八年级数学下册培优练习题

合集下载

八年级下册数学期末试卷培优测试卷

八年级下册数学期末试卷培优测试卷

八年级下册数学期末试卷培优测试卷一、选择题1.如果式子2x -有意义,那么x 的取值范围是( ) A .2x ≥ B .2x ≤ C .2x > D .2x < 2.以下列各组线段为边作三角形,不能..作出直角三角形的是( ) A .1,2,5B .6,8,10C .3,7,8D .0.3,0.4,0.53.下列说法,属于平行四边形判定方法的有( ). ①两组对边分别平行的四边形是平行四边形; ②平行四边形的对角线互相平分;③两组对边分别相等的四边形是平行四边形; ④平行四边形的每组对边平行且相等; ⑤两条对角线互相平分的四边形是平行四边形; ⑥一组对边平行且相等的四边形是平行四边形. A .6个B .5个C .4个D .3个4.某次竞赛每个学生的综合成绩得分(x )与该学生对应的评价等次如表. 综合成绩(x )=预赛成绩×30%+决赛成绩×70% x ≥90 80≤x <90 评价等次优秀良好小华同学预赛成绩为80,综合成绩位于良好等次,他决赛的成绩可能为( )A .71B .79C .87D .955.如图所示,正方形ABCD 的边长为4,点E 为线段BC 上一动点,连结AE ,将AE 绕点E 顺时针旋转90°至EF ,连结BF ,取BF 的中点M ,若点E 从点B 运动至点C ,则点M 经过的路径长为( )A .2B .22C .23D .46.如图,菱形ABCD 中,120D ∠=︒,则1∠=( )A .60°B .30°C .25°D .15°7.如图,将矩形ABCD 沿EF 翻折,使B 点恰好与D 点重合,已知AD =8,CD =4,则折痕EF 的长为( )A .4B .5C .23D .258.如图,直线m 与n 相交于点()1,3C ,m 与x 轴交于点()2,0D -,n 与x 轴交于点()2,0B ,与y 轴交于点A .下列说法错误的是( ).A .m n ⊥B .AOB DCB ∆∆≌C .BC AC =D .直线m 的函数表达式为3333y x =+二、填空题9.在函数y =3x +中,自变量x 的取值范围是_______.10.如图,菱形ABCD 的对角线AC 、BD 的长分别为3cm 和4cm ,则其面积是____cm 2.11.如图,在ABC 中,AD 垂直平分,BC 交BC 于点E CD AC ⊥,,若43AB CD ==,,5AD =,则BE =_________________.12.如图所示,矩形ABCD 中,2AB =,1AD =,点M 在边CD 上,若AM 平分DM B ∠,则DM 的长是______.13.在平面直角坐标系中,一次函数y =kx +b 的图象与直线y =2x 平行,且经过点A (1,6),则一次函数y =kx +b 的解析式为 ____.14.如图,在ABCD 中,10AB =,12AC =,当BD =________时,四边形ABCD 是菱形.15.如图所示,直线y =x +4与两坐标轴分别交于A ,B 两点,点C 是OB 的中点,D ,E 分别是直线AB 和y 轴上的动点,则CDE 周长的最小值是____________.16.如图,长方形纸片ABCD 中,AB =8cm ,BC =17cm ,点O 在边BC 上,且OB =10cm .将纸片沿过点O 的直线折叠,若点B 恰好落在边AD 上的点F 处,则AF 的长为 _____cm .三、解答题17.计算:(1132288(227123- (3)(3)(3131)2;(4)11 2052456⎛⎫-÷-⨯⎪⎪⎝⎭.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图是由边长为1的小正方形构成6×6的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点都是格点,点E是边AD与网格线的交点.仅用无刻度尺的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)直接写出四边形ABCD的形状;(2)在BC边上画点F,连接EF,使得四边形AEFB的面积为5;(3)画出点E绕着B点逆时针旋转90°的对应点G;(4)在CD边(端点除外)上画点H,连接EH,使得EH=AE+CH.20.如图,已知点E是ABCD中BC边的中点,连接AE并延长交DC的延长线于点F,连接AC,BF,AF BC=.(1)求证:四边形ABFC为矩形;(2)若AFD∆是等边三角形,且边长为6,求四边形ABFC的面积.21.阅读下面的材料,解答后面提出的问题:黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+3)(2-3)=1,(5+2)(5-2)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:1 3=1333⨯⨯=33,2323+-=()()()()23232323++-+=7+43.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4+7的有理化因式是,将232分母有理化得;(2)已知x=3232+-,y=3232-+,则11x y+=;(3)已知实数x,y满足(x+22017x-)(y+22017y-)-2017=0,则x=,y=.22.我国传统的计重工具—秤的应用,方便了人们的生活.如图①,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在表x,y的数据中,发现有一对数据记录错误.在图②中,通过描点的方法,观察判断哪一对数据是错误的?(2)①求出y与x之间的函数解析式;②秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?23.如图.正方形ABCD的边长为4,点E从点A出发,以每秒1个单位长度的速度沿射线AD运动,运动时间为t秒(t>0),以AE为一条边,在正方形ABCD左侧作正方形AEFG,连接BF.(1)当t=1时,求BF的长度;(2)在点E运动的过程中,求D、F两点之间距离的最小值;(3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图,在平面直角坐标系xOy 中,直线1:l y kx b =+与x 轴交于点(6,0)A -,与y 轴交于点(0,4)B ,与直线24:3l y x =相交于点C , (1)求直线1l 的函数表达式; (2)求COB ∆ 的面积;(3)在x 轴上是否存在一点P ,使POC ∆是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P 的坐标25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.【参考答案】一、选择题 1.A解析:A 【分析】20x-≥,据此解题.【详解】20x-≥,2x∴≥,故选A.【点睛】本题考查二次根式有意义的条件,是基础考点,掌握相关知识是解题关键.2.C解析:C【分析】先求出两小边的平方和,再求出最大边的平方,看看是否相等即可.【详解】解:A、∵2221+2=5=,∴以1,2B、∵62+82=36+64=100=102,∴以6,8,10为边的三角形是直角三角形,故本选项不符合题意;C、∵32+72=9+49=58≠82,∴以3,7,8为边的三角形不是直角三角形,故本选项符合题意;D、∵0.32+0.42=0.09+0,16=0.25=0.52,∴以0.3,0.4,0.5为边的三角形是直角三角形,故本选项不符合题意;故选:C.【点评】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键,注意:勾股定理的逆定理是:如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定方法分析即可;【详解】两组对边分别平行的四边形是平行四边形,故①正确;平行四边形的对角线互相平分,是平行四边形的性质,故②错误;两组对边分别相等的四边形是平行四边形,故③正确;平行四边形的每组对边平行且相等,是平行四边形的性质,故④错误;两条对角线互相平分的四边形是平行四边形,故⑤正确;一组对边平行且相等的四边形是平行四边形,故⑥正确; 故正确的是①③⑤⑥; 故答案选C . 【点睛】本题主要考查了平行四边形的判定,准确分析判断是解题的关键.4.C解析:C 【解析】 【分析】设他决赛的成绩为x 分,根据综合成绩所处位次得出80≤80×30%+70%x <90,解之求出x 的范围即可得出答案. 【详解】解:设他决赛的成绩为x 分,根据题意,得:80≤80×30%+70%x <90, 解得80≤x <9427,∴各选项中符合此范围要求的只有87, 故选:C . 【点睛】本题主要考查加权平均数,解题的关键是根据加权平均数的定义及综合成绩位次列出关于x 的不等式组.5.B解析:B 【分析】已知EF ⊥AE ,当E 点在线段BC 上运动到两端时,正好是M 点运动的两个端点,由此可以判断M 点的运动轨迹是BC 、CD 中点的连线长. 【详解】解:取BC 、CD 的中点G 、H ,连接GH ,连接BD ∴GH 为△BCD 的中位线,即12GH BD =∵将AE 绕点E 顺时针旋转90°至EF , ∴EF ⊥AE ,当E 点在B 处时,M 点在BC 的中点G 处,当E 点在C 点处时,M 点在CD 中点处, ∴点M 经过的路径长为GH 的长, ∵正方形ABCD 的边长为4, ∴BD ∴12GH BD == 故选B .【点睛】本题主要考查了正方形的性质,勾股定理和中位线定理,解题的关键在于找到M 点的运动轨迹.6.B解析:B 【解析】 【分析】由菱形的性质可得AB =BC ,∠B =∠D =120°,由菱形的性质可求解. 【详解】解:∵四边形ABCD 是菱形, ∴AB =BC ,∠B =∠D =120°, ∴∠1=30°, 故选:B 【点睛】本题考查了菱形的性质,等腰三角形的性质,掌握菱形的性质是本题的关键.7.D解析:D 【解析】 【分析】作EH BC ⊥于H ,则90EHF ∠=︒,由四边形ABCD 为矩形,得DEF BFE ∠=∠,由折叠的性质及等量代换得DE FD =,设BF FD x ==,则8CF x =-,由勾股定理解得5x =,所以5BF FD ==,3CF BC BF =-=,根据矩形的判定可证四边形CDEH 是矩形,可得出532FH CH CF =-=-=,在Rt EFH 由勾股定理得22EF EH FH =+即可计算出.【详解】解:如图,作EH BC ⊥于H ,则90EHF ∠=︒,四边形ABCD 为矩形,4AB CD ∴==,8AD BC ==,90A B C ADC ∠=∠=∠=∠=︒,//AD BC ,DEF BFE ∴∠=∠,矩形沿EF 折叠,使B 点与D 点重合,BF FD ∴=,DG AB =,DFE BFE ∠=∠,DEF DFE ∴∠=∠, DE FD ∴=,设BF FD x ==,则8CF x =-, 在Rt CDF 中,222CD CF FD +=,2224(8)x x ,解得:5x =,5BF FD ∴==,3CF BC BF =-=,5DE ∴=,90C ADC EHF ∠=∠=∠=︒,∴四边形CDEH 是矩形, 5CH DE ∴==,4EH CD ==, 532FH CH CF ∴=-=-=,在Rt EFH中,EF 故选:D . 【点睛】本题考查了折叠的性质,矩形的判定和性质、勾股定理,解题的关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化.8.D解析:D 【分析】由待定系数法分别求出直线m ,n 的解析式,即可判断D ,由解析式可求A 点坐标,进而由坐标系中两点距离公式可得AC=BC=2,即可判断C 正确,再由SAS 可得AOB DCB ∆∆≌,可判断B 正确,进而可得m n ⊥. 【详解】解:如图,设直线m 的解析式为1y mx n =+把(C ,()2,0D -代入得,20m n m n -+=⎧⎪⎨+⎪⎩,解得:m n ⎧=⎪⎪⎨⎪=⎪⎩∴直线m的函数表达式为1y =D 错误; 设直线m 的解析式为2y kx b =+,把(C ,(2,0)B代入得20k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎨=⎪⎩,所以2y的解析式为y =+当0x =时,2y =(0,A ,又∵(C ,(2,0)B ,∴2AC =,2BC ==, 则AC BC =,AB=4所以C 正确;()2,0D -, ()2,0B ,∴BD=4,∴AB=BD在AOB ∆和DCB ∆中,AB DB DBC ABO OB CB =⎧⎪∠=∠⎨⎪=⎩∴AOB ∆≌DCB ∆(SAS),故B 正确,90AOB DCB ∴∠=∠=︒,m n ∴⊥;故A 正确;综上所述:ABC 正确,D 错误,故选:D .【点睛】本题考查了待定系数法求一次函数解析式和全等三角形的判定和性质.线段长解题关键是求出一次函数解析式进而由点的坐标求出线段长.二、填空题9.x ≥﹣3【解析】【分析】根据二次根式的被开方数要为非负数,即x +3≥0,解此不等式即可.【详解】解:根据题意得:x +3≥0,解得:x ≥﹣3.故答案为:x ≥﹣3.【点睛】本题考查了函数自变量的确定,熟练掌握二次根式有意义的条件是解题的关键. 10.A解析:6【解析】【分析】直接根据菱形的面积等于其对角线积的一半,即可求得面积.【详解】解:∵菱形ABCD 的对角线AC 、BD 的长分别为3cm 和4cm ∴ABCD 1134622S AC BD ==⨯⨯=菱形(cm ) 故答案为:6.【点睛】此题主要考查菱形的性质,熟练掌握性质是解题关键.11.125【解析】【分析】由勾股定理得到AC 的长度,利用等面积法求CE ,结合已知条件得到答案.【详解】解:5,3,,AD CD AC DC ==⊥22534,AC ∴=-=1346,2ACD S ∆∴=⨯⨯= AD 垂直平分,BC,,AD BC BE CE ∴⊥=156,2ACD S CE ∆=⨯⨯= 12,5CE ∴=125BE ∴=, 故答案为:125. 【点睛】 本题考查的是勾股定理的应用,等面积法的应用,掌握以上知识是解题的关键. 12.23-【分析】过点A 作AE BM ⊥于E ,由题意可证ADM AME ∆≅∆,可得DM ME =,1AD AE ==,根据勾股定理可求BE 的长,即可求DM ME =的长.【详解】解:过点A 作AE BM ⊥于E四边形ABCD 是矩形1AD BC ∴==,2CD AB ==, AM 平分DM B ∠AMD AMB ∴∠=∠,且AM AM =,ADM AEM ∠=∠()ADM AME AAS ∴∆≅∆DM ME ∴=,1AD AE ==,//AB CD ,BAM AMD AMB ∴∠=∠=∠,、2AB BM ∴==,在Rt AEB 中,BE2ME DM ∴=故答案为:2【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解题的关键是添加适当的辅助线构造全等三角形.13.A解析:y =2x +4【分析】根据函数y =kx +b 的图象与直线y =2x 平行,且经过点A (1,6),即可得出k 和b 的值,即得出了函数解析式.【详解】解:∵函数y =kx +b 的图象与直线y =2x 平行,∴k =2,又∵函数y =2x +b 的图象经过点A (1,6),∴6=2+b ,∴b =4,∴一次函数的解析式为y =2x +4,故答案为y =2x +4.【点睛】本题考查了一次函数的性质,待定系数法求解析式,理解两条直线平行,解析式中的k 值相等是解题的关键.14.A解析:16【分析】当四边形ABCD 为菱形时,则有AC ⊥BD ,设AC 、BD 交于点O ,结合平行四边形的性质可得AO =6,AB =10,利用勾股定理可求得BO ,则可求得BD 的长.【详解】解:如图,设AC 、BD 交于点O ,当四边形ABCD 为菱形时,则AC ⊥BD ,∵四边形ABCD 为平行四边形,∴AO =12AC =6,且AB =10, ∴在Rt △AOB 中,BO 22228106AO AB ==-=-,∴BD =2BO =16,故答案为:16.【点睛】本题主要考查菱形的性质,掌握菱形的对角线互相垂直且平分是解题的关键. 15.【分析】作点关于的对称点,关于的对称点,连接,,FB ,FG ,由轴对称的性质,可得,,故当点,,,在同一直线上时,的周长,此时周长最小,依据勾股定理即可得到的长,进而得到周长的最小值.【详解】解析:210【分析】作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF ,EG ,FB ,FG ,由轴对称的性质,可得DF DC =,EC EG =,故当点F ,D ,E ,G 在同一直线上时,DEC 的周长CD DE CE DF DE EG FG =++=++=,此时DEC 周长最小,依据勾股定理即可得到FG 的长,进而得到DEC 周长的最小值.【详解】解:如图,作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF ,EG ,FB ,FG ,直线4y x =+与两坐标轴分别交于A 、B 两点,∴令x =0,则y =4;令y =0,则x =-4,)4(0,A ∴,(4,0)B -,∴4OA OB ==,又∵点C 是OB 的中点,∴122OC BC OB ===,∵点C 与点G 关于AO 对称,∴2OG OC ==,EC EG =,∴6BG OB OG =+=,∵OA OB =,90AOB ∠=︒,45ABC ACB ∴∠=∠=︒, 又∵点C 与点F 关于AB 对称,45ABC ABF ∴∠=∠=︒,2BC BF ==,DF DC =,90FBC ∴∠=︒,∵DF DC =,EC EG =,∴CDE △的周长CD DE CE DF DE EG FG =++=++≥,当点F ,D ,E ,G 在同一直线上时,CDE △的周长最小,为FG 的长,∵在Rt BFG △中,FG =CDE ∴周长的最小值是故答案为:【点睛】本题考查一次函数图象上点的坐标特征,轴对称-最短问题,等腰直角三角形的判定与性质,勾股定理等知识,解题的关键是利用轴对称的性质找到点D 、点E 位置,属于中考常考题型.16.16【分析】过点F 作FE ⊥BC 于点E ,则EF=AB=8cm ,AF=BE ,根据折叠知识,可得OF=OB =10cm .在 中,由勾股定理,可得OE=6cm ,即可求解.【详解】解:如图,过点F 作FE解析:16【分析】过点F 作FE ⊥BC 于点E ,则EF =AB =8cm ,AF =BE ,根据折叠知识,可得OF =OB =10cm .在Rt OEF 中,由勾股定理,可得OE =6cm ,即可求解.【详解】解:如图,过点F 作FE ⊥BC 于点E ,则EF =AB =8cm ,AF =BE ,在长方形ABCD中,CD=AB=8cm,根据题意得:OF=OB=10cm.在Rt OEF中,由勾股定理得:226cmOE OF EF-,∴AF=BE=OB+OE=16cm.故答案为:16【点睛】本题主要考查了勾股定理,图形的折叠,熟练掌握勾股定理,图形折叠前后,对应线段相等,对应角相等是解题的关键.三、解答题17.(1);(2)1;(3);(4).【分析】(1)先化成最简二次根式,再合并即可;(2)利用二次根式的除法法则计算即可;(3)利用乘法公式展开,再合并即可;(4)先计算乘除,再合并即可.【解析:(122)1;(3)723+4)15-.【分析】(1)先化成最简二次根式,再合并即可;(2)利用二次根式的除法法则计算即可;(3)利用乘法公式展开,再合并即可;(4)先计算乘除,再合并即可.【详解】解:(11 3288222 =(2==32=-=1;(3)()(11)2=(222211⎡⎤---⎢⎥⎣⎦=12131--+=7+(4)==15=-. 【点睛】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA的长为x尺,根据题意得()222++-=,x x1015x=.解得14.5答:绳索OA的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)正方形;(2)见解析;(3)见解析;(4)见解析【解析】【分析】(1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形;(2)延长EO交BC于F,则根据正方形为中心对称图形得解析:(1)正方形;(2)见解析;(3)见解析;(4)见解析【解析】【分析】(1)利用勾股定理和勾股定理的逆定理可证明四边形ABCD为正方形;(2)延长EO交BC于F,则根据正方形为中心对称图形得到AE=CF,则可根据梯形的面积公式计算出四边形AEFB的面积为5;(3)延长DC交过B点的铅垂线于G点,通过证明△BAE≌△BCG得到BG=BE;(4)利用网格特点,作∠EBG的平分线交CD于H点,证明△BEH≌△BGH,则EH=HG,则AE=CG,则有EH=AE+CH.【详解】解:(1)∵AB=BC=CD=AD=22+=10,13∴四边形ABCD为菱形,∵BD=2224+=25,∴AD2+AB2=BD2,∴∠BAD=90°,所以四边形ABCD为正方形;(2)如图,点F为所作;(3)如图,点G为所作;(4)如图,H点为所作.【点睛】本题考查了作图—旋转变换,解题的关键是熟练掌握轴对称变换和旋转变换的定义,并据此得出变换后的对应点.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解AC =而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1),;(2)10 ;(3),.【解析】【详解】(1) ∵,∴ 的有理化因式为 ;∵,∴ 分母有理化得: .(2). ∵ ,∴(3) ∵(x +)(y +)-2017=0∴,∴解析:(1)4(2)10 ;(3) 【解析】【详解】(1) ∵(41679+=-=,∴ 44∵===∴分母有理化得: 3 .(2). ∵x =5y ==-∴1110y x x y xy ++==(3) ∵(x y -2017=0∴2017=,∴2017=∴y x ∴x y -整理得:2017xy -∴2220x xy y -+= ,x=y将x=y 代入可得:x =y =故答案为点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键.22.(1)见解析,x =7,y =2.75这组数据错误;(2)①y =;②4.5斤【分析】(1)利用描点法画出图形即可判断.(2)①设函数关系式为y=kx+b,利用待定系数法解决问题即可.②根据①中求解析:(1)见解析,x=7,y=2.75这组数据错误;(2)①y=1142x+;②4.5斤【分析】(1)利用描点法画出图形即可判断.(2)①设函数关系式为y=kx+b,利用待定系数法解决问题即可.②根据①中求得的函数解析式,当x=16时,可求得函数值.【详解】(1)观察图象可知:x=7,y=2.75这组数据错误.(2)①设y=kx+b,把x=1,y=0.75,x=2,y=1代入可得:0.75 21k bk b+=⎧⎨+=⎩,解得1412kb⎧=⎪⎪⎨⎪=⎪⎩,∴y=1142x+,②在y=1142x+中,当x=16时,y=4.5.故秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.【点睛】本题考查了描点法画一次函数图象,待定系数法求一次函数解析式,求函数值等知识,学好函数,离不开函数解析式、函数图象和性质三部分.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1);(2)12;(3)存在,【解析】【分析】(1)将点A、B的坐标代入解析式,即可得到答案;(2)先求出交点C的坐标,利用底乘高列式计算即可得到答案;(3)先求出OC的长,分三种情况求解析:(1)243y x=+;(2)12;(3)存在,()()()25100100120,03⎛⎫- ⎪⎝⎭,,,,,,【解析】【分析】(1)将点A、B的坐标代入解析式,即可得到答案;(2)先求出交点C的坐标,利用底乘高列式计算即可得到答案;(3)先求出OC的长,分三种情况求出点P的坐标使POC∆是等腰三角形.【详解】(1)由题意得-604k bb+=⎧⎨=⎩,解得234kb⎧=⎪⎨⎪=⎩,直线1l 的函数表达式243y x=+;(2)解方程组,得,∴点C的坐标,∴;(3)存在,,当OP=OC时,点P(10,0),(-10,0),当OC=PC时,点P(12,0),当OP=PC时,点P(),综上,点P的坐标是(10,0)或(-10,0)或(12,0)或()时,POC∆是等腰三角形.【点睛】此题考查待定系数法求函数解析式,求图象交点坐标,利用等腰三角形的定义求点坐标. 25.(1)见详解;(2)【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,解析:(1)见详解;(2)72x=【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,得四边形EMFN是平行四边形,求出MN=EF,即可得出结论;(2)连接MN,作MH⊥BC于H,则MH=AB=3,BH=AM=x,得HN=BC-BH-CN=4-2x,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,AC=2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得:32+(4-2x)2=42,解得:x=2,∵0<x<2,∴x=2-【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.。

