热水解-高温厌氧消化工艺处理污泥的方法

合集下载

污泥处理处置方法

污泥处理处置方法

污泥处理处置方法
污泥是由污水处理过程中产生的固体废物,其中含有有机物、固体颗粒、重金属等污染物。

污泥处理的目标是有效去除有害物质,减少对环境的影响,并寻找合适的处置方式。

以下是常见的污泥处理处置方法:
1. 厌氧消化:将污泥与特定的微生物一起置于密封的容器中,通过微生物的作用将有机物降解成沼气和有机肥。

这种方法可以减少污泥的体积,同时产生可再利用的能源。

2. 热解处理:通过加热污泥,将有机物分解为油、气和固体残渣。

这种方法可以有效减少污泥的体积和重金属含量,并利用产生的油和气作为能源。

3. 堆肥处理:将污泥与有机废物混合,经过适当的处理和通风,利用微生物的作用将污泥转化为有机肥料。

这种方法可以减少污泥的体积,同时产生有机肥料用于土壤改良。

4. 焚烧处理:将污泥在高温条件下燃烧,将有机物热解为气体和灰渣。

焚烧可以有效减少污泥体积,同时具有杀菌作用,但需要注意处理过程中产生的废气和灰渣的处理。

5. 填埋处理:将污泥置于特定的填埋场中,隔离于环境之外。

这种方法可以有效减少污泥的体积,但需要注意填埋场的选择和管理,避免对周边环境造成污染。

除了上述方法外,还有一些新兴的污泥处理技术正在研究和发展中,如生物炭化、微波辅助处理等。

这些方法在处理效果、经济性和环境友好性等方面具有潜力,但需要进一步验证和应用。

高温热水解预处理污泥工艺探析

高温热水解预处理污泥工艺探析

高温热水解预处理污泥工艺探析国外将“高温热水解——厌氧消化”称之为“高级厌氧消化”,其中“高温热水解”作为一项污泥预处理技术可分解不可降解或者难降解的物质,如胞外聚合物(EPS),有效改善厌氧消化反应条件。

该污泥处理技术是由挪威CAMBI公司发明。

目前全球范围已有20多个项目使用了这项技术,据了解,该项技术每年可处理420000t污泥(以干重计),按照含水率80%计,相当于每天5800m3。

一、我国传统污泥厌氧消化处理工艺存在的主要问题:1)消化效率低,5%进泥含固率,消化池体积庞大,时间长,污泥有机质含量低;2)沼气产物中H2S含量高,除硫不容易,沼气利用难;3)设计和运行考虑不周,污泥中高含砂量,磨损、沉积,高浮渣含量;4)消化后的污泥产物无出路,处理后国内基本上还是填埋。

这是由于上述问题使这一在国外为主流的污泥处理技术,在国内并不受青睐。

然而采用高温热水解预处理技术,可有效解决以上工艺系统问题。

该预处理技术是利用高温和高压迫使污泥分子结构发生变化(俗称:破壁),以加快整个消化过程和脱水性能,并优化污泥转化为沼气的有机物质比例。

二、热水解处理流程热水解预处理系统由一个浆化罐、四个到六个反应罐和一个卸压闪蒸罐组成。

一般采用序批式方法工作,整个批次4~5小时,具体流程如下:1、脱水污泥(含水率15~20%)进入混合预热罐(也称浆化罐),与从高温热水解污泥换热和闪蒸罐回收蒸汽混和,将污泥预加热至约100 ℃;2、预热后的污泥进入高温热水解罐进行热水解反应,在0.6~0.7MPa和150~170℃情况下,反应30min,然后通过罐体准备、进料、反应、出料的四步轮换,实现连续运行;3、热水解后的污泥会被急速送到闪蒸罐,由于压力的释放,在压力差的作用下,污泥细胞得到破坏;4、经热水解和闪蒸罐释放压力后的污泥温度100~110℃,经热交换器进行冷却,换热后污泥温度在40~50℃,以满足后续厌氧消化的要求。

