的反应时间t↓。对于可逆放热反应,是上面的结论仍然 正确吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
(3)反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体积。
确定反应器的容积V的前提是确定反应器的有效容 积(反应容积)VR。 如果由生产任务确定的单位时间的物料处理量为FV, 操作时间为t’(包括反应时间t和辅助操作时间t0 ),
则反应器的有效容积:
VR=FVt'
其中 t’ = t + t0
12
• 例3-4萘磺化反应器体积的计算。萘磺化生 产2-萘磺酸,然后通过碱熔得2-萘酚。已知 2-萘酚的收率按萘计为75%,2-萘酚的纯度 为 99% , 工 业 萘 纯 度 为 98.4% , 密 度 为萘与硫酸的摩尔比为1:1.07。每批磺化操 作周期为3.67小时。萘磺化釜的装料系数为 0.7。年产2-萘酚4000t,年工作日330天。
数
需要设备的总容积为:
FV t '
=V
= mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=FVt’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
13
H 2 S O 4+
S O 3 H
O H
9 8
1 2 8
1 4 4
根据生产任务,每小时需处理工业萘的体积为:
40 1 0 3 0 0 .9 912 81 10 6 0L 2 06 3 3 20 4 1 4 0 .7 45 0 .989463
解:选用6 m3的锅,每锅受料体积为VR=0.75×6=4.5 m3,
则
受料时间: 4.5/0.83=5.44h 操作周期: 5.44+8=13.44h 每天操作总批数:α=24X0.83/4.5=4.45 每锅每天操作批数: β=24/13.44=1.78 需要锅的个数: m=4.55/1.78=2.5 取用三个锅,生产能力后备系数为:
解: 每台锅每天操作批数: β=24/17=1.41 每天生产西维因农药数量: 1000×1000÷300=3330Kg(GD)
需要设备总容积: mVm=(3330/1.41)×200×10-3/12.5=37.8m3
取Va为10 m3的最大搪瓷锅4台。
δ=(4-3.78)/3.78×100%=5.82%
例3-1:邻硝基氯苯连续氨化,然后分批还原生产邻 苯二胺。已知氨化出料速率为0.83m3/h,还原操作时 间为7h(不计受料时间),求需要还原锅的个数与容积。 设备装料系数取0.75
8
解:因氨化为连续操作,故至少需要两台还原釜交 替进行受料和还原。还原操作时间为7h,可取受料 时间为8h,安排每班进行一次还原操作,则每批的 操作时间为16h。装料系数取0.75,于是需要设备的 总容积为
0.70~0.80 0.40~0.60
0.85~0.90
3
2、反应器的容积和个数的确定
• (1)已知VD或FV与t ’,根据已有的设备容积Va, 求算需用设备的个数m。
• 设备装料系数为 ,则每釜物料的体积为 Va,按
设计任务,每天需要操作的总批次为:
VD 24FV
•
Va Va
每个设备每天能操作的批数为:
小,若标准釜的容积为Va,那么,
V aV10 % 0V m aV m10 % 0
V
V m
6
• 思考 • 选用个数少而容积大的设备有利还是选用
个数多而容积小的设备有利 ?
7
3、计算示例
物料处理量FV一般由生产任务确定,辅助时间t0视实 际操作情况而定,反应时间t可由动力学方程确定, 也可由实验得到。由以上数据可求VR、V、m、Vm以 及δ等
反应时间t的求算方法
• 由动力学方程理论计算或经验获得,但应注意: • (1)不少强烈放热的快速反应,反应过程的速率往往
受传热速率的控制,不能简单地用动力学方程式来 求算反应过程的时间。 • (2)某些非均相反应,过程进行的速率受相间传质 速率的影响,也不能单纯地从化学动力学方程式计 算反应时间。 • (3)某些反应速率较快的反应,在加料过程及升温 过程中已开始反应。在保温阶段之前可能已达到相 当高的转化率。有时需分段作动力学计算。
=
24 t'
按设计任务需用的设备个数为:
m==2V4DVt'a =FVVta'
4
由上式算出的m值往往不是整数,需取成整数m’, m'>m。
因此实际设备总能力比设计需求提高了。 其提高的程度称为设备能力的后备系数,以δ表示,
则
m' m100%
m
5
(2)已知每小时处理的物料体积FV与操作周期t’,求设备体积与个
δ=[(3-2.5)/2.5]×100%=20% 10
三个还原锅交替操作的时间安排图
时间(小时)
0 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10
锅号
101
102
1 受料
还原
受料 还原
201
202
2
受料
还原
受料
301
还原
302
3
受料 还原
受料
还原
11
例3-3西维因农药中试车间取得以下数据:用200升搪瓷锅做实 验,每批操作可得西维因成品12.5Kg,操作周期为17小时。今 需设计年产1000吨的西维因车间,求算需用搪瓷锅的数量与容 积。年工作日取300天。
V F V t'/ 0 .8 1 3 /0 6 .7 1 5 .7 m 7 3
取两台釜,每釜容积为8.85m3,采用标准容积为 10m3的反应釜,后备能力为
( 1 8 0 .8 )/8 5 .8 1 5 % 0 1 .0 % 3
思考 如果取受料时间为1h,结果如何?