八年级下册数学期末试卷(培优篇)(Word版含解析)

八年级下册数学期末试卷(培优篇)(Word版含解析)

八年级下册数学期末试卷(培优篇)(Word 版含解析)一、选择题1.要使二次根式2a +有意义,那么a 的取值范围是( ) A .2a >- B .2a ≥- C .2a < D .2a ≥2.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A .4个B .3个C .2个D .1个3.下面关于平行四边形的说法中,不正确的是( ) A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .302B .303C .24D .366.如图,点D 在ABC 的BC 边上,把ADC 沿AD 折叠,点C 恰好落在直线AB 上,则线段AD 是ABC 的( )A .中线B .角平分线C .高线D .垂直平分线7.如图,△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且l 1、l 2之间的距离为1,l 2、l 3之间的距离为3,则AC 的长是( )A .4B .5C .52D .108.如图,在平面直角坐标系中,点1A ,2A ,3A 在直线15y x b =+上,点1B ,2B ,3B 在x 轴上,11OA B ∆,122B A B ∆,233B A B ∆都是等腰直角三角形,若已知点()11,1A ,则点3A 的纵坐标是( )A .32B .23C .49D .94二、填空题9.函数y =23x-中,自变量x 的取值范围是__. 10.已知一个菱形有一个内角为120︒,周长为16cm ,那么该菱形的面积等于________ . 11.如图所示:分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用1S 、2S 、3S 表示,若125S =,39S =,则BC 的长为__________.12.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,6AB =,8AD =,M 点是AD 的中点,那么阴影部分的面积是______.13.若直线y=kx+b与直线y=2x﹣3平行且经过点A(1,﹣2),则kb=_____.14.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).15.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(334,75);④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是 ___.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算(1)321224843274⎛⎫÷+- ⎪ ⎪⎝⎭(2)()()()()221123223431+-+++---18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为:300km,400km,500km AC BC AB ===,以台风中心为圆心周围250km 以内为受影响区域.(1)请计算说明海港C 会受到台风的影响;(2)若台风的速度为20km/h ,则台风影响该海港持续的时间有多长?19.如图,方格纸中每个小正方形的边长均为1,线段AB 和线段CD 的端点均在小正方形的顶点上.(1)在方格纸中画以AB 为一边的正方形ABEF ,点E 和点F 均在小正方形的顶点上; (2)在方格纸中画以CD 为一边的菱形CDGH ,点G 和点H 均在小正方形的顶点上,菱形CDGH 的面积为20,连接FG ,并直接写出线段FG 的长.20.如图,在△ABC 中,AB =AC .将△ABC 沿着BC 方向平移得到△DEF ,其中点E 在边BC 上,DE 与AC 相交于点O .(1)求证:△OEC 为等腰三角形;(2)连接AE 、DC 、AD ,当点E 在什么位置时,四边形AECD 为矩形,并说明理由. 21.观察与计算: 323⨯=6;(31)(31)+-=2;137(7)3⨯-= ; (252)(252)+-= .象上面各式左边两因式均为无理数,右边结果为有理数,我们把符合上述等式的左边两个因式称为互为有理化因式.当有些分母为带根号的无理数时,我们可以分子、分母同乘分母的有理化因式进行化简.例如:22232333(3)==;26632322822(2)===;22(31)3 1.31(31)(31)-==-++- 【应用】(1)化简:① 727; ②332332-+. (2)化简:111142648620202018+++⋅⋅⋅+++++ 22.某书定价a 元,如果一次购买10本以上.超过10本部分打8折,下面用列表法表达了购买书的数量和付款金额这两个变量的对应关系. 购买书数量(本) 1 5 10 1520付款金额(元)a 40 80 112 b(1)请直接写出上表中a ,b 的值.(2)请用解析法求出购买书数量与付款金额之间的函数关系.(3)小强一次购买书恰好花了92元8角,小华购买了8本书,分别计算他们的购买书量和付款金额.23.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连,试证明;(2)如图2,连接,并延长交对角线BD 于点N ,试探究线段之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长至P ,连若,且,则.(直接写出结果)24.如图所示,在平面直角坐标系中,点B 的坐标为(4,8),过点B 分别作BA ⊥y 轴,BC ⊥x 轴,得到一个长方形OABC ,D 为y 轴上的一点,将长方形OABC 沿着直线DM 折叠,使得点A 与点C 重合,点B 落在点F 处,直线DM 交BC 于点E .(1)直接写出点D 的坐标 ;(2)若点P 为x 轴上一点,是否存在点P 使△PDE 的周长最小?若存在,请求出△PDE 的最小周长;若不存在,请说明理由.(3)在(2)的条件下,若Q 点是线段DE 上一点(不含端点),连接PQ .有一动点H 从P 点出发,沿线段PQ 以每秒1个单位的速度运动到点Q ,再沿着线段QE 以每秒5个单位长度的速度运动到点E 后停止.请直接写出点H 在整个运动过程中所用的最少时间t ,以及此时点Q 的坐标.25.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF = ①求证:EF 与BD 互相平分; ②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246BP PD +=时,求PD 之长.【参考答案】一、选择题 1.B 解析:B 【分析】根据二次根式有意义的条件:被开方数大于或等于0,可以求出a 的范围. 【详解】解:根据题意得:20a +≥, 解得:2a ≥- 故选:B. 【点睛】考查二次根式有意义的条件:被开方数大于或等于0.2.C解析:C 【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案. 【详解】解:①222345+=,能构成直角三角形; ②222346+≠,不能构成直角三角形; ③22251213+=,能构成直角三角形;④22251112+≠,不能构成直角三角形; ∴其中直角三角形有2个; 故选:C . 【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.3.C解析:C 【解析】 【分析】根据平行四边形的判定分别对各个选项进行判断即可. 【详解】A 、∵对角线互相平分的四边形是平行四边形, ∴选项A 不符合题意;B 、∵有一组对边平行,一组对角相等的四边形是平行四边形, ∴选项B 不符合题意;C 、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形, ∴选项C 符合题意;D 、∵有两组对角相等的四边形是平行四边形, ∴选项D 不符合题意; 故选:C . 【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.4.A解析:A 【解析】 【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可. 【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数, 要判断是否进入前8名,故应知道自己的成绩和中位数. 故选:A . 【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】根据折叠前后对应角相等即可得出CAD C AD '∠=∠,从而得出结论. 【详解】解:根据折叠的性质可得CAD C AD '∠=∠, ∴线段AD 是ABC 的角平分线, 故选:B . 【点睛】本题考查折叠的性质,角平分线的定义.注意折叠前后对应角相等.7.C解析:C 【解析】 【分析】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G ,证明△ABE ≌△BCF ,得到BF =AE =3,CF =4,运用勾股定理计算即可.【详解】过点A 作AE ⊥3l ,垂足为E ,过点C 作CF ⊥3l ,垂足为F ,交2l 于点G , ∵1l ∥2l ∥3l , ∴CG ⊥2l ,∴AE =3,CG =1,FG =3,∵∠ABC =90°,AB =BC ,∴∠ABE +∠CBF =90°,∠ABE +∠BAE =90°, ∴∠CBF =∠BAE , ∴△ABE ≌△BCF , ∴BF =AE =3,CF =4, ∴BC 2234+, ∴AC 2255+2, 故选C . 【点睛】本题考查了平行线间的距离,三角形的全等和性质,勾股定理,熟练掌握三角全等判定,灵活运用勾股定理是解题的关键.8.D解析:D 【分析】作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴,设2A 纵坐标为m ,再根据等腰直角三角形的性质,将坐标表示为()22,A m m +,代入直线解析式算出m ,再用同样的方法设()35,A n n +,代入解析式求出n . 【详解】解:如图,作11A C ⊥x 轴,22A C ⊥ x 轴,33A C ⊥ x 轴, 把()11,1A 代入15y x b =+,求出45b =,则直线解析式是1455y x =+, 已知()11,1A ,根据等腰直角三角形的性质,得到111111OC A C B C ===, 设2A 纵坐标为m ,22A C m =,22OC m =+,得()22,A m m +,代入直线解析式,得()14255m m =++,解得32m =,设3A 纵坐标为n ,33A C n =,35OC n =+,得()35,A n n +,代入直线解析式,得()14555n n =++,解得9n 4=. 故选:D .【点睛】本题考查一次函数的图象和几何综合,解题的关键是抓住等腰直角三角形的性质去设点坐标,再代入解析式列式求解.二、填空题9.x≤2【解析】【分析】根据二次根式的被开方数大于等于零解答.【详解】解:由题意得,2﹣x≥0,解得,x≤2,故答案为:x≤2.【点睛】此题考查函数自变量的取值范围,熟记二次根式的被开方数大于等于零是解题的关键. 10.E解析:283cm【解析】【分析】作AE BC ⊥于E ,由三角函数求出菱形的高AE ,再运菱形面积公式=底×高计算即可;【详解】作AE BC ⊥于E ,如图所示,∵四边形ABCD 是菱形,周长为16cm ,120BCD ∠=︒,∴4AB BC cm ==,60B ∠=︒,∴()sin 4sin 6042AE AB B cm ==⨯︒=⨯=, ∴菱形的面积()24BC AE cm ==⨯=.故答案为2.【点睛】本题主要考查了菱形的性质,结合三角函数的计算是解题的关键.11.A解析:【解析】【分析】先设Rt △ABC 的三边分别为a 、b 、c ,再分别用a 、b 、c 表示S 1、S 2、S 3的值,由勾股定理即可得出S 2的值.【详解】解:设Rt △ABC 的三边分别为a 、b 、c ,∴S 1=a 2=25,S 2=b 2,S 3=c 2=9,∵△ABC 是直角三角形,∴c 2+b 2=a 2,即S 3+S 2=S 1,∴S 2=S 1-S 3=25-9=16,∴BC=4,故答案为:4.【点睛】本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键. 12.A解析:18【分析】据矩形的性质可得OB OD OA OC ===,利用ASA 可证明EBO FDO △≌△,可得阴影部分的面积32AEO EBO MOD AOB S S S S ==++△△△△,根据等底等高的两个三角形面积相等可得12AOB COB ABC S S S ==,即可得出14AOB ABCDS S =矩形,即可得答案. 【详解】解:∵四边形ABCD 为矩形,∴OB OD OA OC ===,AB //CD ,∴∠EBO =∠FDO ,在EBO △与FDO △中,EOB DOF OB ODEBO FDO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()EBO FDO ASA ≌,∴=DOF EBO S S △△,∵M 是AD 的中点, ∴12MOD AOD S S =△△, 又∵O 是BD 的中点,∴AOD AOB S S =△△, ∴12MOD AOB S S =△△ ∴阴影部分的面积32AEO EBO MOD AOB S S S S ==++△△△△, ∵AOB 与COB △等底等高, ∴12AOB COB ABC SS S ==, ∵12ABC ABCD SS =矩形, ∴14AOB ABCD S S =距形. ∴阴影部分的面积13423188ABCD AB D S A =⨯==距形, 故答案为:18.【点睛】 本题考查了矩形的性质及全等三角形的判定与性质,熟练掌握矩形当性质并熟练掌握是解题关键.13.A解析:-8【分析】由平行线的关系得出k =2,再把点A (1,﹣2)代入直线y =2x +b ,求出b ,即可得出结果.【详解】解:∵直线y =kx +b 与直线y =2x ﹣3平行,∴k =2,∴直线y =2x +b ,把点A (1,﹣2)代入得:2+b =﹣2,∴b =﹣4,∴kb =﹣8.故答案为:﹣8.