杨辉三角(小学版)

合集下载

杨辉三角解题公式(二)

杨辉三角解题公式(二)

杨辉三角解题公式(二)杨辉三角解题公式什么是杨辉三角?杨辉三角是中国古代数学家杨辉发现的一种特殊数列排列方式。

它的特点是,每一行的端点和每一行的中间数都是1,其他位置上的数是上一行两个相邻数的和。

杨辉三角解题公式第n行第k个数的计算公式第n行第k个数的计算公式可以表示为:C(n,k)=n!k!(n−k)!其中,n!表示n的阶乘,即n!=n×(n−1)×(n−2)×...×2×1。

例子我们来计算一下杨辉三角的第5行:第1个数:C(5,1)=5!1!(5−1)!=5!1!×4!=5×4×3×2×11×4×3×2×1=5第2个数:C(5,2)=5!2!(5−2)!=5!2!×3!=5×4×3×2×12×1×3×2×1=10第3个数:C(5,3)=5!3!(5−3)!=5!3!×2!=5×4×3×2×13×2×1×2×1=10第4个数:C(5,4)=5!4!(5−4)!=5!4!×1!=5×4×3×2×14×3×2×1×1=5第5个数:C(5,5)=5!5!(5−5)!=5!5!×0!=5×4×3×2×15×4×3×2×1×1=1所以,第5行的数列为:1, 5, 10, 10, 5, 1。

这就是杨辉三角的特性:每一行的数都可以通过计算上一行的两个相邻数得到,并且每一行的端点和中间数都是1。

课件2:1.3.2 杨辉三角

课件2:1.3.2 杨辉三角
1.3.2 杨辉三角
1.使学生建立“杨辉三角”与二项式系数之间的直觉,并探索其 课标 中的规律. 解读 2.掌握二项式系数的性质及其应用.
3.掌握“赋值法”并会灵活运用.
【问题导思】 观察“杨辉三角”发现规律
①第一行中各数之和为多少? 第二、三、四、五行呢?由此你能得出怎样的结论? ②观察第 3 行中 2 与第 2 行各数之间什么关系? 第 4 行中 3 与第 3 行各数之间什么关系? 第 5 行中的 4、6 与第 4 行各数之间有什么关系? 由此你能得出怎样的结论?
答:①20,21,22,23,24,第 n 行各数之和为 2n-1. ②2=1+1,3=2+1,4=1+3,6=3+3,相邻两行中,除 1 外的每一个数都 等于它“肩上”两个数的和,设 Crn+1表示任一不为 1 的数,则它“肩上”两数分 别为 Crn-1,Crn,所以 Crn+1=Crn-1+Crn.
类型1 与杨辉三角有关的问题
例 1.将全体正整数排成一个三角形数阵: 1
23 456 7 8 9 10 11 12 13 14 15
……
按照以上排列的规律,第 n 行(n≥3)从左向右的第 3 个数为________. 【思路探究】 观察规律,可先计算出前(n-1)行的数字个数来求解.
【解析】 观察上述数阵,能够发 现,第一行有一个数字是 1,第二行
【答案】 B
3.设 m 为正整数,(x+y)2m 展开式的二项式系数的最大值为 a, (x+y)2m+1 展开式的二项式系数的最大值为 b.若 13a=7b,则 m=________.
【解析】 由题意得:a=Cm2m,b=Cm2m+1,所以 13Cm2m=7Cm2m+1, ∴m13!·2·mm!!=m7!·(·(2mm++11))!!,∴7(2mm++11)=13,解得 m=6,

最新杨辉三角课件精品课件

最新杨辉三角课件精品课件
A
B
由此看来,杨辉三角与纵横(zònghéng)路线图问题有天然的联系
第十六页,共24页。
五、小结 (xiǎojié)
1、杨辉三角蕴含(yùn hán)的基 本性质
2、杨辉三角蕴含的数字(shùzì)排 列规律
第十七页,共24页。
杨辉三角的其它(qítā) 规律
第十八页,共24页。
杨辉三角中若第P行除去(chúqù)1外,P整
C C r1
r
n1
n1
第n行1 Cn1 Cn2

Cnr

…… … … 第十九页,共24页。
C n2
n1 1
C n1 n
1
练习 ((l0i4à.n上x海í)春1季: 高考)如图,在由二项式系数
(xìshù)所构成的杨辉三角形中,第3_4____行中从
左至右第14与第15个数的比为 2 :.3
第二十一页,共24页。
C a b r kr r k
C
k k
bk
则当n=k+1时,(a b)k1 (a b)k (a b)
(Ck0ak Ck1ak1b1 Ckrakrbr Ckk ak )(a b)
Ck0a k1
C k1a k b
C
r k
1a
k
r
bb1
C
k k
ab
k
C k0a k b
C
r k
a
k
r
b
r
1
C kk 1ab k
研究性课题(kètí):
杨辉三角
第一页,共24页。
杨辉三角
第0行
1
第1行
11
第2行
第3行 第4行