9
例3-2同例3-1,如果根据工厂的加工能力能够制造的 最大容积的还原锅为6m3。问需用几个还原锅。
2
(4)*设备装料系数
实际生产中,反应器的容积要比有效容积大,以保 证液面上留有空间。
• 反应器有效体积与设备
实际容积之比称为设备
装料系数,以符号
表示,即:
=VR/V。其值视具体
情况而定
条
件
无搅拌或缓慢搅 拌的反应釜
带搅拌的反应釜
易起泡或沸腾状 况下的反应
液面平静的贮罐 和计量槽
装料系数范围 0.80~0.85
(3)反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体积。
确定反应器的容积V的前提是确定反应器的有效容 积(反应容积)VR。 如果由生产任务确定的单位时间的物料处理量为FV, 操作时间为t’(包括反应时间t和辅助操作时间t0 ),
则反应器的有效容积:
VR=FVt'
其中 t’ = t + t0
12
• 例3-4萘磺化反应器体积的计算。萘磺化生 产2-萘磺酸,然后通过碱熔得2-萘酚。已知 2-萘酚的收率按萘计为75%,2-萘酚的纯度 为 99% , 工 业 萘 纯 度 为 98.4% , 密 度 为萘与硫酸的摩尔比为1:1.07。每批磺化操 作周期为3.67小时。萘磺化釜的装料系数为 0.7。年产2-萘酚4000t,年工作日330天。
数
需要设备的总容积为:
FV t '
=V
= mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=FVt’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
13
H 2 S O 4+
S O 3 H
O H
9 8
1 2 8
1 4 4
根据生产任务,每小时需处理工业萘的体积为:
40 1 0 3 0 0 .9 912 81 10 6 0L 2 06 3 3 20 4 1 4 0 .7 45 0 .989463
解:选用6 m3的锅,每锅受料体积为VR=0.75×6=4.5 m3,
则
受料时间: 4.5/0.83=5.44h 操作周期: 5.44+8=13.44h 每天操作总批数:α=24X0.83/4.5=4.45 每锅每天操作批数: β=24/13.44=1.78 需要锅的个数: m=4.55/1.78=2.5 取用三个锅,生产能力后备系数为:
解: 每台锅每天操作批数: β=24/17=1.41 每天生产西维因农药数量: 1000×1000÷300=3330Kg(GD)
需要设备总容积: mVm=(3330/1.41)×200×10-3/12.5=37.8m3
取Va为10 m3的最大搪瓷锅4台。
δ=(4-3.78)/3.78×100%=5.82%
例3-1:邻硝基氯苯连续氨化,然后分批还原生产邻 苯二胺。已知氨化出料速率为0.83m3/h,还原操作时 间为7h(不计受料时间),求需要还原锅的个数与容积。 设备装料系数取0.75
8
解:因氨化为连续操作,故至少需要两台还原釜交 替进行受料和还原。还原操作时间为7h,可取受料 时间为8h,安排每班进行一次还原操作,则每批的 操作时间为16h。装料系数取0.75,于是需要设备的 总容积为
0.70~0.80 0.40~0.60
0.85~0.90
3
2、反应器的容积和个数的确定
• (1)已知VD或FV与t ’,根据已有的设备容积Va, 求算需用设备的个数m。
• 设备装料系数为 ,则每釜物料的体积为 Va,按
设计任务,每天需要操作的总批次为:
VD 24FV
•
Va Va
每个设备每天能操作的批数为:
小,若标准釜的容积为Va,那么,
V aV10 % 0V m aV m10 % 0
V
V m
6
• 思考 • 选用个数少而容积大的设备有利还是选用
个数多而容积小的设备有利 ?
7
3、计算示例
物料处理量FV一般由生产任务确定,辅助时间t0视实 际操作情况而定,反应时间t可由动力学方程确定, 也可由实验得到。由以上数据可求VR、V、m、Vm以 及δ等
反应时间t的求算方法
• 由动力学方程理论计算或经验获得,但应注意: • (1)不少强烈放热的快速反应,反应过程的速率往往
受传热速率的控制,不能简单地用动力学方程式来 求算反应过程的时间。 • (2)某些非均相反应,过程进行的速率受相间传质 速率的影响,也不能单纯地从化学动力学方程式计 算反应时间。 • (3)某些反应速率较快的反应,在加料过程及升温 过程中已开始反应。在保温阶段之前可能已达到相 当高的转化率。有时需分段作动力学计算。
=
24 t'
按设计任务需用的设备个数为:
m==2V4DVt'a =FVVta'
4
由上式算出的m值往往不是整数,需取成整数m’, m'>m。
因此实际设备总能力比设计需求提高了。 其提高的程度称为设备能力的后备系数,以δ表示,
则
m' m100%
m
5
(2)已知每小时处理的物料体积FV与操作周期t’,求设备体积与个
δ=[(3-2.5)/2.5]×100%=20% 10
三个还原锅交替操作的时间安排图
时间(小时)
0 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10
锅号
101
102
1 受料
还原
受料 还原
201
202
2
受料
还原
受料
301
还原
302
3
受料 还原
受料
还原
11
例3-3西维因农药中试车间取得以下数据:用200升搪瓷锅做实 验,每批操作可得西维因成品12.5Kg,操作周期为17小时。今 需设计年产1000吨的西维因车间,求算需用搪瓷锅的数量与容 积。年工作日取300天。
V F V t'/ 0 .8 1 3 /0 6 .7 1 5 .7 m 7 3
取两台釜,每釜容积为8.85m3,采用标准容积为 10m3的反应釜,后备能力为
( 1 8 0 .8 )/8 5 .8 1 5 % 0 1 .0 % 3
思考 如果取受料时间为1h,结果如何?
9
例3-2同例3-1,如果根据工厂的加工能力能够制造的 最大容积的还原锅为6m3。问需用几个还原锅。
2
(4)*设备装料系数
实际生产中,反应器的容积要比有效容积大,以保 证液面上留有空间。
• 反应器有效体积与设备
实际容积之比称为设备
装料系数,以符号
表示,即:
=VR/V。其值视具体
情况而定
条
件
无搅拌或缓慢搅 拌的反应釜
带搅拌的反应釜
易起泡或沸腾状 况下的反应
液面平静的贮罐 和计量槽
装料系数范围 0.80~0.85