【点睛】本题主要考查了一次函数图像的性质,求一次函数的解析式,解题的关键在于能够熟练掌握相关知识进行求解.14.C解析:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE是平行四边形,当CB=BF时,平行四边形CBFE是菱形,当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,解析:①③④【分析】根据两车速度之差×3小时=120,解方程可判断①,根据两车间的距离而且是同向可判断②,根据卸货与装货45分钟时间可求拐点B横坐标,利用货车行驶45分钟距离缩短求出B纵坐标可判断③,根据返回快递车速与货车速度之和乘以返货到相遇时间=75,解方程可判断④.【详解】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.故①正确;②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,故②错误;③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+34=334,点B纵坐标为120﹣60×34=75,故③正确;④设快递车从乙地返回时的速度为y千米/时,则(y+60)(134344)=75,y=90,故④正确.故答案为①③④.【点睛】本题考查一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,掌握一次函数行程问题图像获取信息,利用速度,时间与路程关系解决问题,一次函数的应用是解题关键.16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==, 由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可; (2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);【点睛】解析:(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)⎛ ⎝=(4==;(2))())0211241++- ()1312140=-++-=-; 【点睛】本题主要考查了二次根式的混合运算,结合平方差公式,零指数幂,绝对值的性质,完全平方公式计算是解题的关键.18.(1)计算见解析;(2)台风影响该海港持续的时间为7小时【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(2)利用勾股解析:(1)计算见解析;(2)台风影响该海港持续的时间为7小时【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图,过点C 作CD AB ⊥于点D∵300km,400km,500km AC BC AB ===∴222AC BC AB +=∴ABC 是直角三角形 ∴1122AC BC AB CD ⨯=⨯ ∴300400500CD ⨯=⨯∴240(km)CD =∵以台风中心为圆心周围250km 以内为受影响区域240250<∴海港C 会受台风影响;(2)当250km,250km EC FC ==时,台风在EF 上运动期间会影响海港C在Rt CED 中222225024070(km)ED EC CD =--在Rt CFD △中222225024070(km)FD FC CD =--∴140km EF =∵台风的速度为20千米/小时∴140207÷=(小时)答:台风影响该海港持续的时间为7小时.【点睛】本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)见解析;(2)见解析,【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为,高为的菱形即可,利用勾股定理求出.【详解】解:(1)如图,正方形即为所求;(2)如图,菱解析:(1)见解析;(2)见解析,26FG=【解析】【分析】(1)根据正方形的定义画出图形即可;(2)画出底为5,高为4的菱形即可,利用勾股定理求出FG.【详解】解:(1)如图,正方形ABEF即为所求;(2)如图,菱形CDGH即为所求,22FG=+=.5126【点睛】本题考查作图-应用与设计作图,勾股定理,菱形的性质,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.(1)见解析;(2)当为的中点时,四边形是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出解析:(1)见解析;(2)当E为BC的中点时,四边形AECD是矩形,见解析【分析】(1)根据等腰三角形的性质得出∠B=∠ACB,根据平移得出AB∥DE,求出∠B=∠DEC,再求出∠ACB=∠DEC即可;(2)求出四边形AECD是平行四边形,再求出四边形AECD是矩形即可.【详解】(1)证明:∵AB=AC,∴∠B=∠ACB,∵△ABC平移得到△DEF,∴AB∥DE,∴∠B=∠DEC,∴∠ACB=∠DEC,∴OE=OC,即△OEC为等腰三角形;(2)解:当E为BC的中点时,四边形AECD是矩形,理由是:∵AB=AC,E为BC的中点,∴AE⊥BC,BE=EC,∵△ABC平移得到△DEF,∴BE∥AD,BE=AD,∴AD∥EC,AD=EC,∴四边形AECD是平行四边形,∵AE⊥BC,∴四边形AECD是矩形.【点睛】本题考查了矩形的判定、平行四边形的判定、平移的性质、等腰三角形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.21.(1)观察与计算:-7;18;应用:(1)①;;(2)【解析】【分析】观察与计算:根据二次根式的乘法和平方差公式求解即可;应用:(1)仿照题意进行分母有理化即可;(2)先对原式每一项进行分解析:(1)观察与计算:-7;18;应用:(1)732966-2150522【解析】【分析】观察与计算:根据二次根式的乘法和平方差公式求解即可;应用:(1)仿照题意进行分母有理化即可;(2)先对原式每一项进行分母有理化即可得到1(42648620202018)2,由此求解即可.【详解】解:观察与计算:137773⎛=-⎝,((2252525220218=-=-=,故答案为:-7,18;应用:(1)===2==;(2=2+⋅⋅⋅+=12=12=12.【点睛】本题主要考查了二次根式的乘法运算,平方差公式和分母有理化,解题的关键在于能够准确理解题意进行求解.22.(1)a=8;b=144;(2)y=;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于解析:(1)a=8;b=144;(2)y=()()80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于等于10和大于10两种情况写出购买书数量与付款金额之间的函数关系;(3)把92.8分别代入(2)中解析式,求解即可;小华购买了8本书直接代入y=8x即可.【详解】解:(1)由表中数据可知:a=40÷5=8,b=8×10+8×810×(20−10)=80+64=144,∴a=8,b=144;(2)由(1)可知:a=8,∴每本书的售价为8元,设购买书的数量为x本,付款金额为y元,当0≤x≤10,且x为整数时,y=8x;当x>10,且x为整数时,y=8×10+8×810×(x−10)=6.4x十16;综上所述,购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)由(2)可知:购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数,把y=92.8代入到y=8x(0≤x≤10,x为整数)中,得92.8=8x,解得:x=11.6(不合题意,舍去);把y=92.8代入到y=6.4x十16(x>10,x为整数)中,得92.8=6.4x+16,解得:x=12,∴小强一次购买书恰好花了92元8角,买了12本书,把x=8代入到y=8x(0≤x≤10,x为整数)中,得y=8×8=64,∴小华购买了8本书,付款金额为64元,综上所述,小强一次买了12本书,小华付款金额为64元.【点睛】本题考查了一次函数和一元一次方程的应用,关键是根据题意列出函数关系式.23.(1)见解析;(2),理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=BE=BO=EO,得∠ABO=∠BAO,∠OBM=∠OMB,证出∠AOM=∠AOE+∠MOE=2∠ABO+2解析:(1)见解析;(2),理由见解析;(3)【分析】(1)由直角三角形的性质得AO=MO=12BE=BO=EO,得∠ABO=∠BAO,∠OBM=∠OMB,证出∠AOM=∠AOE+∠MOE=2∠ABO+2∠MBO=2∠ABD=90°即可;(2)在AD上方作AF⊥AN,使AF=AN,连接DF、MF,证△ABN≌△ADF(SAS),得BN=DF,∠DAF=∠ABN=45°,则∠FDM=90°,证△NAM≌△FAM(SAS),得MN=MF,在Rt△FDM中,由勾股定理得FM2=DM2+FD2,进而得出结论;(3)作P关于直线CQ的对称点E,连接PE、BE、CE、QE,则△PCQ≌△ECQ,∠ECQ=∠PCQ=135°,EQ=PQ=9,得∠PCE=90°,则∠BCE=∠DCP,△PCE是等腰直角三角形,得CE=CP=PE,证△BCE≌△DCP(SAS),得∠CBE=∠CDB=∠CBD=45°,则∠EBQ=∠PBE=90°,由勾股定理求出BE=,PE=6,即可得出PC的长.【详解】解:(1)证明:四边形ABCD是正方形,,,,,是BE的中点,,,,;(2),理由如下:在AD上方作,使,连接DF、,如图2所示:则,四边形ABCD是正方形,∴=,,AB AD,,,在和中,,,,,,,,在和中,,,,在中,,即;(3)作P关于直线的对称点E,连接、BE、CE、,如图3所示:则,,,,,是等腰直角三角形,,在和中,,,,,,,,,,,;故答案为:32.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的判定、勾股定理、轴对称的性质等知识;本题综合性强,熟练掌握正方形的性质和勾股定理,证明三角形全等是解题的关键.24.(1)D(0,3);(2)存在,6;(3)5秒,Q(,)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解解析:(1)D(0,3);(2)存在,3)5秒,Q(32,154)【解析】【分析】(1)设D(0,m),且m>0,运用矩形性质和折叠性质可得:OD=m,OA=8,CD=8﹣m,再利用勾股定理建立方程求解即可;(2)如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,运用勾股定理可得CE=5,BE=3,作EG⊥OA,在Rt△DEG中,可得DE=Rt△D′EG中,可得'D E(3)运用待定系数法求得直线D′E的解析式为y=2x﹣3,进而求得P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P交DE于点Q′,利用待定系数法可得直线DE的解析式为y=12x+3,设Q(t,12t+3),则H(t,5),再运用勾股定理即可求出答案.【详解】解:(1)设D(0,m),且m>0,∴OD=m,∵四边形OABC是矩形,∴OA=BC=8,AB=OC=4,∠AOC=90°,∵将长方形OABC沿着直线DM折叠,使得点A与点C重合,∴CD=AD=OA﹣OD=8﹣m,在Rt△CDO中,OD2+OC2=CD2,∴m2+42=(8﹣m)2,解得:m=3,∴点D的坐标为(0,3);(2)存在.如图1,作点D关于x轴的对称点D′,连接D′E,交x轴于点P,则点P即为所求,此时△PDE的周长最小,在Rt△CEF中,BE=EF=BC﹣CE,EF2+CF2=CE2,BC=8,CF=4,∴CE=5,BE=3,作EG⊥OA,∵OD=AG=BE=3,OA=8,∴DG=2,在Rt△DEG中,EG2+DG2=DE2,EG=4,∴DE=25在Rt△D′EG中,EG2+D′G2=D′E2,EG=4,D′G=8,∴D′E=45∴△PDE周长的最小值为DE+D′E=5(3)由(2)得,E(4,5),D′(0,﹣3),设直线D′E的解析式为y=kx+b,则453k bb+=⎧⎨=-⎩,解得:23kb=⎧⎨=-⎩,∴直线D′E的解析式为y=2x﹣3,令y=0,得2x﹣3=0,解得:x=32,∴P(32,0),过点E作EG⊥y轴于点G,过点Q、P分别作y轴的平行线,分别交EG于点H、H′,H′P 交DE于点Q′,设直线DE 的解析式为y =k ′x +b ′,则345b k b =⎧⎨+='''⎩, 解得:123k b ⎧=⎪⎨⎪='⎩', ∴直线DE 的解析式为y =12x +3,设Q (t ,12t +3),则H (t ,5),∴QH =5﹣(12t +3)=2﹣12t ,EH =4﹣t ,由勾股定理得:DE 22221(2)(4)2QH EH t t +-+-52﹣12t 5, ∴点H 在整个运动过程中所用时间=15PQ PQ +QH , 当P 、Q 、H 在一条直线上时,PQ +QH 最小,即为PH ′=5,点Q 坐标(32,154), 故:点H 在整个运动过程中所用最少时间为5秒,此时点Q 的坐标(32,154). 【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,一次函数的性质,线段的动点问题,以及最短路径问题,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行分析.25.(1)①详见解析;②详见解析;(2)当BE≠DF 时,(BE+DF )2+EF2=2AB2仍然成立,理由详见解析;(3)【分析】(1)①连接ED 、BF ,证明四边形BEDF 是平行四边形,根据平行四边形 解析:(1)①详见解析;②详见解析;(2)当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,理由详见解析;(3)2622PD =-【分析】(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=12BD,OE=OF=12EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP2BE,∵2+2PD=6,∴2BE+2PD=6,即BE+PD=6∵AB=4,∴(6)2+PE2=2×42,解得,PE=2∴BE=2∴PD=6﹣2.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.。