课件8:1.3.2 杨辉三角

课件8:1.3.2 杨辉三角

解:由图知,数列的首项是 C22,第 2 项是 C12,第 3 项是 C23, 第 4 项是 C13,…,第 18 项是 C110,第 19 项是 C211, ∴S19=C22+C21+C32+C31+…+C120+C110+C211 =(C12+C13+C14+…+C110)+(C22+C23+C24+…+C211) =(2+3+4+…+10)+(C33+C23+…+C211) =2+120×9+C132=54+121××121××310=274.
于是得到: (1)二项式系数和为 2n,即 Cn0+Cn1+C2n+…+Cnn=2n. (2)二项式的奇数项的二项式系数和与偶数项的二项式 系数和相等,都等于 2n-1.即 C1n+C3n+C5n+…=C0n+C2n +Cn4+…=2n-1.
在理解二项展开式的二项式系数和的有关性质 时,要掌握这种给字母赋值的思想(实际上是函数思 想);具体到计算特定项的二项式系数时可以直接给字 母赋值,也可以联系二项式的展开式;对整体式子的 求值,用给字母赋值的方法非常方便.
1.3.2 杨辉三角
情景导入 幻方,在我国也称纵横图,
它的神奇特点吸引了无数人为之痴 迷.一天,时任台州地方官的杨辉外 出巡游,遇到一学童,学童正在为老 先生布置的题目犯愁:“把 1 到 9 的数字分行排列, 不论竖着加,横着加,还是斜着加,结果都等于 15”.
情景导入
杨辉看到这个题顿时兴趣大发,于是和学童一起研究 起来,直至午后,两人终于将算式摆出来了.杨辉回 到家后,反复琢磨,终于发现了规律,并总结成四句 话:“九子斜排,上下对易,左右相更,四维挺出.”
方法总结 (1)对形如(ax+b)n、(ax2+bx+c)m(a,b,c ∈R,n,m∈N+)的式子求其展开式的各项系数之和, 常用赋值法,只需令 x=1 即可;对(ax+by)n(a,b∈R, x∈N+)的式子求其展开式的各项系数之和,只需令 x =y=1 即可.

杨辉三角

杨辉三角

1
二、杨辉三角的基本性质 1)表中每个数都是组合数,第n行的第 n! r r+1个数是 C
n
r !( n r )!
r 1 n 1
2)三角形的两条斜边上都是数字1,而其余 的数都等于它肩上的两个数字相加,也就是
C C
r n
C
r n 1
3)杨辉三角具有对称性
n 0 n n 1 n 1 1 n
r 1 k r r 1 k 1
k 1 k 1 k 1
1、横行规律
第 0行
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1)杨辉三角中的第1,3,7,15,…行,即2k—1行的各 个数字有什么特点? 都是奇数
则第2K行的数字有什么特点? 除两端的1之外都是偶数.
0 k k 1 k 1 1 k r k k r r k k
(a b) C a C a b C a b C b k 1 k 则当n=k+1时, (a b ) (a b) (a b)
C a b C a b C ab C b 0 k +1 = C k a + (C C )a b + + (C C )a b + k + (C k C )ab + C b
利用组合数的两个重要性质可得
k 1 0 k 1 k 1 1 k 1 k 1
0 k k 1 0 k k k k-1 k k
r k r r 1 k r +1 k k k +1 k
k 1 k k r k r b +1 k
k k 1 k
(a b) C a C a b C a b C b

杨辉三角课件

杨辉三角课件

1 33 1
1 4641
第5行--
C
0 5
C
1 5
C
2 5
C
3 5
C
4 5
C
5 5
1 5 10 10 5 1
第6行-
C
0 6
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
1 6 15 20 15 6 1
知识探究3:
(a+b)1
(a+b)2
C10 C11
C
0 2
C12
C
2 2
11 121
(a+b)3

)
也就是说, (1+x)n的展开式中的各个
二项式系数的和为2n,且奇数项的二
项式系数和等于偶数的二项式系数和
赋值法
课堂练习:
1、在(a+b)20展开式中,与第五项二项式系数相同
的项是( C ).
A.第15项 B.第16项 C.第17项 D.第18项
2、在(a+b)11展开式中,二项式系数最大的项( C ).
C
5 5
C
0 6
C
1 6
C
2 6
C
3 6
C
4 6
C
5 6
C
6 6
总结提炼2:
C = C m
n-m
n
n
与首末两端“等距离”的两个二项式系数相等
第1行———
C
10C
1 1
第2行——
C
0 2
C
1 2
C
2 2
第3行—-
C

杨辉三角(小学版)