污泥处理处置及资源化主流方法

污泥处理处置及资源化主流方法

污泥处理处置及资源化主流方法污泥是城市污水处理过程中产生的一种固体废弃物,它含有大量有机物质、无机盐、有害物质和微生物,具有不稳定性、高含水率和难以处理的特点。

为了有效处理污泥并实现资源化利用,目前主要采用以下几种主流方法。

1.原污泥进一步处理:原污泥经过浓缩、稳定化处理,减少含水率和体积,提高处理效率和节约运输成本。

常用的方法有压滤、离心、压滤等。

此外,通过添加固化剂、消毒剂和添加剂等进行稳定化处理,有效消除污泥中的有害物质和臭味,减少环境污染。

2.热解技术:采用高温热解技术可以将污泥分解为油、气和固体残渣等可再利用的物质。

常见的热解技术有干燥热解、流化床热解和微波热解等。

热解过程中,可以收集燃料气体和油脂,用于能源生产和工业原料,同时产生的固体残渣可作为肥料或建筑材料。

3.生物处理技术:运用生物菌群,如厌氧菌、好氧菌和微生物等,对污泥进行分解和转化,将有机物质转变为可稳定利用的产物。

常见的生物处理技术有厌氧消化和好氧堆肥等。

厌氧消化将污泥在无氧环境下进行分解,产生甲烷气体用于能源生产,同时也可得到稳定的有机肥。

好氧堆肥则是在有氧环境下,通过控制温度、湿度和通气等条件,促进污泥中有机物质的分解和转化,生产稳定的有机肥。

4.燃烧技术:将污泥进一步干燥后,以高温(800-1000℃)进行燃烧,产生热能和灰渣。

燃烧过程中,可收集烟气中的有害物质,如重金属和二恶英等。

燃烧生成的热能可用于能源回收,灰渣则用作建筑材料或填埋场覆盖物。

5.肥料化利用:将污泥进行物理处理和消毒后,再添加适量的配方肥料进行混合,制成特殊肥料。

通过调控污泥中的氮、磷、钾等养分,使其成为一种营养丰富的肥料,用于农业生产,同时还可以减少化肥的使用。

综上所述,污泥处理处置及资源化的主流方法包括物理处理、热解技术、生物处理技术、燃烧技术和肥料化利用等。

这些方法可以有效地解决污泥处理的难题,并将污泥转化为可再利用的产物,实现资源化利用,达到减少环境污染和提高资源利用效率的目标。

市政污泥“热水解+高含固厌氧消化”处理工艺设计浅析

市政污泥“热水解+高含固厌氧消化”处理工艺设计浅析

市政污泥“热水解+高含固厌氧消化”处理工艺设计浅析周程
【期刊名称】《净水技术》
【年(卷),期】2024(43)S01
【摘要】厌氧消化工艺因具有良好的污泥稳定化、减量化、资源化特性而在市政污泥处理中得到广泛应用,而“热水解+高含固厌氧消化”工艺具有减少厌氧消化系统占地和投资、大幅提升厌氧消化效率的特点,该工艺可彻底实现污泥无害化,更好实现污泥减量化、稳定化和资源化,在市政污泥处理应用中具有广阔前景。

文章依托国内“热水解+高含固厌氧消化”工艺实际工程案例,对工艺流程和各系统组成进行梳理和分析,梳理工艺设计关键参数,并对该工艺的特点及设计要点进行分析,为类似项目的工程设计提供参考。

【总页数】7页(P177-183)
【作者】周程
【作者单位】上海市城市建设设计研究总院<集团>有限公司
【正文语种】中文
【中图分类】TU992
【相关文献】
1.高含固率污泥预处理方法及其在污泥厌氧消化中的作用
2.热碱预处理对高含固剩余污泥厌氧消化的影响及其动力学研究
3.亚硫酸盐预处理强化高含固污泥的自热
式高温好氧消化处理工艺4.添加餐厨油脂对高含固污泥热水解及厌氧消化的影响5.高含固污泥在热水解-厌氧消化工艺中的流变特性分析
因版权原因,仅展示原文概要,查看原文内容请购买。

几种剩余活性污泥厌氧消化预处理技术介绍

几种剩余活性污泥厌氧消化预处理技术介绍

几种剩余活性污泥厌氧消化预处理技术介绍摘要:剩余活性污泥由于自身特殊性质,较难被生物降解,制约了其厌氧消化效果。

通过对污泥进行生物预处理,热水解法,超声波法,臭氧法和碱水解等预处理,可以有效强化其厌氧1消化过程,提高产气量。

本文介绍了上述预处理技术的基本原理和特点。

关键词:剩余活性污泥厌氧消化预处理1引言在剩余污泥的固定化方法中,厌氧消化是目前最为热门的技术手段,有着成本低,能耗低,操作条件温和,固定化效果更好等诸多优点。

而污泥的预处理则是通过改变污泥的物理或化学性质,来提高厌氧消化效果的技术手段。

目前,活性污泥主要的预处理方法有生物预处理,热水解法,超声波处理,碱水解法等。

这些方法均可以有效地裂解剩余活性污泥的细胞壁,使污泥絮体中有机物由固相溶出至液相,加速剩余污泥水解。

2 几种预处理技术介绍2.1 生物预处理生物预处理是剩余活性污泥在进行厌氧消化前的一个附加步骤,其目的在于加强剩余活性污泥的水解过程。

最常见的生物预处理形式是温度相厌氧消化(TPAD),即在嗜热温度(~55℃)或高嗜热温度(60℃~70℃)条件下,对剩余活性污泥进行厌氧或好氧处理。

嗜热处理过程特别是嗜热菌的水解活性已经被人们进行了广泛的研究,主要集中在55℃嗜热处理[2]。

在该条件下,水解活性的提高可使污泥中的有机质加速降解。

Ge et al. [3] 对嗜热预处理和中温预处理进行了对比实验,结果表明:在水力停留时间(HRT)为2天时,经过嗜热处理的污泥,在后续的中温厌氧消化过程中(HRT为13-14天),其产甲烷量和污泥减量,相对于中温预处理均提高了25%。