初二下数学培优试卷答案

初二下数学培优试卷答案

一、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √2B. πC. -1/2D. 无理数答案:C解析:有理数是可以表示为两个整数比的数,因此选项C正确。

2. 若a、b、c是等差数列,且a+b+c=0,则下列等式中正确的是()A. a+c=2bB. a+b=2cC. a-b=2cD. b-c=2a答案:A解析:等差数列的性质是相邻两项之差相等,所以a+c=2b。

3. 已知函数f(x)=2x-1,则函数g(x)=f(x+1)的解析式是()A. g(x)=2x+1B. g(x)=2x-3C. g(x)=2x+3D. g(x)=2x-1答案:B解析:将f(x)中的x替换为x+1,得到g(x)=2(x+1)-1=2x+2-1=2x+1。

4. 在直角坐标系中,点A(2,3)、B(4,5)、C(6,7)构成的三角形是()A. 等腰直角三角形B. 等边三角形C. 直角三角形D. 不等边三角形答案:C解析:计算AB、BC、AC的长度,发现它们分别是√5、√5、√5,因此三角形ABC是直角三角形。

5. 已知等腰三角形ABC的底边AB=8,腰AC=BC=6,则底角B的度数是()A. 30°B. 45°C. 60°D. 90°答案:B解析:等腰三角形的底角相等,因此底角B的度数为45°。

二、填空题(每题5分,共25分)1. 若x^2-5x+6=0,则x的值为__________。

答案:2,3解析:因式分解x^2-5x+6=(x-2)(x-3),所以x的值为2或3。

2. 若sinα=√2/2,则cosα的值为__________。

答案:√2/2解析:在单位圆上,sinα=√2/2对应的角度是45°,所以cosα的值也是√2/2。

3. 若一个正方形的边长为a,则它的面积是__________。

答案:a^2解析:正方形的面积是边长的平方,所以面积为a^2。

八年级数学培优题精选18例(含答案)

八年级数学培优题精选18例(含答案)

八年级数学培优题精选18例(含答案)例题1、如图,四边形 ABCD 是边长为 9 的正方形纸片,将其沿MN 折叠,使点 B 落在 CD 边上的 B' 处,点 A 对应点为 A' ,且 B'C = 3 ,则 AM 的长是(B)A、1.5B、2C、2.25D、2.5例题2、如图,一只蚂蚁沿着边长为 2 的正方体表面从点 A 出发,经过三个面爬到点B ,如果它运动的路径是最短,则AC 的长度是多少?答案:AC =2√10 / 3。

例题3、如图所示,是由8 个全等的直角三角形(图中带阴影的三角形)与中间的小正方形拼成一个大正方形,如果最大的正方形的面积是 25 ,最小正方形的面积为 1 ,直角三角形的较长直角边为 a ,较短直角边为 b ,则 a^2 - b^2 是多少?答案:a^2 - b^2 = 5 。

例题4、如图,一辆小汽车在一条城市街路上沿东西方向行驶,某一时刻刚好行驶到距车速检测仪 A 点距离为 40 米的 C (位于 A 点北偏东30° 处)处,过了 3 秒钟,到达 B 点,(位于 A 点北偏西45°)此时小汽车距车速检测仪间的距离为 60 米,若规定小汽车在城街路上行驶的速度不得超过 25 米/秒,请问这辆汽车是否超速?解:过点 A 作AD⊥BC 于点 D ,由题意知:∠DBA = 45° ,∴ BD = AD ,∵ AB = 60 米,∴ BD = √(AB^2 - AD^2)= 30√2 米,由题意知:∠DAC = 30° ,AC = 40 米,∴ DC = 1/2 AC = 20米,∴ BC = BD + CD = (30√2 + 20)米,∴ v = (30√2 + 20)÷ 3 ≈ 24 米/秒 < 25="" 米/秒="">∴ 这辆汽车不超速。

例题5、实数 a 在数轴上的位置如图所示,则化简后为(A )A、7B、-7C、2a - 15D、无法确定例题6、对实数 a , b ,定义新运算☆ 如下:a ☆ b =例如2 ☆ 3 = 2^(-3) = 1/8 , 计算[ 2 ☆ ( -4 ) ] × [ (-4) ☆ (-2) ] = ?答案: 1 。

八年级数学下培优训习题(4)

八年级数学下培优训习题(4)

绍基学校八年级下数学培优习题(4) 一 、填空题1、矩形的两条对角线的一个夹角是60°,两条对角线的和是8cm ,则此矩形较短边的长是 ,此矩形的面积是 ,较长边与对角线的夹角是 。

2、在矩形ABCD 中,AE ⊥BD 于E ,∠DAE=2∠BAE ,则∠CAE= 。

3、用两直角边长为30cm 和10cm 的三角形地板块铺长为5m ,宽为3m 的地面,如何铺设最省料,至少需要 块三角形地板块。

4、已知菱形的边长为5cm ,一条对角线长为8cm ,则此菱形的另一条对角线长 ,它的面积为 。

5、菱形的周长为10,一条对角线长为5,则此菱形的两个邻角角分别为 。

6、菱形的周长为16cm ,两邻角的度数之比为1:2,则菱形的面积是 。

7、已知菱形的周长是高的8倍,则菱形较大的一个角的度数是8、已知菱形的面积是24cm 2,它的一条对角线长为6cm ,则另一条对角线的长为 ,菱形的边长为 。

9、菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,且AE=DE ,则∠EBF= 。

10、用8块相同的长方形地砖拼成一个矩形地面,则每块长方形地砖的长和宽分别是 。

11、矩形ABCD 中,AB=8cm ,AD=6cm ,AB 、CD 被分成四等份,AD 、BC 被分成三等份,则四边形EFGH 的面积是 。

12、菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角的度数是 。

13、如图,菱形的一条对角线BD 上一点O 到菱形一边AB 的距离是2,那么点O 到另一边BC 的距离是 。

14、从菱形的钝角顶点向对边引垂线;如果垂线平分对边,则菱形四个角度数分别为。

15、四边形ABCD 为平行四边形,分别添加以下条件:(1)∠ABC=90°,(2)AC=BD ,(3)AB=BC ,(4)AC ⊥BD ,(2)∠BAC=∠DAC 。

使□ABCD 为矩形的条件的序号是 ;使使□ABCD 为菱形的条件的序号是 。

八年级数学培优考试题

八年级数学培优考试题

一,单项选择题(本大题共8小题,每题5分,共40分)1.如果实数x,y满足(+x)(+y)=1,那么x+y值为()A.0B.﹣1C.1D.22.如图,在△ABC中,D,E分别是BC,AC的中点,若∠ACB=90°,BE=4,AD=7,则AB的长为()A.10B.5C.2D.23.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.4.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步200米,先到终点的人原地休息.已知甲先出发2秒,在跑步过程中,若甲、乙两人之间的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则下列结论中正确的是()A.乙的速度为5米/秒B.乙出发10秒钟将甲追上C.当乙到终点时,甲距离终点还有20米D.m=385.已知x为实数,化简的结果为()A.B.C.D.6.两条直角边长分别是整数a,b(其中b<100),斜边长是b+1的直角三角形的个数为()A.4个B.5个C.6个D.7个7.如图,在△ABC中,AB=17,BC=26,BD平分∠ABC,AD⊥BD,点E是AC的中点,则线段DE的长为()A.4.5B.9C.5.5D.118.如图所示,已知直线与x、y轴交于B、C两点,A(0,0),在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第n个等边三角形的边长等于()A.B.C.D.二、填空题(本大题共6小题,每题5分,共30分)9.在平行四边形ABCD中,AM⊥BC,AN⊥CD,M、N为垂足,若AB=13,BM=5,MC =9,则MN的长度为.10.已知三个非负实数a,b,c满足:3a+2b+c=6,a+b﹣3c=2,若m=a﹣b+c,则m的最小值为.11.四边形ABCD中,∠A=∠B=60°,BC=8,CD=,AD=10,求AB=.12.已知﹣=2,则+=.13.在某海防观测站的正东方向12海浬处有A、B两艘船相会之后,A船以每小时12海浬的速度往南航行,B船则以每小时3海浬的速度向北漂流.则经过小时后,观测站及A、B两船恰成一个直角三角形.14.将n个边长都为1cm的正方形按如图所示的方法摆放,点A1、A2…A n分别是各正方形的中心,则n个这样的正方形重叠部分(阴影部分)的面积的和为cm2.三、解答题(本大题共4小题,15题,16题7分,17,18题8分,共30分。

人教版数学八年级下册期末综合培优复习题(四)(含答案)

期末综合培优复习题(四)一.选择题(每题3分,满分36分)1.下列一定是二次根式的是()A.B.C.D.2.直线y=3x+1向下平移2个单位,所得直线的解析式是()A.y=3x+3 B.y=3x﹣2 C.y=3x+2 D.y=3x﹣13.如图,在四边形ABCD中,点P是边CD上的动点,点Q是边BC上的定点,连接AP,PQ,E,F分别是AP,PQ的中点,连接EF.点P在由C到D运动过程中,线段EF的长度()A.保持不变B.逐渐变小C.先变大,再变小D.逐渐变大4.已知n是一个正整数,是整数,则n的最小值是()A.3 B.5 C.15 D.455.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A.1个B.2个C.3个D.4个6.若a=1﹣,b=1+,则代数式的值为()A.2B.﹣2C.2 D.﹣27.有20个班级参加了校园文化艺术节感恩歌咏大赛,他们的成绩各不相同,其中李明同学在知道自己成绩的情况下,要判断自己能否进入前十名,还需要知道这十个班级成绩的()A.平均数B.加权平均数C.众数D.中位数8.已知直线y=x+b和y=ax﹣3交于点P(2,1),则关于x,y的方程组的解是()A.B.C.D.9.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2019次后形成的图形中所有的正方形的面积和是()A.1 B.2018 C.2019 D.202010.在菱形ABCD中,∠ADC=120°,点E关于∠A的平分线的对称点为F,点F关于∠B的平分线的对称点为G,连结EG.若AE=1,AB=4,则EG=()A.2B.2C.3D.11.如图所示的图象(折线ABCDE)描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车在整个行驶过程中的平均速度为30千米/时;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个二.填空题(每题3分,满分18分)13.若点A (2,y 1),B (﹣1,y 2)都在直线y =﹣2x +1上,则y 1与y 2的大小关系是 . 14.使二次根式有意义的x 的取值范围是 .15.某公司招聘员工一名,某应聘者进行了三项素质测试,其中创新能力为70分,综合知识为80分,语言表达为90分,如果将这三项成绩按5:3:2计入总成绩,则他的总成绩为 分.16.已知一次函数y =kx ﹣3的图象与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则k 的取值范围是 .17.在平行四边形ABCD 中,连接AC ,∠CAD =40°,△ABC 为钝角等腰三角形,则∠ADC 的度数为 度.18.如图,过点N (0,﹣1)的直线y =kx +b 与图中的四边形ABCD 有不少于两个交点,其中A (2,3)、B (1,1)、C (4,1)、D (4,3),则k 的取值范围 .三.解答题 19.(6分)计算 (1)(3﹣2+)÷2 (2)×﹣(+)(﹣)20.已知一次函数y =(2m +1)x +3﹣m(1)若y 随x 的增大而减小,求m 的取值范围; (2)若图象经过第一、二、三象限,求m 的取值范围.21.(8分)为弘扬泰山文化,我市某校举办了“泰山诗文大赛”活动,小学、初中部根据初赛成绩,各选出5名选手组成小学代表队和初中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图所示.(1)根据图示填写图表;平均数(分)中位数(分)众数(分)小学部85初中部85 100 (2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(6分)如图,在△ABC中,AD⊥BC,AB=15,AD=12,AC=13.求BC的长.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.24.(6分)已知y+m与x﹣n成正比例,(1)试说明:y是x的一次函数;(2)若x=2时,y=3;x=1时,y=﹣5,求函数关系式;(3)将(2)中所得的函数图象平移,使它过点(2,﹣1),求平移后的直线的解析式.25.(9分)为迎接“五一”国际劳动节,某商场计划购进甲、乙两种品牌的T恤衫共100件,已知乙品牌每件的进价比甲品牌每件的进价贵30元,且用120元购买甲品牌的件数恰好是购买乙品牌件数的2倍.(1)求甲、乙两种品牌每件的进价分别是多少元?(2)商场决定甲品牌以每件50元出售,乙品牌以每件100元出售.为满足市场需求,购进甲种品牌的数量不少于乙种品牌数量的4倍,请你确定获利最大的进货方案,并求出最大利润.参考答案一.选择题1. A .2. D .3. A .4. B .5. C .6. A .7. D .8. B .9. D 10. B .11. A . 二.填空题 13. y 1<y 2. 14. x ≤2. 15. 77. 16. 1≤k ≤. 17. 100或40. 18. <k ≤2. 三.解答题19.解:(1)原式=(9﹣+4)÷2=12÷2=6; (2)原式=﹣(5﹣3)=3﹣2 =1.20.解:(1)由2m +1<0,可得m <﹣, ∴当m <﹣时,y 随着x 的增大而减小; (2)由,可得﹣<m <3, ∴当﹣<m <3时,函数图象经过第一、二、三象限.21.解:(1)填表:小学部平均数 85( 分),众数85(分);初中部中位数 80( 分). 故答案为85,85,80.(2)小学部成绩好些.因为两个队的平均数都相同,小学部的中位数高,所以在平均数相同的情况下中位数高的小学部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,,∴,因此,小学代表队选手成绩较为稳定.22.解:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=15,AD=12,AC=13,∴BD===9,CD===5,∴BC=BD+CD=9+5=14.23.(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.24.解:(1)已知y+m与x﹣n成正比例,设y+m=k(x﹣n),(k≠0),y=kx﹣kn﹣m,因为k≠0,所以y是x的一次函数;(2)设函数关系式为y=kx+b,因为x=2时,y=3;x=1时,y=﹣5,所以2k+b=3,k+b=﹣5,解得k=8,b=﹣13,所以函数关系式为y=8x﹣13;(3)设平移后的直线的解析式为y=ax+c,由题意可知a=8,且经过点(2,﹣1),可有2×8+c=﹣1,c=﹣17,平移后的直线的解析式为y=8x﹣17.25.解:(1)设甲品牌每件的进价为x元,则乙品牌每件的进价为(x+30)元,,解得,x=30经检验,x=30是原分式方程的解,∴x+30=60,答:甲品牌每件的进价为30元,则乙品牌每件的进价为60元;(2)设该商场购进甲品牌T恤衫a件,则购进乙品牌T恤衫(100﹣a)件,利润为w元,∵购进甲种品牌的数量不少于乙种品牌数量的4倍,∴a≥4(100﹣a)解得,a≥80w=(50﹣30)a+(100﹣60)(100﹣a)=﹣20a+4000,∵a≥80,∴当y=80时,w取得最大值,此时w=2400元,100﹣a=20,答:获利最大的进货方案是:购进甲品牌T恤衫80件,购进乙品牌T恤衫20件,最大利润是2400元.。