杨辉三角(小学版)
杨辉三角
Chinese triangle
四年级(4)班
什么是杨辉三角?
杨辉是南宋时期杭州人。在
他1261年所著书中,记录了右边图所 示的三角形数表,这三角形就被称为 杨辉三角。在欧洲直到1623年以后, 法国数学家帕斯卡才发现了同样规律, 因此欧洲人又称这个三角为“帕斯卡三 角”。但是大家从杨辉发现这个规律的 年代与帕斯卡发现这个规律年代相比 就会知道,我国的杨辉发现此规律比 帕斯卡早了300多年。近年来国外也逐 渐承认这项成果属于中国,开始称这 个三角是“中国三角形”。(Chinese triangle)。
杨辉三角的规律
杨辉三角的主要特征是:
1.两条斜边都是由数字1组成,其余的数则是等于上一行左右两个数字之和. 2.每行数字左右对称,由1开始逐渐变大,然后变小,最后再回到1. 3.第n行的数字个数为n个。 4.n行中第i个数是斜行i-1中前n-1个数之和。
杨辉三角计算演示
杨辉三角的应用 Ⅰ
杨辉三角可以用来帮助解决11的几次方的问题
大家可以看出11的几次方,也就是n个11连乘答案正好是杨辉三角所 对应的第n行的数字,
很神奇吧!
杨辉三角的应用 Ⅱ
大家请看一下下面的表格能发现什么吗?
对,这就是杨辉三角的又一个应用: 2的n次方也就是第 n行数字之和,很有意思对吧?
概括
杨辉三角除了以上两个应用,我
们还可以在日常生活中来用它计算最近的 路径问题以及弹子游戏中弹子掉落的概率等 许多问题。 古老的杨辉三角, 即使在我们现代生活中 也能得到充分的利用, 我们中国人的祖先在几 百年前就能最先发现这 个有用的规律,是不是 令我们由衷地为我们中 国灿烂的古代文明心生 自豪之情呢?

课件5:1.3.2 杨辉三角

课件5:1.3.2 杨辉三角

C1n+C2n+…+Cnn=2n.
自我尝试 1.判断(对的打“√”,错的打“×”) (1)杨辉三角的每一斜行数字的差成一个等差数列.( ) (2)二项式展开式中系数最大项与二项式系数最大项是相 同的.( ) (3) 二 项 式 展 开 式 的 二 项 式 系 数 和 为 C n1 + C n2 + … + Cnn.( )

(2)如图,在杨辉三角中,斜线 AB 上方箭头所示的数组
成一个锯齿形的数列:1,2,3,3,6,4,10,…,记
这个数列的前 n 项和为 S(n),则 S(16)等于( )
A.144
B.146
C.164
D.461
【解析】 (1)由题意,第 6 行为 1 6 15 20 15 6 1,第 7 行为 1 7 21 35 35 21 7 1,故第 7 行除去两端数字 1 以 外,均能被 7 整除. (2)由题干图知,数列中的首项是 C22,第 2 项是 C12,第 3 项是 C23,第 4 项是 C13,…,第 15 项是 C92,第 16 项 是 C19.所以 S(16)=C21+C22+C13+C23+…+C91+C92 =(C21+C31+…+C19)+(C22+C32+…+C29)
解:(1)令 x=1,
得 a0+a1+a2+…+a2 018=(-1)2 018=1.① (2)令 x=-1,
得 a0-a1+a2-a3+…-a2 017+a2 018=32 018.② 与①式联立,①-②得
2(a1+a3+…+a2 017)=1-32 018,
所以
a1+a3+…+a2
017=1-232
(3)如果二项式的幂指数 n 是偶数,那么其展开式 _中_间__一__项___T_n2_+_1 _的二项式系数最大;如果 n 是奇数,那
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.两条斜边都是由数字1组成,其余的数则是等于上一行左右两个数字之和. 2.每行数字左右对称,由1开始逐渐变大,然后变小,最后再回到1. 3.第n行的数字个数为n个。 4.n行中第i个数是斜行i-1中前n-1个数之和。
杨辉三角计算演示
杨辉三角的应用 Ⅰ
杨辉三角可以用来帮助解决11的几次方的问题
杨辉三角
Chinese triangle
四年级(4)班
什么是杨辉三角?
杨辉是南宋时期杭州人。在
他1261年所著书中,记录了右边图所 示的三角形数表,这三角形就被称为 杨辉三角。在欧洲直到1623年以后, 法国数学家帕斯卡才发现了同样规律, 因此欧洲人又称这个三角为“帕斯卡三 角”。但是大家从杨辉发现这个规律的 年代与帕斯卡发现这个规律年代相比 就会知道,我国的杨辉发现此规律比 帕斯卡早了300多年。近年来国外也逐 渐承认这项成果属于中国,开始称这 个三角是“中国三角形”。(Chinese triangle)。
大家可以看出11的几次方,也就是n个11连乘答案正好是杨辉三角所 对应的第n行的数字,
很神奇吧!
杨辉三角的应用 Ⅱ
大家请看一下下面的表格能发现什么吗?
对,这就是杨辉三角的又一个应用: 2的n次方也就是第 n行数字之和,很有意思对吧?
概括
杨辉三角除了以上两个应用,我
们还可以在日常生活中来用它来计算最近的 路径问题以及弹子游戏中弹子掉落的概率等 许多问题。 古老的杨辉三角, 即使在我们现代生活中 也能得到充分的利用, 我们中国人的祖先在几 百年前就能最先发现这 个有用的规律,是不是 令我们由衷地为我们中 国灿烂的古代文明心生 自豪之情呢?
相关文档
最新文档