由于活性污泥中存在只能在好氧条件下分解的有机物,好氧生物预处理技术就成为了要给合适的选择。

Shiota et al. [4] 对剩余活性市政污泥进行好氧高嗜热预处理(65℃,HRT 为2.8天),使污泥中的有机质降解了75%。

Hasegawa et al. [5] 等人对活性污泥采用好氧高嗜热预处理(60-70℃,HRT为1天),使得其在后续的厌氧消化中沼气产量提高了50%。

热水解-高温厌氧消化工艺处理污泥的方法

热水解-高温厌氧消化工艺处理污泥的方法

热水解-高温厌氧消化工艺处理污泥的方法2011年我国污泥产量约2188万t,预估到2015年我国污泥产量将超过3000万t,已成为我国最紧迫的环境问题之一[1]. 其中接近70%的直接填埋,15%去向不明,存在突出的二次污染. 厌氧消化是一项广泛应用的污泥稳定化、减量化、无害化、资源化技术,并且能够回收沼气. 欧盟地区50%以上污水厂均采用污泥厌氧消化[2]. 各国厌氧消化比例:比利时67%,丹麦50%,法国49%,德国64%,希腊97%,意大利56%,卢森堡81%,西班牙65%[3].厌氧消化也是我国鼓励的主要污泥处理技术. 国家近年发布的《城镇污水处理厂污泥处理处置技术指南(试行)》、《“十二五”期间污泥处置建议》和《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》等均明确提出“大中型厂宜优先选用厌氧消化污泥处理工艺”、“鼓励城镇污水处理厂采用污泥厌氧消化工艺”等. 但目前为止,全国仅50余家污水厂建有污泥厌氧消化设备,且40%左右停运[4]. 全国经过厌氧处理的污泥不足2%. 高含固率的污泥厌氧消化(简称高固消化,进泥含固率8%以上)是近年受到关注的污泥消化新技术[5, 6, 7, 8]. 与传统污泥厌氧消化(进泥含固率3%~5%)相比,单位投资可减少40%~50%[9],又明显节省加热量,故经济优势明显. 另一方面,我国的污泥有机物含量明显低于欧美,也是厌氧技术推广难的原因之一. 考虑到污泥消化的速控步骤是污泥水解,而我国污泥有机物含量低的情况,提出了“热水解-高温厌氧消化”的高固污泥处理工艺. 该工艺的主要特点包括:①采用70℃热水解作为预处理来促进细胞溶解; ②采用高温厌氧消化来加快消化. 目前高固消化的研究还不够充分,尤其缺乏设计和实际运行经验. 本研究具有较好的参考价值. 1 材料与方法 1.1 工艺流程本中试在广州市某水质净化厂进行,共持续9个多月. 中试的工艺流程见图 1. 进泥在水解罐中水解,之后用泵打入高温厌氧罐. 热水解罐和高温罐的有效容积分别为0.6 m3和2.0 m3,前者的反应温度为70℃±1℃,后者为55℃±1℃. 热水解的固体停留时间(solid retention time,SRT)为3 d.图 1 工艺流程示意1.2 接种污泥和处理的污泥接种污泥为中温厌氧消化污泥,接种挥发性悬浮固体(volatile suspended solid,VSS)浓度为17.01 g ·L-1,有机物含量为57%. 试验所用进泥为污水厂的脱水剩余污泥配制,含固率为8%~9%,有机物含量为59.76%~69.94%,VSS为52.95~58.45 g ·L-1,SCOD为1268~3443 mg ·L-1,氨氮60~336 mg ·L-1. 该污水厂进水中工业废水约占70%左右. 1.3 有机物去除率有机物去除率以VSS去除率表示,其计算是基于相同SRT下的稳定运行阶段的物料平衡得出:式中,ηMB:平均VSS去除率,%; VSSF:平均进泥VSS浓度,g ·L-1; VSSP:平均出泥VSS浓度,g ·L-1. 1.4 测试方法pH采用精密pH试纸测量,含水率、 VSS采用重量法测量,COD采用快速消解分光光度法(兰州连华环保科技有限公司,5B-1B)测量,碱度采用溴甲酚绿-甲基红指示剂滴定法测量,氨氮采用纳氏比色法测量,沼气含量采用甲烷测定仪(北京恒奥德仪器仪表有限公司,HA80-CH4)测量,沼气产量采用湿式流量计(长春汽车滤清器有限责任公司,LMF-1)测量. 2 结果与讨论试验从2011年10月底持续至次年7月,时长近9个月. 2.1 热水解试验期间,热水解进泥的平均VSS为55.78g ·L-1,出泥为44.87 g ·L-1,平均去除率为19.6%. SCOD由进泥的4565 mg ·L-1增加至19969 mg ·L-1,增加337.4%. 这些显示出热水解在溶解细胞方面有明显效果.热水解的去除率与进泥的VSS/SS有一定关系,当VSS/SS在50.0%~59.9%范围内,平均为57.1%时,热水解的平均VSS去除率为13.3%,而VSS/SS在60%以上,则差异不明显,VSS/SS为60%~64.9%、 65.0%~69.9%和70%以上的污泥热水解的平均VSS去除率分别为20.50%、 21.20%和17.63%. 2.2 高温厌氧消化2011年10月底,用接种污泥直接将高温厌氧罐充满,然后每天按有机负荷(以COD计)2 kg ·(m3 ·d)-1投加葡萄糖,促进厌氧细菌的活性恢复. 当沼气产量达到理论值70%~80%时,逐步减少葡萄糖的投加量,同时增加污泥量,经过3周左右的时间,葡萄糖的投加量为零,至此启动结束. 启动期间,污泥的SRT为20 d,pH维持在7.0左右,进泥的VSS为12.86 g ·L-1,VSS/SS为52.43%.待反应器启动结束后,将进泥的含固率提高到8%~9%,依次进行了厌氧SRT分别为40 d、35 d、 25 d、 20 d、 15 d的试验. 每个SRT试验的测试结果都是在反应器完成一个完整的SRT运行后,且稳定运行以后的平均值,结果如下. 2.2.1 有机物去除率当高温厌氧消化的SRT为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,VSS去除率分别为27.5%、 32.5%、 29.8%、 34.6%、 25.3%和42.3%,有机负荷(以VSS计)分别为3.16、2.36、 1.84、 1.58、 1.15、 1.18 kg ·(m3 ·d)-1. SRT为35 d时,去除率较低. 在这期间,污水厂的剩余污泥的VSS/SS由70%左右下降至50%左右. 