八年级下册数学期末试卷(培优篇)(Word版含解析)

八年级下册数学期末试卷(培优篇)(Word版含解析)一、选择题1.下列式子中不一定是二次根式的是()A.3B.4C.a D.2a2.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.∠C=∠A﹣∠BC.a2+b2=c2D.a:b:c=6:8:103.下列不能判定四边形ABCD是平行四边形的条件是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AB∥CD,AD=BC D.AB=CD,AD=BC4.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为()A.18,12 B.12,12 C.15,14.8 D.15,14.55.三角形的三边长分别为6,8,10,则它的最长边上的高为()A.4.8 B.8 C.6 D.2.46.如图,在菱形ABCD中,∠A=110°,则∠CBD的度数是()A.90°B.70°C.55°D.35°△,对角线AC与BD相交于点O,连接AE 7.如图,在正方形ABCD的外侧作等边CDEOF ,则AB的长度为()交BD于点F,若1A .2B .6C .22D .38.如图①,在矩形ABCD 中,AB < AD ,对角线AC 、BD 相交于点O ,动点P 从点A 出发,沿A →B →C →D 向点D 运动.设点P 的运动路程为x ,ΔAOP 的面积为y ,y 与x 的函数关系图象如图②所示,则下列结论错误的是( )A .四边形ABCD 的面积为12B .AD 边的长为4C .当x =2.5时,△AOP 是等边三角形D .ΔAOP 的面积为3时,x 的值为3或10二、填空题9.计算:()()2227x x -+-=______.10.如图,菱形ABCD 的周长为45,对角线AC 和BD 相交于点O ,AC ∶BD=1∶2,则AO ∶BO=____,菱形ABCD 的面积S=____.11.如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.12.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,若OB =2,∠ACB =30°,则AB 的长度为____.13.在平面直角坐标系,(2,0)A -,(0,3)B ,点M 在直线12y x =上,M 在第一象限,且6MAB S =△,则点M 的坐标为____.14.如图,四边形ABCD 的对角线AC 与BD 交于点O ,AC ⊥BD ,且AC 平分BD ,若添加一个条件_____,则四边形ABCD 为菱形.15.如图,直线142y x =-+与坐标轴分别交于点A ,B ,点P 是线段AB 上一动点,过点P 作PM ⊥x 轴于点M ,作PN ⊥y 轴于点N ,连接MN ,则线段MN 的最小值为_________.16.如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为PQ ,则线段BQ 的长度为 ___.三、解答题17.(1)148312242÷+⨯- (2)(32126)2352--⨯+18.如图,牧童在离河边3km 的A 处牧马,小屋位于他南6km 东9km 的B 处,他想把他的马牵到河边饮水,然后回小屋.他要完成此过程所走的最短路程是多少?并在图中画出饮水C 所在在位置(保留作图痕迹).19.如图,每个小正方形的边长都是1,△ABC 的三个顶点分别在正方形网格的格点上. (1)求AB ,BC 的长;(2)判断△ABC 的形状,并说明理由.20.如图,在ABCD 中,两条对角线AC 和BD 相交于点O ,并且6BD =,8AC =,5BC =.(1)AC 与BD 有什么位置关系?为什么?(2)四边形ABCD 是菱形吗?为什么?21.观察下列等式:①;②;③;……回答下列问题: (1)仿照上列等式,写出第n 个等式: ;(2)利用你观察到的规律,化简:; (3)计算:22.某市为了倡导居民节约用水,生活用自来水按阶梯式水价计费.如图是居民每户每月的水(自来水)费y (元)与所用的水(自来水)量x (吨)之间的函数图象.根据下面图象提供的信息,解答下列问题:(1)当1730x ≤≤时,求y 与x 之间的函数关系式;(2)已知某户居民上月水费为91元,求这户居民上月的用水量;(3)当一户居民在某月用水为15吨时,求这户居民这个月的水费.23.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.24.如图,A ,B 是直线与坐标轴的交点,直线过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标. (2)当点D 是AB 的中点时,在x 轴上找一点E ,使的和最小,画出点E 的位置,并求E 点的坐标.(3)若点D 是折线上一动点,是否存在点D ,使为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由.25.如图,在Rt ABC 中,90ABC ∠=︒,4AB =,3BC =,动点D 从点C 出发,沿边CA AB -向点B 运动,到点B 时停止,若设点D 运动的时间为()0t t >秒.点D 运动的速度为每秒1个单位长度.(1)当6t=时,AD=,BD=;(2)用含t的代数式表示()0AD AD>的长;(3)当点D在边CA上运动时,求t为何值,CBD是以BD或CD为底的等腰三角形?并说明理由;(4)直接写出当CBD是直角三角形时,t的取值范围.【参考答案】一、选择题1.C解析:C【分析】根据二次根式的性质即可判断.【详解】342a a a可能为负数,故不一定是二次根式故选C.【点睛】此题主要考查二次根式的识别,解题的关键是熟知二次根式的定义.2.A解析:A【分析】根据各个选项中的条件,可以判断△ABC是否为直角三角形,从而可以解答本题.【详解】解:当∠A:∠B:∠C=3:4:5时,则∠C=180°×5345++=75°,同理可得∠A=45°,∠B=60°,故选项A符合题意;当∠C=∠A﹣∠B时,可得∠C+∠B=∠A,又∵∠A+∠B+∠C=180°,∴∠A=90°,故选项B不符合题意;当a2+b2=c2时,则△ABC时直角三角形,故选项C不符合题意;当a:b:c=6:8:10时,a2+b2=c2,则△ABC是直角三角形,故选项D不符合题意;故选:A.【点睛】本题考查勾股定理的逆定理、三角形内角和,解答本题的关键是明确题意,利用勾股定理的逆定理解答.解析:C【解析】【分析】由平行四边形的判定分别对各个选项进行判断即可.【详解】解:如图所示:A 、∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形,故本选项不符合题意;B 、∵OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,故本选项不符合题意;C 、∵AB ∥CD ,AD =BC ,∴四边形ABCD 是等腰梯形,故本选项符合题意;D 、∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,故本选项不符合题意,故选:C .【点睛】本题考查了平行四边形的判定以及平行线的判定与性质,熟记平行四边形的判定方法是解题的关键.4.C解析:C【解析】【分析】根据中位数和平均数的定义求解即可.【详解】解:由折线统计图知,第25、26个数据分别为12、18,∴这50名学生图书阅读数量的中位数为1218152+= (本), 平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本), 故选:C .【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.解析:A【分析】根据已知先判定其形状,再根据三角形的面积公式求得其高.【详解】解:∵三角形的三边长分别为6,8,10,符合勾股定理的逆定理62+82=102,∴此三角形为直角三角形,则10为直角三角形的斜边,设三角形最长边上的高是h,根据三角形的面积公式得:12×6×8=12×10h,解得h=4.8.故选A【点睛】考查了勾股定理的逆定理,解答此题的关键是先判断出三角形的形状,再根据三角形的面积公式解答.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.D解析:D【解析】【分析】根据菱形的性质得到∠ABD=∠CBD,AD∥BC,根据平行线的性质求出∠ABC的度数,可进而求出∠CBD的度数.【详解】解:∵四边形ABCD是菱形,∴∠ABD=∠CBD,AD∥BC,∴∠A+∠ABC=180°,∠CBD=12∠ABC,∵∠A=110°,∴∠ABC=180°﹣∠A=180°﹣110°=70°,∴∠CBD=12×70°=35°,故选:D.【点睛】本题考查了菱形的性质、平行线的性质,解题的关键是熟练掌握菱形的对边互相平行,对角线平分一组对角.7.B解析:B【解析】【分析】先根据正方形和等边三角形的性质证明△ADE是等腰三角形,求出∠DAE=∠DEA,再求出∠OAF=30°,在直角三角形OAF中即可得出结论.【详解】解:∵四边形ABCD是正方形,△CDE是等边三角形,∴AD=CD,∠ADC=90°,DC=DE,∠CDE=∠DEC=60°,∠DAC=45°,AC⊥BD,∴AD=DE,∠ADE=90°+60°=150°,∠AOD=90°,∴∠DAE=∠DEA=12(180°−150°)=15°,∠OAF=45°−15°=30°,∴AF=2OF=2,∴OA∴AB故选:B.【点睛】本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.8.C解析:C【分析】过点P作PE⊥AC于点E,根据ΔAOP的边OA是一个定值,OA边上的高PE最大时是点P分别与点B和点D重合,因此根据这个规律可以对各个选项作出判断.【详解】A、过点P作PE⊥AC于点E,当点P在AB和BC边上运动时,PE逐渐增大,到点B时最大,然后又逐渐减小,到点C时为0,而y=12OA PE中,OA为定值,所以y是先增大后减小,在B点时面积最大,在C点时面积最小;观察图②知,当点P与点B重合时,ΔAOP 的的面积为3,此时矩形的面积为:4×3=12,故选项A正确;B、观察图②知,当运动路程为7时,y的值为0,此时点P与点C重合,所以有AB+BC=7,又AB∙BC=12,解得:AB=3,BC=4,或AB=4,BC=3,但AB<BC,所以AB=3,BC=4,根据四边形ABCD为矩形,所以AD=4,故选项B正确;C、当x=2.5时,即x<3,点P在边AB上由勾股定理,矩形的对角线为5,则OA=2.5,所以OA=AP,△AOP是等腰三角形,但△ABC是三边分别为3,4,5的直角三角形,故∠BAC不可能为60°,从而△AOP不是等边三角形,故选项C错误;D、当点P在AB和BC边上运动时,点P与点B重合时最大面积为3,此时x的值为3;当点P在边CD和DA上运动时,PE逐渐增大,到点D时最大,然后又逐渐减小,到点A时为0,而y=12OA PE也是先增大再减小,在D点时面积最大,在A点时面积最小;所以当点P与点D重合时,最大面积为3,此时点P运动的路程为AB+BC+CD=10,即x=10,所以当x=3或10时,ΔAOP的面积为3,故选项D正确.故选:C.【点睛】本题是动点问题的函数图象,考查了函数的图象、图形的面积、矩形的性质、解方程等知识,关键是确定点P 到AC 的距离的变化规律,从而可确定y 的变化规律,同时善于从函数图象中抓住有用的信息,获得问题的突破口.二、填空题9.92x -##29x -+【解析】【分析】由题可得,20x -≥,即可得出70x -≤,再根据二次根式的性质化简即可.【详解】解:由题可得,20x -≥,∴2x ≤,∴70x -≤, ∴()2227x x --()()27x x =---27x x =--+92x =-.故答案为:92x -.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.10.A解析: 1:2 4【解析】【分析】根据菱形性质得出AC ⊥BD ,5AC=2AO=2CO ,BD=2BO=2DO ,即可求出AO :BO ,根据勾股定理得出方程,求出x 的值,求出AC 、BD ,根据菱形面积公式求出即可.【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,5AC=2AO=2CO ,BD=2BO=2DO ,∵AC :BD=1:2,∴AO :BO=12AC :(12BD )=AC :BD=1:2;设AO=x ,则BO=2x ,在Rt △AOB 中,由勾股定理得:x 2+(2x )2=2,解得:x=1(负数舍去),即AO=1,BO=2,∴AC=2,BD=4,∴菱形ABCD 的面积是S=12×AC×BD=12×2×4=4,故答案为:1:2,4.【点睛】本题考查了菱形的性质的应用,主要考查学生运用性质进行推理和计算的能力,注意:菱形的对角线互相垂直平分,菱形的四条边相等和菱形的面积为两对角线乘积的一半. 11.A解析:【解析】【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100.【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64.故答案为:100.【点睛】本题考查了正方形的面积公式以及勾股定理.12.A解析:2【分析】利用矩形的性质即可得到AC 的长,再根据含30°角的直角三角形的性质,即可得到AB 的长.【详解】解:∵矩形ABCD 中,对角线AC 、BD 相交于点O ,∴AC =2BO =4,又∵∠ACB =30°,∠ABC =90°, ∴114222AB AC ==⨯=. 故答案为:2.【点睛】本题考查了矩形的性质及含30︒角的直角三角形的性质,掌握矩形四个角都是直角,对角线相等且互相平分是解题的关键.13.3 3,2⎛⎫ ⎪⎝⎭【分析】过点M作MN y⊥于点P交直线AB于点N,可求出直线AB的解析式为332y x=+,然后设点M的坐标为1,2a a⎛⎫⎪⎝⎭,其中0a>,则11a2,32N a⎛⎫-⎪⎝⎭,从而得到223MN a=+,最后根据6MABS=△,可得到1223623a⎛⎫+⨯=⎪⎝⎭,解出a,即可求解.【详解】解:如图,过点M作MN y⊥于点P交直线AB于点N,设直线AB的解析式为()0y kx b k=+≠,把(2,0)A-,(0,3)B,代入得:203k bb⎧-+=⎨=⎩,解得:323kb⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为332y x=+,∵点M在直线12y x=上,M在第一象限,设点M的坐标为1,2a a⎛⎫⎪⎝⎭,其中0a>,当12y a=时,1a23x=-,∴11a2,32N a⎛⎫-⎪⎝⎭,∴122233MN a a a⎛⎫=--=+⎪⎝⎭,∵6MABS=△,∴162MAB BMN AMNS S S MN BO=+=⨯=,∵(0,3)B,∴3BO=,∴1223623a ⎛⎫+⨯= ⎪⎝⎭, 解得:3a = , ∴33,2⎛⎫ ⎪⎝⎭M . 故答案为:33,2⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查了一次函数图象上点的坐标特征,求一次函数解析式,运用数形结合思想,通过设点的坐标利用三角形的面积构造方程是解题的关键.14.A解析:OA =OC【分析】添加条件OA =OC ,先证四边形ABCD 是平行四边形,再由AC ⊥BD ,即可得出平行四边形ABCD 是菱形.