污泥性质不稳定可能是去除率较低的主要原因.图 2 高温厌氧消化的有机物去除率与SRT2.2.2 VSS/SS稳定化是污泥处理的重要目标之一. 王凯军等[10]指出,污泥稳定化是有机物矿化的过程. 朱英等[11]推荐VSS去除率、不稳定物质去除率、腐殖质含量和植物毒性等作为污泥稳定化指标,而朱明权等[12]认为厌氧消化后污泥的有机酸含量可很好地衡量污泥的稳定化程度. 通常,有机物去除率越高,污泥稳定化越好,而污泥有机物含量(VSS/SS)越高,污泥就越不稳定,因此可以采用VSS去除率和消化污泥的VSS/SS评价污泥稳定化程度. 大量工程运行数据表明,稳定程度较好的污泥VSS去除率在40%以上,VSS/SS多在45%±5%.当高温厌氧消化的SRT为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,高温消化污泥的VSS/SS分别为47.49%、 57.98%、 54.00%、 47.15%、 52.93%和55.70%. SRT为20 d、25 d、 35 d和40 d时,消化污泥的VSS/SS超过50%,这主要是因为进泥的有机物含量较高导致的. 由图 3可知,消化污泥的VSS/SS与进泥的VSS/SS是相关的. 拟合结果表明,线性相关系数R2达到0.9168.图 3 高温消化污泥VSS/SS与SRT的关系2.2.3 甲烷产率甲烷产率是评价厌氧消化回收能源的重要指标. 由图 4可知,当SRT为25~40 d时,甲烷产率(以CH4/VSSadd计)变化不大,为0.20~0.24 m3 ·kg-1; 当SRT为15 d、 20 d 时,甲烷产率下降,为0.12 m3 ·kg-1、 0.17 m3 ·kg-1. 这表明当SRT在20 d以下时,污泥有机物的消化还不够彻底. 综合甲烷产率以及前文的有机物去除率等结果,在实际工程中,本工艺的高温厌氧消化的SRT可取25 d.图 4 甲烷产率2.2.4 氨氮氨氮是厌氧反应的抑制物质之一,而高固污泥消化的氨氮抑制风险要明显高于传统污泥厌氧消化. Hashimoto[13]研究发现,对于未经驯化的中温和高温厌氧反应器,当pH约为7.2时,氨氮浓度2500 mg ·L-1的抑制就很明显. 而对于经过驯化的高温厌氧反应器,氨氮浓度达到4000 mg ·L-1时才会产生抑制. Angelidaki等[14]也认为4000 mg ·L-1是氨氮抑制现象发生的临界值. 在试验中,进泥的平均氨氮为284mg ·L-1,厌氧的氨氮浓度平均为983 mg ·L-1,低于文献报道的氨氮抑制浓度4000 mg ·L-1[14, 15]. 2.3 总体运行情况工艺的总VSS去除率见图 5. 从中可知,当高温厌氧消化的SRT为15 d、 20 d、 25 d、30 d、 35 d和40 d时,总VSS去除率分别为39.07%、 42.22%、 42.69%、 45.31%、 44.70%和47.87%,总去除率(ηMB)与SRT线性正相关(式2),相关系数达到0.9153. 厌氧消化的SRT在20 d以上时,总VSS去除率在40%以上,完全满足《城镇污水处理厂污染物排放标准(GB 18918-2002)》中污泥稳定的要求.热水解和高温厌氧消化对总VSS去除的贡献见图 6. 由图可知,当高温厌氧消化的SRT 为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,热水解的贡献比例分别为51.92%、 46.45%、63.52%、 44.77%、 60.66%和42.68%,而厌氧消化的贡献比例分别为48.08%、 53.55%、36.48%、 55.23%、 39.34%和57.32%,表明热水解和高温厌氧消化去除VSS的贡献大致相当. 尽管热水解的SRT只有3 d,仅占总SRT的6.98%~16.67%,但对总VSS去除率的贡献明显.图 5 总VSS去除率图 6 热水解和高温厌氧消化对VSS去除的贡献2.4 与实际工程的对比文献报道的国外的大型污泥消化工程的运行数据比较少,使用的经典设计手册可以反映工程的实际情况. 美国《污水处理厂设计手册》中明确指出污泥厌氧消化的有机物去除率应在38%以上,沼气产率的范围为0.5~0.75 m3 ·kg-1(以沼气/VSSadd计) 和0.75~1.12m3 ·kg-1[16](以沼气/VSSrem计). 沼气中的甲烷含量一般为50%~70%,按平均60%计算,折算后的甲烷产率分别为0.30~0.45 m3 ·kg-1(以CH4/VSSadd计)和0.45~0.67 m3 ·kg-1(以CH4/VSSrem计). 中试研究结果表明,热水解-高温厌氧消化工艺处理高含固率的剩余污泥时,有机物去除率完全可以达到美国设计手册的要求,但甲烷产率低于推荐值.截止目前,我国建成并运行良好的污泥厌氧消化设施主要有大连东泰夏家河污泥处理厂、北京小红门污水处理厂污泥消化工程、青岛麦岛污水处理厂污泥消化工程、上海白龙港污水处理厂污泥处理处置工程和郑州王新庄污水处理厂污泥消化工程等. 本中试的试验结果与国内运行良好的部分实际工程运行对比结果见表 1.由于我国城镇污水处理厂污泥的有机物含量普遍较低,已建成运行的污泥厌氧消化设施,甲烷产率大多为0.18~0.24 m3 ·kg-1(以CH4/VSSadd计)[17],因此本工艺的甲烷产率要优于一般的消化工程. 由表 1可知,当停留时间接近时,高含固率的污泥厌氧消化的有机物去除率与运行良好传统的污泥厌氧消化工程(含固率3%~5%)相当. 由于高固消化与相同停留时间的传统消化相比,反应器的容积要缩小50%左右,加热的污泥体积缩小40%~60%,抵消了大部分高温多耗的能量,因此运行费也未明显增加. 这显示出本工艺具有明显的经济优势.表 1 中试与实际消化工程的对比与同为高固消化的大连夏家河污泥处理厂相比,本中试的有机物去除率和甲烷产率基本相同. 夏家河污泥处理厂的进料除了城市污泥外,还有部分过期食品,这些物料有机物含量高,产气率也高. 夏家河厂采用了德国技术.本工艺采用了70℃热水解和高温消化,在降低污泥的卫生风险方面要明显优于中温消化.具体参见污水宝商城资料或更多相关技术文档。

污泥热水解厌氧消化工艺和普通厌氧消化工艺方案对比分析

技术| 污泥热水解厌氧消化工艺和普通厌氧消化工艺方案对比分析随着城市建设步伐的加快和环境保护要求的提高,城镇污水处理厂面临着一系列的升级改造,越来越多的污水处理厂运用热水解厌氧消化工艺来处理污泥。

污泥的热水解是指在一定温度和压力下,将污泥在密闭的容器中进行加热,使污泥絮体发生物理化学变化的预处理过程。

本文将结合实际工程方案,对污泥热水解厌氧消化工艺与传统的厌氧消化工艺进行对比分析。

一、工程背景某污水处理厂现况污泥处理工艺为“浓缩→消化→脱水”,消化产生的沼气用于发电和消化池加热,其中污泥浓缩段采用重力浓缩,消化段采用二级厌氧消化,共有消化池16座,脱水段采用带式和离心式两种设备,该厂在经过水区的升级改造后污泥量增加,另一方面由于一期消化池老化,存在安全隐患,需进行拆除,最终将导致剩余8座消化池不能满足今后的污泥消化的需要。

此外,热水解厌氧消化工艺将为污泥土地利用、工业燃料、建材原料等方式进行循环利用创造条件、厌氧消化后续考虑采用热干化工艺对脱水污泥进行干化。

二、方案选择根据该厂现况改造实施中的具体要求,在分别设置初沉污泥和剩余污泥机械浓缩的前提下,对浓缩后泥区消化系统、脱水和干化进行了两个方案的比较。

方案一采用“普通厌氧消化→脱水→干化”工艺,即利用拆除的消化池位置,新建污泥消化池,并将现有二级消化池改造成一级消化。

方案二采用“热水解→厌氧消化→脱水→干化”工艺,即利用拆除的消化池位置新增水解设施,并将保留的消化池改造成高级消化。

两个方案的设计条件:初沉污泥142.6tDS/d,含水率97%;剩余污泥141.3tDS/d,含水率99.4%。

主要技术参数见表1,工艺见表2。

表1、普通厌氧消化与热水解厌氧消化技术参数对比表2、热水解厌氧消化工艺与传统厌氧消化工艺的对比在方案一中,浓缩后的初沉污泥和剩余污泥混合后进入消化池,消化池进泥含水率96%,消化池内污泥温度为35℃,停留时间20d,脱水后污泥含水率80%,干化后的污泥含水率降至10%~35%。

污泥高温无害化处理工艺流程

污泥高温无害化处理工艺流程
污泥高温无害化处理通常包括以下几个工艺流程:
1. 预处理:首先对污泥进行浓缩脱水,降低含水率,以便后续处理。

2. 高温热解/热水解:通过高温(如热水解温度可达150-200℃)作用破坏污泥中的细胞结构,释放胞内物质,促进有机物分解。

3. 高温堆肥/生物干化:在严格控制通风、温度(一般在55-70℃之间)条件下,借助微生物代谢作用,将有机污泥转化为稳定、无害的腐殖质。

4. 高温焚烧/热解气化:在800-1200℃高温下彻底焚烧或热解污泥,杀灭病原体,大大减少有机物和有害物质,同时可回收热能生成电力或蒸汽。

5. 厌氧消化:在密闭环境中,通过厌氧微生物将污泥中的有机物转化为甲烷和二氧化碳,同时减少污泥体积,实现稳定化和一定程度的无害化。

6. 巴斯德消毒:将污泥加热至一定温度(一般至少70℃以上)保持一段时间,以杀死病原微生物和寄生虫卵。

上述各种工艺可根据污泥特性和处理要求单独或组合使用,以实现污泥最大程度的减量化、稳定化和无害化。

污水处理厂污泥的处理与利用

污水处理厂污泥的处理与利用
污水处理厂污泥的处理与利用
1. 污泥的处理方法
1.1 热处理法
热处理法是指利用高温对污泥进行处理,通过高温破坏有机物
的结构,达到降解有机物、消除病原体和杀灭微生物的目的。