【详解】.解:添加一个条件OA =OC ,则四边形ABCD 为菱形,理由如下:∵AC 平分BD ,OA =OC ,∴四边形ABCD 是平行四边形,又∵AC ⊥BD ,∴平行四边形ABCD 是菱形,故答案为:OA =OC .【点睛】此题主要考查了菱形的判定以及平行四边形的判定,熟练掌握菱形的判定和平行四边形的判定与性质是解题的关键.15.【分析】如图,连接,依题意,四边形是矩形,则,当时,最小,底面积法求得即可.【详解】如图,连接,PM ⊥x 轴,PN ⊥y 轴,四边形是矩形,,当时,最小,直线与坐标轴分别交于点A ,B ,【分析】如图,连接OP ,依题意,四边形OMPN 是矩形,则OP MN =,当OP AB ⊥时,OP 最小,底面积法求得OP 即可.【详解】如图,连接OP ,PM ⊥x 轴,PN ⊥y 轴,90AOB ∠=︒∴四边形OMPN 是矩形,∴OP MN =,∴当OP AB ⊥时,OP 最小, 直线142y x =-+与坐标轴分别交于点A ,B , 令0,4x y ==,)4(0,A ∴令0,8y x ==,(0,8)B ∴4,8OA OB ∴==,22224845AB OA OB ∴=++=当OP AB ⊥时,1122ABC S OA OB OP AB =⨯=⨯△, 8545OA OB OP AB ⨯∴=== ∴MN OP ==85. 85. 【点睛】 本题考查了矩形的性质,勾股定理,垂线段最短,找到MN OP =是解题的关键. 16.4【分析】设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,用勾股定理列方程可解得x ,从而可得答案.【详解】解:∵BC =6,D 是BC 的中点,∴BD =BC =3,∵△ABC 折叠解析:4【分析】设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,用勾股定理列方程可解得x ,从而可得答案.【详解】解:∵BC =6,D 是BC 的中点,∴BD =12BC =3,∵△ABC 折叠,使A 点与BC 的中点D 重合,∴AQ =DQ ,设AQ =DQ =x ,则BQ =AB ﹣AQ =9﹣x ,在Rt △BDQ 中,222BQ BD DQ +=∴()22293x x -+= 解得x =5,∴BQ =9﹣x =4,故答案为:4.【点睛】本题考查折叠的性质和勾股定理,关键是利用方程思想设边长,然后用勾股定理列方程解未知数,求边长.三、解答题17.(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式;解析:(1)4;(2)18-【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式=4=4=(2)原式(3436)2352=--⨯+6246252=--+182=--.【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键. 18.最短路程是;画图见解析.【分析】先作关于的对称点,连接,构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出点关于的对称点,连接交于点,则点是马饮水的位置, 根据对称性可得,,解析:最短路程是15km ;画图见解析.【分析】先作A 关于MN 的对称点,连接A B ',构建直角三角形,利用勾股定理即可得出答案.【详解】解:如图,作出A 点关于MN 的对称点A ',连接A B '交MN 于点C ,则点C 是马饮水的位置,根据对称性可得AC A C '=,326km AA '=⨯=,则A B A C BC ''=+,∴A B AC BC '=+,由已知得6km OA =,9km OB =,6612km A O A A AO ''=+=+=,在Rt A OB '△中,由勾股定理求得222212915km A B A O OB ''=+=+=,即15km AC BC +=,答:他要完成这件事情所走的最短路程是15km ,饮水C 所在位置.【点睛】本题考查的是勾股定理和轴对称在实际生活中的运用,需要同学们联系实际,题目是一道比较典型的题目,难度适中.19.(1)AB =2,BC =,(2)△ABC 是直角三角形,见解析.【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形.【详解】解:(1)解析:(1)AB=BC2)△ABC是直角三角形,见解析.【解析】【分析】(1)先利用勾股定理分别计算两边的长即可;(2)利用勾股定理的逆定理得到三角形为直角三角形.【详解】解:(1)AB=BC(2)AC=5,∵2225+=,∴AB2+BC2=AC2,∴△ABC是直角三角形.【点睛】此题考查了勾股定理和勾股定理的逆定理,熟练掌握勾股定理是解本题的关键.20.(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC, OB的长,再利用勾股定理逆定理求出∠BOC=90,可得AC与BD的位置关系;(解析:(1)AC⊥BD,证明见解析;(2)四边形ABCD是菱形,见解析【分析】(1)首先根据平行四边形的性质得出OC,OB的长,再利用勾股定理逆定理求出∠BOC=90︒,可得AC与BD的位置关系;(2)菱形的判定方法:对角线互相垂直平分的四边形是菱形,可得答案.【详解】解:(1)AC⊥BD;理由如下:在ABCD中,132==OB BD,142OC AC==∵22291625+=+== OB OC BC ∴∠BOC=90︒∴AC⊥BD.(2)四边形ABCD是菱形∵四边形ABCD 是平行四边形(已知),AC ⊥BD (已证)∴四边形ABCD 是菱形.【点睛】此题主要考查了菱形的判定,平行四边形的性质,以及勾股定理的逆定理的运用,解题的关键是根据条件证出BO 2+CO 2=CB 2.21.(1) (2分)(2)(3分)(3)-1(3分)【解析】【详解】试题分析:(1)根据题意可以观察出:第n 个等式:;(2)由(1)中的结论可得结果;(3)由(1)中的结论将式子化简,然后 解析:(1)(2分) (2)(3分) (3)-1(3分)【解析】【详解】试题分析:(1)根据题意可以观察出:第n 个等式:;(2)由(1)中的结论11n n n n =+-++可得结果;(3)由(1)中的结论11n n n n=+-++将式子化简,然后其中的有些数可以互相抵消,最后化简即可. 试题解析:(1)根据题意可以观察出:第n 个等式:;(2)根据(18787=+ (3)原式213223103101+⋅⋅⋅+=.考点:分母有理化.22.(1);(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y=91代入(1)中解析式中求得x 值即可;(3)将x=17代入(1)中解析式中求得y 值,再求得解析:(1)534y x =-;(2)25吨;(3)45元【分析】(1)利用待定系数法求解函数关系式的方法即可;(2)将y =91代入(1)中解析式中求得x 值即可;(3)将x =17代入(1)中解析式中求得y 值,再求得当017x ≤<时,y 与x 之间的函数关系式,将x =15代入求解y 值即可.【详解】解:(1)设y 与x 之间的函数关系式为:y kx b =+,由题意得:116306620k b k b =+⎧⎨=+⎩,∴534k b =⎧⎨=-⎩, ∴y 与x 之间的函数关系式为:534y x =-.(2)∵91元66>元,∴由91534x =-得:25x =. 答:这户居民上月用水量25吨.(3)当17x =吨时,5173451y =⨯-=元,∴当017x ≤<时,y 与x 之间的函数关系式为:3y x =,当15x =时,45y =元,答:这户居民这个月的水费45元.【点睛】本题考查一次函数的应用,理解题意,能从函数图象中获取有效信息,会利用待定系数法求解函数关系式是解答的关键.23.(1)①见解析;②2;(2)不变,12;(3)能,或6或【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ; ②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得I解析:(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长; (2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE ∠=∠∴IBC ≌HCE②如图1, 由①可知:IBC ≌HCE , ∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH = ,∵//AC DE ,∴CDG DCI ∠=∠∵CFI DFG ∠=∠ , DF CF = ,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==, ∴11233DG DE AC ===. (2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠ ,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC == 132OA OC AC === , ∴OB AC ⊥,∴90AOB ∠=︒ ,在Rt BOC 中 222OB OC BC +=∴2222534OB AB OA =-=-=,∴11641222ABC S AC OB ==⨯⨯=, ∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD 是平行四边形,OA =3,∠AOB =90°,∴OD =OB =4,∠AOD =180°−∠AOB =90°,∵AO ⊥BD ,OD =OB ,∴AO 垂直平分BD ,∴AD =AB =5, 由12AD •OL =12OA •OD =AOD S得, 12×5OL =12×3×4, 解得,OL =125, ∴2222129355AL OA OL ⎛⎫=-=-= ⎪⎝⎭, ∴96355PL =-= , ∴22221266555OP OL PL ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭ , ∴PQ =2OP =125; 如图5,OP =AP ,∵AD =AB ,AC ⊥BD ,∴∠DAC =∠BAC ,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ =或6或125. 【点睛】 此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题. 24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125.【解析】【分析】(1)分别令x=0,y=0即可确定A 、B解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,D 点的坐标为或. 【解析】【分析】(1)分别令x=0,y=0即可确定A 、B 的坐标,然后确定直线BC 的解析式,然后再令y=0,即可求得C 的坐标;(2)先根据中点的性质求出D 的坐标,然后再根据轴对称确定的坐标,然后确定DB 1的解析式,令y=0,即可求得E 的坐标;(3)分别就D 点在AB 和D 点BC 上两种情况进行解答即可.【详解】解:(1)在中, 令0x =,得, 令0y =,得4x =-,,(0,4)B .把(0,4)B 代入,, 得∴直线BC 为:24y x =-+.在24y x =-+中,令0y =,得2x =,点的坐标为(2,0);(2)如图点E 为所求点D 是AB 的中点,,(0,4)B ..点B 关于x 轴的对称点的坐标为. 设直线的解析式为y kx b =+.把,代入, 得.解得3k =-,. 故该直线方程为:.令0y =,得E 点的坐标为.(3)存在,D 点的坐标为或.①当点D 在AB 上时,由得到:,由等腰直角三角形求得D 点的坐标为; ②当点D 在BC 上时,如图,设AD 交y 轴于点F . 在与中,.,∴点F 的坐标为(0,2),易得直线AD 的解析式为,与24y x =-+组成方程组,解得.∴交点D 的坐标为【点睛】本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.25.(1)1;3;(2)当时,;当时,;(3)t=3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形;(4)或秒.【分析】(1)由勾股定理先求出的长度,则时,点D 在线段AB 上,即可求出答案; 解析:(1)1;3;(2)当05t ≤<时,5AD t =-;当59<≤t 时,5AD t =-;(3)t =3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形;(4) 1.8t =或59t ≤≤秒.【分析】(1)由勾股定理先求出CA 的长度,则6t =时,点D 在线段AB 上,即可求出答案; (2)由题意,可分为:05t ≤<,59<≤t 两种情况,分别表示出AD 的长度即可;(3)分①CD =BC 时,CD =3;②BD =BC 时,过点B 作BF ⊥AC 于F ,根据等腰三角形三线合一的性质可得CD =2CF ,即可得到答案.(4)分①∠CDB =90°时,利用△ABC 的面积列式计算即可求出BD ,然后利用勾股定理列式求解得到CD ,再根据时间=路程÷速度计算;②∠CBD =90°时,点D 在线段AB 上运动,然后即可得解;【详解】解:(1)在Rt ABC 中,90ABC ∠=︒,4AB =,3BC =, ∴22345CA +=,∵点D 运动的速度为每秒1个单位长度,∴当05t ≤<,点D 在线段CA 上;当59t ≤≤,点D 在线段AB 上;∴当6t =时,点D 在线段AB 上,∴1AD =,413BD =-=;故答案为:1;3;(2)根据题意,当05t ≤<时,点D 在线段CA 上,且0AD >,∴5AD t =-;当59<≤t 时,点D 在线段AB 上,∴5AD t =-;(3)①CD =BC 时,CD =3,t =3÷1=3;②BD =BC 时,如图,过点B 作BF ⊥AC 于F ,设CF x =,则5AF x =-,∴222234(5)x x -=--,∴ 1.8CF x ==,∴CD =2CF =1.8×2=3.6,∴t =3.6÷1=3.6,综上所述,t =3秒或3.6秒时,△CBD 是以BD 或CD 为底的等腰三角形. (4)①∠CDB =90°时,S △ABC =12AC •BD =12AB •BC , 即1102BD ⨯⨯=12×4×3,解得BD =2.4,∴CD 223 2.4 1.8-=,∴t =1.8÷1=1.8秒;②∠CBD =90°时,点D 在线段AB 上运动,∴59t ≤≤综上所述,t =1.8或59t ≤≤秒;故答案为: 1.8t =或59t ≤≤秒;【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,(3)(4)难点在于要分情况讨论,作出图形更形象直观.。

人教版八年级数学下册期末试卷(培优篇)(Word版含解析)