1.2 厌氧消化法
厌氧消化法是指将污泥置于密闭容器中进行微生物降解的过程,产生可燃气体和有机肥料。

1.3 压滤脱水法
压滤脱水法是指将污泥通过压滤机进行脱水,以减少水分含量,提高固体含量,便于后续处理和利用。

2. 污泥的利用途径
2.1 土壤改良剂
污泥中含有丰富的有机物和营养元素,可以作为土壤改良剂使用,提高土壤的肥力和水分保持能力。

2.2 生物质能源
污泥经过处理后可以转化为生物质能源,如生物气体或生物质
燃料,用于发电或供热。

2.3 污泥填埋
污泥可以经过处理后填埋,减少其体积,并有效固化有害物质,防止二次污染。

2.4 建材加工
污泥中的无机成分可以用于生产建材,如砖块、砖砌块等,减
少对天然资源的消耗。

3. 污泥处理与利用的挑战
3.1 能源消耗
污泥处理过程需要消耗大量能源,包括加热、搅拌、压滤、干
燥等环节,对环境造成负担。

3.2 有害物质处理
污泥中可能含有重金属、有机物等有害物质,需要进行特殊的
处理才能达到安全利用的要求。

3.3 技术限制
污泥处理与利用的技术仍有待进一步完善和创新,现有的处理
方法存在一定的局限性和成本高昂的问题。

以上是污水处理厂污泥的处理与利用的一些方法和挑战,通过有效的处理和利用,可以减少污泥带来的环境问题,实现资源的循环利用。

污水处理厂污泥的处理方法

污水处理厂污泥的处理方法污水处理厂是处理城市或者工业污水的设施,而污泥是在处理过程中产生的固体废物。

污泥的处理是污水处理过程中重要的环节,合理的处理方法可以有效减少环境污染,并实现资源的回收利用。

以下是几种常见的污水处理厂污泥处理方法:1. 压滤脱水法压滤脱水法是将污泥通过机械压力进行脱水的方法。

首先,将污泥经过搅拌均匀后,放入压滤机中。

压滤机通过压力将污泥中的水分挤出,使污泥变得干燥。

经过脱水后的污泥可以用于土壤改良、建造材料制备等方面。

2. 热解处理法热解处理法是将污泥在高温条件下进行热解分解的方法。

首先,将污泥放入热解反应器中,然后加热到一定温度。

在高温条件下,污泥中的有机物质会分解成气体、液体和固体产物。

其中,气体可以用作能源,液体可以用于化工生产,固体产物可以用于土壤改良。

3. 厌氧消化法厌氧消化法是利用微生物在无氧条件下分解污泥中的有机物质的方法。

首先,将污泥放入厌氧消化池中,然后控制好温度、pH值和进料量等条件,使微生物能够有效地分解有机物质。

在厌氧消化的过程中,微生物会产生沼气,可以用作能源,同时污泥也会减少体积。

4. 堆肥处理法堆肥处理法是将污泥与其他有机废物混合后进行堆肥的方法。

首先,将污泥与植物秸秆、废弃农作物等有机废物混合,然后进行堆肥。

在堆肥的过程中,污泥中的有机物质会被微生物分解,产生热量。

经过一段时间的堆肥,污泥会变成稳定的有机肥料,可以用于农田的施肥。

5. 燃烧处理法燃烧处理法是将污泥进行高温燃烧的方法。

首先,将污泥送入燃烧炉中,然后加热到一定温度进行燃烧。

在燃烧的过程中,污泥中的有机物质会燃烧成二氧化碳和水蒸气,同时产生热能。

燃烧后的污泥可以用于发电或者供热,同时还可以减少废物的体积。

综上所述,污水处理厂污泥的处理方法有压滤脱水法、热解处理法、厌氧消化法、堆肥处理法和燃烧处理法等多种选择。

不同的处理方法适合于不同的情况,可以根据实际情况选择合适的处理方法,以实现污泥的资源化利用和环境保护的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热水解-高温厌氧消化工艺处理污泥的方法2011年我国污泥产量约2188万t,预估到2015年我国污泥产量将超过3000万t,已成为我国最紧迫的环境问题之一[1]. 其中接近70%的直接填埋,15%去向不明,存在突出的二次污染. 厌氧消化是一项广泛应用的污泥稳定化、减量化、无害化、资源化技术,并且能够回收沼气. 欧盟地区50%以上污水厂均采用污泥厌氧消化[2]. 各国厌氧消化比例:比利时67%,丹麦50%,法国49%,德国64%,希腊97%,意大利56%,卢森堡81%,西班牙65%[3].厌氧消化也是我国鼓励的主要污泥处理技术. 国家近年发布的《城镇污水处理厂污泥处理处置技术指南(试行)》、《“十二五”期间污泥处置建议》和《城镇污水处理厂污泥处理处置及污染防治技术政策(试行)》等均明确提出“大中型厂宜优先选用厌氧消化污泥处理工艺”、“鼓励城镇污水处理厂采用污泥厌氧消化工艺”等. 但目前为止,全国仅50余家污水厂建有污泥厌氧消化设备,且40%左右停运[4]. 全国经过厌氧处理的污泥不足2%. 高含固率的污泥厌氧消化(简称高固消化,进泥含固率8%以上)是近年受到关注的污泥消化新技术[5, 6, 7, 8]. 与传统污泥厌氧消化(进泥含固率3%~5%)相比,单位投资可减少40%~50%[9],又明显节省加热量,故经济优势明显. 另一方面,我国的污泥有机物含量明显低于欧美,也是厌氧技术推广难的原因之一. 考虑到污泥消化的速控步骤是污泥水解,而我国污泥有机物含量低的情况,提出了“热水解-高温厌氧消化”的高固污泥处理工艺. 