人教版八年级数学下册期末试卷(培优篇)(Word 版含解析)一、选择题1.要使二次根式3x -有意义,x 的值可以是( )A .﹣1B .0C .2D .4 2.下列条件中,不能得出ABC 是直角三角形的是( ) A .13a =,5c =,12b = B .222a c b -=C .::3:3:4a b c =D .::2:5:3A B C ∠∠∠= 3.如图,在ABCD 中,点E ,F 分别在边BC ,AD 上.若从下列条件中只选择一个添加到图中的条件中.那么不能使四边形AECF 是平行四边形的条件是( )A .//AE CFB .AE CF =C .BE DF =D .BAE DCF ∠=∠ 4.每年的4月23日为“世界读书日”,某学校为了鼓励学生多读书,开展了“书香校园”的活动.如图是该校某班班长统计的全班50名学生一学期课外图书的阅读量(单位本),则这50名学生图书阅读数量的中位数和平均数分别为( )A .18,12B .12,12C .15,14.8D .15,14.5 5.如图1,园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB ⊥BC ,这块草坪的面积是( )A .24米2B .36米2C .48米2D .72米2 6.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°7.如图,四边形ABCD 是矩形,点E 在线段CB 的延长线上,连接DE 交AB 于点F ,2AED CED ∠=∠,点G 是DF 的中点,若1BE =,3CD =,则DF 的长为( )A .8B .9C .42D .210 8.如图1,动点P 从菱形ABCD 的顶点A 出发,沿A →C →D 以1cm /s 的速度运动到点D .设点P 的运动时间为(s ),△PAB 的面积为y (cm 2).表示y 与x 的函数关系的图象如图2所示,则a 的值为( )A .5B .52C .2D .25二、填空题9.代数式2021x -中,字母x 的取值范围是____________.10.已知菱形ABCD 的边长为4,∠A =60°,则菱形ABCD 的面积为_________. 11.如图,在Rt ABC ∆中,90C ∠=︒,23AC BC +=,1ABC S ∆=,则斜边AB 的长为____.12.如图,四边形ABDE 是长方形,AC ⊥DC 于点C ,交BD 于点F ,AE =AC ,∠ADE =62°,则∠BAF 的度数为___.13.请你写出一个一次函数的解析式,使其满足以下要求:①图象经过()0,2;②y随x 增大而减小.该解析式可以是_______.14.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOD=120°, AB=2,则BC 的长为___________.15.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为 ________________.16.如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B落在ED上的点F 处,若1BE=,3BC=,则CD的长为_________.三、解答题17.计算:(162153(2241086+1218.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.阅读理解:我们给出如下定义:若一个四边形中存在一组相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称:__________,__________.(2)如图,已知格点(小正方形的顶点)()0,0O ,()3,0A ,()0,4B ,请你画出以格点为顶点,OA ,OB 为勾股边且对角线相等的两个勾股四边形OAMB .20.如图,在平行四边形ABCD 中,M ,N 是对角线BD 上的点,且BM DN =,DE 平分ADB ∠交AB 于点E ,BF 平分DBC ∠交CD 于点F .(1)求证:四边形EMFN 是平行四边形;(2)当四边形EMFN 是菱形时,求证:四边形BEDF 是菱形.21.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi (a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;根据以上信息,完成下列问题:(1)填空:i3=,i4=,i+i2+i3+…+i2021=;(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);(3)已知a+bi=2543i-(a,b为实数),求2222(24)x a x b++-+的最小值.22.暑期将至,某游泳馆面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次游泳费用按六折优惠;方案二:不购买学生暑期专享卡,每次游泳费用按八折优惠.设某学生暑期游泳x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值;(2)八年级学生小华计划暑期前往该游泳馆游泳8次,应选择哪种方案所需费用更少?请说明理由.23.如图1,在平面直角坐标系xOy中,直线l1:y=x+6交x轴于点A,交y轴于点B,经过点B的直线l2:y=kx+b交x轴于点C,且l2与l1关于y轴对称.(1)求直线l2的函数表达式;(2)点D,E分别是线段AB,AC上的点,将线段DE绕点D逆时针α度后得到线段DF.①如图2,当点D的坐标为(﹣2,m),α=45°,且点F恰好落在线段BC上时,求线段AE 的长;②如图3,当点D的坐标为(﹣1,n),α=90°,且点E恰好和原点O重合时,在直线y=313G,使得∠DGF=∠DGO?若存在,直接写出点G的坐标;若不存在,请说明理由.24.如图,已知点()4,0A 、()0,2B ,线段OA OC =且点C 在y 轴负半轴上,连接AC .(1)如图1,求直线AB 的解析式;(2)如图1,点P 是直线CA 上一点,若3ABC ABP SS =,求满足条件的点P 坐标; (3)如图2,点M 为直线5:2l x =上一点,将点M 水平向右平移6个单位至点N ,连接BM 、MN 、NC ,求BM MN NC ++的最小值及此时点N 的坐标.25.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形.(2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.26.在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.【参考答案】一、选择题1.D解析:D【分析】二次根式的被开方数大于等于零,由此计算解答.【详解】解:∵30x -≥,∴3x ≥,观察只有D 选项符合,故选:D .【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】根据三角形内角和定理可分析出D 的正误;根据勾股定理逆定理可分析出A 、B 、C 的正误.【详解】解:A 、∵22251213+= ,∴能构成直角三角形,故此选项不符合题意;B 、∵222a c b -=,∴222a b c =+ ,∴能构成直角三角形,故此选项不符合题意;C 、∵()()()222334x x x +≠,∴不能构成直角三角形,故此选项符合题意;D 、设∠A =2x °,∠B =5x °,∠C =3x °,3x +2x +5x =180,解得:x =18,则5x °=90°,△ABC 是直角三角形,故此选项不符合题意;故选:C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.B解析:B【解析】【分析】根据平行四边形的判定条件进行逐一判断即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AF ∥EC ,AD =BC ,∠B =∠D ,AB =CD∵AE ∥CF ,∴四边形AECF 是平行四边形,故A 不符合题意;∵BE =DF∴AF =CE ,∴四边形AECF 是平行四边形,故C 不符合题意;∵∠BAE =∠DCF ,∴△ABE ≌CDF (SAS ),∴AE =CF ,BE =DF ,∴AF =CE∴四边形AECF 是平行四边形,故D 不符合题意;由AE =CF ,一组对边平行另一组对边相等,不能判断四边形AECF 是平行四边形,故B 符合题意,故选B.【点睛】本题主要考查了平行四边形的性质与判定,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.4.C解析:C【解析】【分析】根据中位数和平均数的定义求解即可.【详解】解:由折线统计图知,第25、26个数据分别为12、18,∴这50名学生图书阅读数量的中位数为1218152+= (本),平均数为7812171815211014.850⨯+⨯+⨯+⨯=(本), 故选:C .【点睛】本题主要考查中位数和平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.B解析:B【分析】连接AC ,先根据勾股定理求出AC 的长,然后利用勾股定理的逆定理证明△ACD 为直角三角形.从而用求和的方法求面积.【详解】连接AC ,则由勾股定理得AC=5米,因为AC 2+DC 2=AD 2,所以∠ACD=90°.这块草坪的面积=S Rt △ABC +S Rt △ACD =12AB•BC+12AC•DC=12(3×4+5×12)=36米2. 故选B .【点睛】此题主要考查了勾股定理的运用及直角三角形的判定等知识点.6.B解析:B【解析】【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMO≌△CNO(ASA),∴AO=CO,∵AB=BC,∴BO⊥AC,∴∠BOC=90°,∵∠DAC=26°,∴∠BCA=∠DAC=26°,∴∠OBC=90°﹣26°=64°.故选B.【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.D解析:D【解析】【分析】由矩形性质及G为中点,可得∠AGE=2∠ADE=2∠CED=∠AED,从而可得AE=AG,由矩形性质AB=CD=3,由勾股定理可得AE,再根据直角形的性质从而可求得DF的长.【详解】∵四边形ABCD是矩形∴∠DAB=∠ABC=∠ABE=90゜,AB=CD=3,AD∥BC∵G点是DF的中点∴AG是Rt△DAF斜边DF上的中线∴AG=DG=1DF2∴∠GAD=∠ADE∴∠AGE=2∠ADE∵AD∥BC∴∠CED=∠ADE∴∠AGE=2∠CED∵∠AED=2∠CED∴∠AED=∠AGE∴AE=AG在Rt△ABE中,由勾股定理得:AE∴AG=∴2==DF AG故选:D.【点睛】本题考查了等腰三角形的判定,勾股定理,矩形的性质,直角三角形斜边上中线的性质等知识,关键是得出∠AED =∠AGE .8.B解析:B【分析】由图2知,菱形的边长为a ,对角线BD 为当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,即可求解. 【详解】解:由图2知,菱形的边长为a ,对角线AC =则对角线BD 为= 当点P 在线段AC 上运动时,y 12=AP 12⨯BD 12=,由图2知,当x =y =a ,即a 12= 解得:a 52=, 故选:B .【点睛】本题考查的是动点图象问题,涉及到函数、解直角三角形等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD中,AB=AD=4,∠A=60°,过点D作DE⊥AB于点E,则3sin60432DE AD=︒==∴菱形ABCD的面积为AB∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.A解析:2【解析】【分析】根据三角形的面积可求得两直角边的乘积的值,再根据完全平方和公式即可求得AB的长.【详解】∵∠C=90°,∴AB2=AC2+BC2,∵S△ABC=12AC•BC=1,∴AC•BC=2,∵3∴(AC+BC)2=AC2+BC2+2AC•BC=AB232,∴AB2=8,∴2故答案为2【点睛】本题考查了勾股定理,完全平方公式,熟练掌握勾股定理的内容以及完全平方公式的变形是解题的关键.12.B解析:34°【分析】由矩形的性质可得∠BAE =∠E =90°,由HL 可证Rt △ACD ≌Rt △AED ,可得∠EAD =∠CAD =28°,即可求解.【详解】解:∵四边形ABDE 是矩形,∴∠BAE =∠E =90°,∵∠ADE =62°,∴∠EAD =28°,∵AC ⊥CD ,∴∠C =∠E =90°∵AE =AC ,AD =AD ,∴Rt △ACD ≌Rt △AED (HL )∴∠EAD =∠CAD =28°,∴∠BAF =90°-28°-28°=34°,故答案为:34°.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.13.满足2(0)y kx k =+<即可,如y=-x+2,【分析】此一次函数解析式只要满足0k <且b=2即可.【详解】解:因为函数y 随x 的增大而减小,所以k <0,因为图象经过()0,2,所以b =2,故该解析式可以是:y =−x +2.【点睛】此题是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易出错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.14.【分析】由条件可求得AOB 为等边三角形,则可求得AC 的长,在Rt ABC 中,由勾股定理可求得BC 的长.【详解】120AOD ∠=︒,∴60AOB ∠=︒,四边形ABCD 为矩形∴AO OC OB==,∴AOB为等边三角形,∴2AO OC OB AB====,∴4AC=,在Rt ABC中,由勾股定理可求得BC=故答案为:【点睛】本题主要考查矩形的性质,掌握矩形的对角线相等且互相平分是解题的关键. 15.【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a =kb,b﹣a=kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb解析:3 2【分析】设C(a,﹣3a),B(b,kb),由正方形的性质AB=BC,BC//AD,可得﹣3a=kb,b﹣a =kb,求出b=﹣2a,即可求k的值.【详解】解:设C(a,﹣3a),B(b,kb),∵四边形ABCD是正方形,∴BC//x轴,∴﹣3a=kb,∵BC=AB,∴b﹣a=kb,∴b﹣a=﹣3a,∴b=﹣2a,∴﹣3a=﹣2ak,∴k=32,故填32.【点睛】本题主要考查正方形的性质及一次函数的综合运用,根据题意设出点坐标、再根据正方形的性质明确线段间的关系是解答本题的关键.16.【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED解析:【分析】证明△AED≌△FDC可得 ED=CD,据此列方程解即可.【详解】解:由题意可知AD=BC=CF, ∠AED=∠CDF, ∠A=∠CFD=90°,所以△AED≌△FDC,所以ED=CD,设AE=x,则x²+3²=(x+1) ²,解得x=4,所以CD=5.故答案是:5.【点睛】本题考查了矩形的性质、三角形全等的判定和性质以及勾股定理,由折叠得到相应的数量关系从而证明三角形全等是解题关键.三、解答题17.(1);(2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1)()×;解析:(1)2)2.【分析】(1)利用分配率进行二次根式的乘法运算,再化简即可求值;(2)先根据二次根式的除法和乘法公式进行化简,在进行二次根式加减即可求解.【详解】解:(1(26=2+=2.【点睛】本题考查了二次根式的运算,熟知二次根式的加减乘除运算法则,并正确计算是解题关键.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF 为等腰三角形, ∵70km ED =,∴EF =140km ,∵台风的速度为20km/h ,∴140÷20=7h ,∴台风影响该海港持续的时间有7h .【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方解析:(1)矩形,正方形;(2)见解析【解析】【分析】(1)根据勾股四边形的定义即可求解;(2)由勾股定理可知可知四边形OAMB对角线为5,据此即可作图.【详解】解:(1)由勾股四边形的定义矩形、正方形都满足一组相邻两边的平方和等于一条对角线的平方,故答案为:矩形,正方形;(2)如图,证明:∵∠AOB=90°,∴222+=,OA OB AB∴四边形OAMB为勾股四边形,由勾股定理得,22OM+345∴AB =OM ,∴四边形OAMB 都是勾股四边形,符合题意.【点睛】本题为新定义问题,考查了勾股定理等知识,矩形、正方形的性质,熟知勾股定理,理解勾股四边形的定义是解题关键.20.(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE=BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE=OF ,OB=OD ,然后证OM=ON 解析:(1)见解析;(2)见解析【分析】(1)连接EF 交MN 于O ,证△ADE ≌△CBF (ASA ),得DE =BF ,再证DE ∥BF ,则四边形BEDF 是平行四边形,得OE =OF ,OB =OD ,然后证OM =ON ,即可得出结论;(2)由菱形的性质得EF ⊥MN ,由(1)得四边形BEDF 是平行四边形,即可得出结论.【详解】证明:(1)连接EF 交MN 于O ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD =BC ,AD ∥BC ,∴∠ADB =∠DBC ,∵DE 平分∠ADB ,BF 平分∠DBC ,∴∠ADE =∠EDB =∠CBF =∠FBD ,在△ADE 和△CBF 中,A C AD BCADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE ≌△CBF (ASA ),∴DE =BF ,∵∠EDB =∠FBD ,∴DE ∥BF ,∴四边形BEDF 是平行四边形,∴OE =OF ,OB =OD ,∵BM =DN ,∴OB -BM =OD -DN ,即OM =ON ,∴四边形EMFN 是平行四边形;(2)∵四边形EMFN 是菱形,∴EF ⊥MN ,由(1)得:四边形BEDF 是平行四边形,∴平行四边形BEDF 是菱形.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的平对于性质等知识;熟练掌握菱形的判定与性质,证明△ADE≌△CBF是解题的关键,属于中考常考题型.21.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所解析:(1)﹣i,1,20221i ii--;(2)﹣i﹣6;(32222(24)x a x b+-+25.【解析】【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.【详解】(1)i3=i2•i=﹣1×i=﹣i,i4=i2•i2=﹣1×(﹣1)=1,设S=i+i2+i3+ (i2021)iS=i2+i3+…+i2021+i2022,∴(1﹣i)S=i﹣i2022,∴S=20221i ii--,故答案为﹣i,1,20221i ii--;(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)=3﹣4i+3i﹣4i2﹣(4﹣9i2)=3﹣i+4﹣4﹣9=﹣i﹣6;(3)a +bi =2543i -=25(43)(43)(43)i i i +-+=10075169i ++=4+3i , ∴a =4,b =3,x ,0)到点A (0,4),B (24,3)的最小距离,∵点A (0,4)关于x 轴对称的点为A '(0,﹣4),连接A 'B 即为最短距离,∴A 'B 25,25.【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.22.(1)y1=15x+30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y2与x 之间的函数关系式,将x=8分别代入y1、y2关于x 的函数解析式,比较即解析:(1)y 1=15x +30;(2)选择方案一所需费用更少,理由见解析【分析】(1)利用待定系数法求解即可;(2)求出y 2与x 之间的函数关系式,将x =8分别代入y 1、y 2关于x 的函数解析式,比较即可.【详解】解:(1)根据题意,得:138430k b b +=⎧⎨=⎩,解得:11830k b =⎧⎨=⎩, ∴方案一所需费用y 1与x 之间的函数关系式为y 1=18x +30,∴k 1=18,b =30;(2)∵打折前的每次游泳费用为18÷0.6=30(元),∴k 2=30×0.8=24;∴y 2=24x ,当游泳8次时,选择方案一所需费用:y 1=18×8+30=174(元),选择方案二所需费用:y 2=24×8=192(元),∵174<192,∴选择方案一所需费用更少.【点睛】本题考查了一次函数的应用,解题的关键是理解两种优惠活动方案,求出y 1、y 2关于x 的函数解析式.23.(1)y=-x+6;(2)①;②,或或,【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l2的函数解析式;(2)①将点D (-2,m )代入y=x+6中,求出D (-2,4),如图2解析:(1)y =-x +6;(2)①422+;②1213(23G -,313)-或2(2,313)G -或3313(22G +,313)- 【分析】(1)先求出点A ,B 的坐标,再运用待定系数法求出直线直线l 2的函数解析式;(2)①将点D (-2,m )代入y =x +6中,求出D (-2,4),如图2,作∠DHF =45°,利用AAS 证明△ADE ≌△HFD ,再运用等腰直角三角形性质即可求出答案;②将D (-1,n )代入y =x +6中,得D (-1,5),过D 作DM ⊥x 轴于M ,作FN ⊥DM 于N ,如图3,利用AAS 可证得△FDN ≌△DEM ,进而得出F (4,6),再根据∠DGF =∠DGO 分类讨论即可.【详解】解:(1)6y x =+交x 轴于点A ,交y 轴于点B ,(6,0)A ∴-,(0,6)B ,2l 与1l 关于y 轴对称,)0(6,C ∴,设直线2l 为:y kx b =+,将B 、C 坐标代入得606k b b +=⎧⎨=⎩,解得16k b =-⎧⎨=⎩, ∴直线2l 的函数解析式为:6y x =-+;(2)①将点(2,)D m -代入6y x =+中,得:26m -+=,解得:4m =,(2,4)D ∴-,如图2,作45DHF ∠=︒,6OA OB ==,45EAD EDF DHF ∴∠=∠=∠=︒,135AED ADE ∴∠+∠=︒,135ADE HDF ∠+∠=︒,AED HDF ∴∠=∠,在ADE ∆和HFD ∆中,EAD DHF AED HDF DE FD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE HFD AAS ∴∆≅∆, 22(62)442HF AD ∴==-++=,AE HD =,又6OA OB OC ===,90AOB COB ∠=∠=︒,ABO ∴∆和COB ∆均为等腰直角三角形,45ABO CBO ∴∠=∠=︒,90ABC ∴∠=︒,18090HBF ABC ∴∠=︒-∠=︒,BFH ∴∆是等腰直角三角形,242BH FH ∴==, 62AB =,62442422AE HD AB BH AD ∴==+-=+-=+.②将(1,)D n -代入6y x =+中,得:165n =-+=,(1,5)D ∴-,则5DM =,1EM =,过D 作DM x ⊥轴于M ,作FN DM ⊥于N ,如图3,DE DF =,90EDF DME FND ∠=∠=∠=︒,90MDE FDN ∴∠+∠=︒,90MDE DEM ∠+∠=︒,FDN DEM ∴∠=∠,在FDN ∆和DEM ∆中,FND DME FDN DEM DF ED ∠=∠⎧⎪∠=∠⎨⎪=⎩, FDN DEM ∴∆≅∆()AAS ,5FN DM ∴==,1DN EM ==,514BF FN BN ∴=-=-=,516EB MN DM DN ====+=,(4,6)F ∴,当点F 、O 、1G 三点共线时,如图3,11DG O DG F ∠=∠,设直线EF 的解析式为y mx =,(4,6)F ,46m ∴=, 解得:32m =, ∴直线EF 的解析式为32y x =, 当33132x =-时,21323x =-, 1213(23G ∴-,313)-; 如图4,连接DG 2,FG 2,过点D 作DM ⊥OG 2,DN ⊥FG 2,∵22DG F DG O ∠=∠,∴DM =DN ,又DO =DF ,∴2Rt DG M Rt DFN ≅△△(HL ),∴∠ODM =∠FDN ,又∠ODN +∠FDN =90°,∴∠ODM +∠ODN =90°,即∠MDN =90°,∴四边形DMG 2N 是正方形,∴∠OG 2F =90°,设2(,313)G a ,22290FG O DG O DG F ∠=∠+∠=︒,22222G O G F OF ∴+=,222222(313)(4)(3136)46a a ∴++-+=+,解得:122a a ==,2(2,313)G ∴;当3DG 平分3OG F ∠时,如图5,DO DF =,33DG O DG F ∠=∠,33OG FG ∴=,又33DG DG =,33()DOG DFG SSS ∴∆≅∆,设OF 与3DG 交于点H ,OH FH ∴=,(0,0)O ,(4,6)F ,(2,3)H ∴,设直线DG 解析式为11y k x b =+,(1,5)D -,()2,3H ,∴1111523k b k b -+=⎧⎨+=⎩, 解得:1123133k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DG 解析式为21333y x =-+, 联立方程组21333313y x y ⎧=-+⎪⎨⎪=⎩, 解得:3132313x y ⎧=⎪⎨⎪=⎩ 3313(2G ∴,313); 综上所述,符合条件的G 的坐标为1213(2G ,313)或2(2,313)G 或3313(2G ,313).【点睛】本题是一次函数综合题,考查了运用待定系数法求一次函数解析式,求一次函数图象与坐标轴交点坐标,利用解方程组求两直线交点坐标,等腰直角三角形判定和性质,全等三角形判定和性质,勾股定理等,添加辅助线构造全等三角形,运用分类讨论思想和数形结合思想是解题关键.24.(1);(2)点P 的坐标为(,)或(,);(3)的最小值为;点N 的坐标为(,).【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线解析:(1)122y x =-+;(2)点P 的坐标为(163,43)或(83,43-);(3)BM MN NC ++的最小值为6N 的坐标为(172,711). 【解析】【分析】(1)直接利用待定系数法,即可求出直线的解析式;(2)根据题意,先求出点C 的坐标,然后求出直线AC 的解析式,由3ABC ABP S S =,得到3AC AP =,再分别求出AC 和AP 的长度,即可求出点P 的坐标;(3)根据题意,6MN =为定值,在图中找出一点B ',使得B N BM '=,即点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,此时求出B C B N NC BM NC ''=+=+,即可得到答案.【详解】解:(1)设直线AB 为y kx b =+,把点()4,0A 、()0,2B ,代入,则402k b b +=⎧⎨=⎩,解得:122k b ⎧=-⎪⎨⎪=⎩, ∴122y x =-+; (2)∵线段4OA OC ==,且点C 在y 轴负半轴上,∴点C 的坐标为(0,-4),∵点A 为(4,0),∴直线AC 的解析式为:4y x =-;∵点B 到直线AC 的距离就是△ABC 和△ABP 的高,∴△ABC 和△ABP 的高相同,∵3ABC ABP SS =, ∴11322AC h AP h ••=⨯••, ∴3AC AP =,∵AC ==∴133AP =⨯, ∵点P 在直线AC 上,则设点P 为(x ,x -4),∴2242(4)(4)243AP x x x =-+-=•-=, ∴443x -=, ∴163x =或83x =, ∴点P 的坐标为(163,43)或(83,43-); (3)根据题意,∵点B 与点M 的水平距离为52, ∴在点N 的右边水平距离为52处作直线11x =,如图:令点B '为(11,2),此时有B N BM '=,∵6MN =, ∴66BM MN NC BM NC B N NC '++=++=++,∴当点B '、N 、C 三点共线时,使得BM MN NC ++有最小值,最小值为:66BM MN NC B N NC B C ''++=++=+;∵点B '(11,2),点C 为(0,-4),∴直线B C '的解析式为:6411y x =-, 2211(24)157B C '++∴BM MN NC ++有最小值为:66157B C '+=+∵点N的横坐标为:517622+=,∴点N的纵坐标为:6177411211y=⨯-=,∴点N的坐标为:(172,711).【点睛】本题考查了一次函数的性质,利用勾股定理求两点之间的距离,最短路径问题,坐标与图形,解题的关键是熟练掌握一次函数的图形和性质,正确找出使得线段之和最小时的临界点,注意运用数形结合的思想进行解题.25.(1)见详解;(2)【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,解析:(1)见详解;(2)722 x=-【分析】(1)连接MN,由勾股定理求出AC=5,证出四边形ABNM是矩形,得MN=AB=3,证△AME≌△CNF(SAS),得出EM=FN,∠AEM=∠CFN,证EM∥FN,得四边形EMFN是平行四边形,求出MN=EF,即可得出结论;(2)连接MN,作MH⊥BC于H,则MH=AB=3,BH=AM=x,得HN=BC-BH-CN=4-2x,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt△MHN中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠B=90°,∴∠EAM=∠FCN,2222345AB BC+=+,∵M,N分别是AD,BC的中点,∴AM=DM=BN=CN,AM∥BN,∴四边形ABNM是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72, ∵0<x <2,∴x=72- 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键. 26.(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点解析:(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解; ②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解.【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF == , 6OD = ,3OE = ,3OF = ,∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ , 解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上, ∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a +=, ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册培优练习题
一、选择题(每小题3分,共21分)
1.在平面直角坐标系中,点(-1,2)所在的象限是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2、如果从一卷粗细均匀的电线上截取1米长电线,称得它的质量为a 克,再称得剩余电线的质量为b 克,那么原来这卷电线的总长是 ( )
A 、1b a + 米
B 、(b a +1)米
C 、(a b a ++1)米
D 、(a
b +1)米
3、平面内第四象限有一点,它到x 轴的距离为4,它到y 轴的距离为3,则它的坐标为( )
A. ()3,4-
B. ()3,4-
C. ()4,3-
D. ()4,3-
4、如图,在直角坐标系中,△OBC 的顶点O(0,0),B(-6,0),且∠OCB=90°,OC=BC ,
则点C 关于y 轴对称的点的坐标是( )
A 、(3,3)
B 、(-3,3)
C 、(-3,-3)
D 、(18,18)
5、若点在第四象限,则m 的取值范围为( )
A 、-3<m <1
B 、m >1
C 、m <-3
D 、m >-3
6、在平面直角坐标系中一点A 到x 轴的距离为0,到y 轴的距离为1,则A 点的坐标为
( )
A 、(0,1)或(0 ,-1)
B 、(0,1)或(1,0)
C 、(1,0)或(-1,0)
D 、(-1,0)或(0,-1)
7. 直角三角形两直角边长为a ,b ,斜边上的高为h ,则下列式子总能成立的是
( )
A. 2b ab =
B. 2222h b a =+
C. h b a 111=+
D. 222111h b a =+
8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧在第二象限交于点
P .若点P 的坐标为(2a ,1b +),则a 与b 的数量关系为( )
A .a b =
B .21a b +=-
C .21a b -=
D .21a b +=
二、填空题(每小题3分,共21分)
9.点P (2,3)关于原点对称的点的坐标是__ ___;
10、若关于x 的方程2222x m x x ++=--有增根,则m 的值是__ ___;
11、有一段斜坡,小王上坡的速度为1v ,下坡的速度为2v ,则小王往返这段斜坡的平均速度
为 ;
12.已知;115,
a b -=则2322a ab b a ab b +---的值是 .
13.关于x 的分式方程31
1x a x x --=-无解,则a 的值为
14、实验表明,人体内某种细胞的形状可近似地看作球状,它的直径为0.00000156,
则这个细胞的半用科学计数法可以表示为 .
15、一只跳蚤在第一象限及x 轴、y 轴上跳动,
在第一秒钟,它从原点跳动到(0,1),然后接
着按图中箭头所示方向跳动[即(0,0)→(0,1)
→(1,1) →(1,0 )→…],且每秒跳动一个
单位,那么第35秒时跳蚤所在位置的坐标是
三、解答题(共75分)
16.计算(10分):
(1)-x 21y x +1·()y x x y x --+2 (2)1
203122005-⎪⎭⎫ ⎝⎛+-
17.先化简,再求值(8分)
221,21111
x x x x x x ⎛⎫-÷=- ⎪-+-⎝⎭其中
18解方程(每题6分,共12分)
(1) 28311
1x x x ++=-- (2)22223-=---x x x x
19、(每问2分,共8分)周末,小李8时骑自行车从家里出发,到野外郊游,
16时回到家里.他离开家后的距离S (千米)与时间t (时)的关系可以用图
中的曲线表示.根据这个图象回答下列问题:
(1)小李到达离家最远的地方是什么时间?
(2)小李何时第一次休息?
(3)10时到13时,小李骑了多少千米?
(4)返回时,小李的平均车速是多少?
20、(8分)在平面直角坐标系中,一蚂蚁从原点O
出发,按向右、向上、向右、向下的方
向移动,每次移动一个单位,其行走路
线如图所示.则:
(1)点P7的坐标是,
(2)点P2014的坐标是.
21、(9分)如图所示,已知等腰直角三角形ABC的直角边长与正方形DEFG的边长均为8
cm,EF与AC在同一条直线上,开始时点A与点F重合,让三角形ABC向左移动,最后点A
与点E重合.
(1)试写出两图形重叠部分的面积 y(cm2)与线段AF的长度x(cm)之间的函数关系式. (2)当点A向左移动2 cm时,重叠部分
的面积是多少?
22、(10分)已知有两人分别骑自行车和摩托车沿着相同的路线从
甲地到乙地去,下图反映的是这两个人行驶过程中时间和路程的
关系,请根据图象回答
下列问题:
(1)甲地与乙地相距千米?(3分)
(2)两个人分别用了几小时才到达乙地?(2分)(3)•先到达了乙地?
早到多长时间?(2分)
(4)求摩托车行驶的平均速度.(3分)
23.P1(x1,y1),P2(x2,y2)是平面直角坐标系中的任意
两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的“直角距
离”,记作d(P1,P2).
(1)令P0(2,﹣4),O为坐标原点,则d(O,P0)
=;
(2)已知Q(2,1),动点P(x,y)满足d(Q,P)=3,
且x、y均为整数.
①满足条件的点P有多少个?
②若点P在直线y=3x上,请写出符合条件的点P的坐标.( 10分)。

相关文档
最新文档