该工艺的主要特点包括:①采用70℃热水解作为预处理来促进细胞溶解; ②采用高温厌氧消化来加快消化. 目前高固消化的研究还不够充分,尤其缺乏设计和实际运行经验. 本研究具有较好的参考价值. 1 材料与方法 1.1 工艺流程本中试在广州市某水质净化厂进行,共持续9个多月. 中试的工艺流程见图 1. 进泥在水解罐中水解,之后用泵打入高温厌氧罐. 热水解罐和高温罐的有效容积分别为0.6 m3和2.0 m3,前者的反应温度为70℃±1℃,后者为55℃±1℃. 热水解的固体停留时间(solid retention time,SRT)为3 d.图 1 工艺流程示意1.2 接种污泥和处理的污泥接种污泥为中温厌氧消化污泥,接种挥发性悬浮固体(volatile suspended solid,VSS)浓度为17.01 g ·L-1,有机物含量为57%. 试验所用进泥为污水厂的脱水剩余污泥配制,含固率为8%~9%,有机物含量为59.76%~69.94%,VSS为52.95~58.45 g ·L-1,SCOD为1268~3443 mg ·L-1,氨氮60~336 mg ·L-1. 该污水厂进水中工业废水约占70%左右. 1.3 有机物去除率有机物去除率以VSS去除率表示,其计算是基于相同SRT下的稳定运行阶段的物料平衡得出:式中,ηMB:平均VSS去除率,%; VSSF:平均进泥VSS浓度,g ·L-1; VSSP:平均出泥VSS浓度,g ·L-1. 1.4 测试方法pH采用精密pH试纸测量,含水率、 VSS采用重量法测量,COD采用快速消解分光光度法(兰州连华环保科技有限公司,5B-1B)测量,碱度采用溴甲酚绿-甲基红指示剂滴定法测量,氨氮采用纳氏比色法测量,沼气含量采用甲烷测定仪(北京恒奥德仪器仪表有限公司,HA80-CH4)测量,沼气产量采用湿式流量计(长春汽车滤清器有限责任公司,LMF-1)测量. 2 结果与讨论试验从2011年10月底持续至次年7月,时长近9个月. 2.1 热水解试验期间,热水解进泥的平均VSS为55.78g ·L-1,出泥为44.87 g ·L-1,平均去除率为19.6%. SCOD由进泥的4565 mg ·L-1增加至19969 mg ·L-1,增加337.4%. 这些显示出热水解在溶解细胞方面有明显效果.热水解的去除率与进泥的VSS/SS有一定关系,当VSS/SS在50.0%~59.9%范围内,平均为57.1%时,热水解的平均VSS去除率为13.3%,而VSS/SS在60%以上,则差异不明显,VSS/SS为60%~64.9%、 65.0%~69.9%和70%以上的污泥热水解的平均VSS去除率分别为20.50%、 21.20%和17.63%. 2.2 高温厌氧消化2011年10月底,用接种污泥直接将高温厌氧罐充满,然后每天按有机负荷(以COD计)2 kg ·(m3 ·d)-1投加葡萄糖,促进厌氧细菌的活性恢复. 当沼气产量达到理论值70%~80%时,逐步减少葡萄糖的投加量,同时增加污泥量,经过3周左右的时间,葡萄糖的投加量为零,至此启动结束. 启动期间,污泥的SRT为20 d,pH维持在7.0左右,进泥的VSS为12.86 g ·L-1,VSS/SS为52.43%.待反应器启动结束后,将进泥的含固率提高到8%~9%,依次进行了厌氧SRT分别为40 d、35 d、 25 d、 20 d、 15 d的试验. 每个SRT试验的测试结果都是在反应器完成一个完整的SRT运行后,且稳定运行以后的平均值,结果如下. 2.2.1 有机物去除率当高温厌氧消化的SRT为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,VSS去除率分别为27.5%、 32.5%、 29.8%、 34.6%、 25.3%和42.3%,有机负荷(以VSS计)分别为3.16、2.36、 1.84、 1.58、 1.15、 1.18 kg ·(m3 ·d)-1. SRT为35 d时,去除率较低. 在这期间,污水厂的剩余污泥的VSS/SS由70%左右下降至50%左右. 污泥性质不稳定可能是去除率较低的主要原因.图 2 高温厌氧消化的有机物去除率与SRT2.2.2 VSS/SS稳定化是污泥处理的重要目标之一. 王凯军等[10]指出,污泥稳定化是有机物矿化的过程. 朱英等[11]推荐VSS去除率、不稳定物质去除率、腐殖质含量和植物毒性等作为污泥稳定化指标,而朱明权等[12]认为厌氧消化后污泥的有机酸含量可很好地衡量污泥的稳定化程度. 通常,有机物去除率越高,污泥稳定化越好,而污泥有机物含量(VSS/SS)越高,污泥就越不稳定,因此可以采用VSS去除率和消化污泥的VSS/SS评价污泥稳定化程度. 大量工程运行数据表明,稳定程度较好的污泥VSS去除率在40%以上,VSS/SS多在45%±5%.当高温厌氧消化的SRT为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,高温消化污泥的VSS/SS分别为47.49%、 57.98%、 54.00%、 47.15%、 52.93%和55.70%. SRT为20 d、25 d、 35 d和40 d时,消化污泥的VSS/SS超过50%,这主要是因为进泥的有机物含量较高导致的. 由图 3可知,消化污泥的VSS/SS与进泥的VSS/SS是相关的. 拟合结果表明,线性相关系数R2达到0.9168.图 3 高温消化污泥VSS/SS与SRT的关系2.2.3 甲烷产率甲烷产率是评价厌氧消化回收能源的重要指标. 由图 4可知,当SRT为25~40 d时,甲烷产率(以CH4/VSSadd计)变化不大,为0.20~0.24 m3 ·kg-1; 当SRT为15 d、 20 d 时,甲烷产率下降,为0.12 m3 ·kg-1、 0.17 m3 ·kg-1. 这表明当SRT在20 d以下时,污泥有机物的消化还不够彻底. 综合甲烷产率以及前文的有机物去除率等结果,在实际工程中,本工艺的高温厌氧消化的SRT可取25 d.图 4 甲烷产率2.2.4 氨氮氨氮是厌氧反应的抑制物质之一,而高固污泥消化的氨氮抑制风险要明显高于传统污泥厌氧消化. Hashimoto[13]研究发现,对于未经驯化的中温和高温厌氧反应器,当pH约为7.2时,氨氮浓度2500 mg ·L-1的抑制就很明显. 而对于经过驯化的高温厌氧反应器,氨氮浓度达到4000 mg ·L-1时才会产生抑制. Angelidaki等[14]也认为4000 mg ·L-1是氨氮抑制现象发生的临界值. 在试验中,进泥的平均氨氮为284mg ·L-1,厌氧的氨氮浓度平均为983 mg ·L-1,低于文献报道的氨氮抑制浓度4000 mg ·L-1[14, 15]. 2.3 总体运行情况工艺的总VSS去除率见图 5. 从中可知,当高温厌氧消化的SRT为15 d、 20 d、 25 d、30 d、 35 d和40 d时,总VSS去除率分别为39.07%、 42.22%、 42.69%、 45.31%、 44.70%和47.87%,总去除率(ηMB)与SRT线性正相关(式2),相关系数达到0.9153. 厌氧消化的SRT在20 d以上时,总VSS去除率在40%以上,完全满足《城镇污水处理厂污染物排放标准(GB 18918-2002)》中污泥稳定的要求.热水解和高温厌氧消化对总VSS去除的贡献见图 6. 由图可知,当高温厌氧消化的SRT 为15 d、 20 d、 25 d、 30 d、 35 d和40 d时,热水解的贡献比例分别为51.92%、 46.45%、63.52%、 44.77%、 60.66%和42.68%,而厌氧消化的贡献比例分别为48.08%、 53.55%、36.48%、 55.23%、 39.34%和57.32%,表明热水解和高温厌氧消化去除VSS的贡献大致相当. 尽管热水解的SRT只有3 d,仅占总SRT的6.98%~16.67%,但对总VSS去除率的贡献明显.图 5 总VSS去除率图 6 热水解和高温厌氧消化对VSS去除的贡献2.4 与实际工程的对比文献报道的国外的大型污泥消化工程的运行数据比较少,使用的经典设计手册可以反映工程的实际情况. 美国《污水处理厂设计手册》中明确指出污泥厌氧消化的有机物去除率应在38%以上,沼气产率的范围为0.5~0.75 m3 ·kg-1(以沼气/VSSadd计) 和0.75~1.12m3 ·kg-1[16](以沼气/VSSrem计). 沼气中的甲烷含量一般为50%~70%,按平均60%计算,折算后的甲烷产率分别为0.30~0.45 m3 ·kg-1(以CH4/VSSadd计)和0.45~0.67 m3 ·kg-1(以CH4/VSSrem计). 中试研究结果表明,热水解-高温厌氧消化工艺处理高含固率的剩余污泥时,有机物去除率完全可以达到美国设计手册的要求,但甲烷产率低于推荐值.截止目前,我国建成并运行良好的污泥厌氧消化设施主要有大连东泰夏家河污泥处理厂、北京小红门污水处理厂污泥消化工程、青岛麦岛污水处理厂污泥消化工程、上海白龙港污水处理厂污泥处理处置工程和郑州王新庄污水处理厂污泥消化工程等. 本中试的试验结果与国内运行良好的部分实际工程运行对比结果见表 1.由于我国城镇污水处理厂污泥的有机物含量普遍较低,已建成运行的污泥厌氧消化设施,甲烷产率大多为0.18~0.24 m3 ·kg-1(以CH4/VSSadd计)[17],因此本工艺的甲烷产率要优于一般的消化工程. 由表 1可知,当停留时间接近时,高含固率的污泥厌氧消化的有机物去除率与运行良好传统的污泥厌氧消化工程(含固率3%~5%)相当. 由于高固消化与相同停留时间的传统消化相比,反应器的容积要缩小50%左右,加热的污泥体积缩小40%~60%,抵消了大部分高温多耗的能量,因此运行费也未明显增加. 这显示出本工艺具有明显的经济优势.表 1 中试与实际消化工程的对比与同为高固消化的大连夏家河污泥处理厂相比,本中试的有机物去除率和甲烷产率基本相同. 夏家河污泥处理厂的进料除了城市污泥外,还有部分过期食品,这些物料有机物含量高,产气率也高. 夏家河厂采用了德国技术.本工艺采用了70℃热水解和高温消化,在降低污泥的卫生风险方面要明显优于中温消化.具体参见污水宝商城资料或更多相关技术文档。

相关文档
最新文档