列管式换热器的工艺设计

合集下载

列管式换热器设计步骤

列管式换热器设计步骤

列管式换热器设计步骤1.确定换热要求:首先确定需要处理的流体类型、温度、流量和所需的换热效率。

这些参数将指导后续设计过程。

2.选择适当的管壳材料:根据流体的特性和工作温度范围,选择合适的材料来制造管壳,确保其耐腐蚀性和耐高温性。

3.确定热负荷和传热系数:计算需要传递的热负荷,并根据传热系数的公式计算出换热器所需的传热面积。

4.确定流体模式和换热方式:根据流体的性质和流量,确定流体在换热器中的流动模式(并行流、逆流或交叉流)。

此外,还需要确定热量传递的方式(对流、辐射或对流辐射耦合)。

5.确定管束布局:根据热负荷和流体流量,确定管束的布局和排列方式。

典型的布局包括单排管束、多排管束、螺旋管束等。

6.计算管壳侧传热系数:根据流体模式和管壳的几何形状,通过经验公式或计算方法计算出管壳侧的传热系数。

7.设计管束:根据换热器的尺寸和传热面积,设计合适的管束。

这涉及到确定管道的直径、长度和布局,以及管板的尺寸和孔眼的布置。

8.选择适当的传热介质:根据流体类型和工况要求,选择合适的传热介质,例如水、蒸汽、空气或其他流体。

根据传热介质的性质,确定其流速和温度范围。

9.设计支承和固定方式:确定适当的支承和固定方式,以确保换热器的稳定性和可靠性。

这包括支架的设计、支柱的安装和管束的固定方法。

10.进行热力学分析:通过进行热力学分析,确定换热过程中的压力损失和流体流速。

这将有助于确定流体的流动行为和整个热交换系统的性能。

11.进行结构强度分析:进行结构强度分析,确保换热器能够承受压力和温度的影响,并满足相关的安全标准和规范。

12.完善设计并制作图纸:根据上述步骤和计算结果,对列管式换热器的设计进行改进和完善,并制作相应的图纸和技术文件。

13.进行设备加工和制造:根据设计图纸,进行设备的加工和制造。

这包括制作管子、管板、支管、支撑件等组件,并对其进行加工和组装。

14.进行设备安装与调试:将制造好的换热器安装到系统中,并进行相关的调试和测试,以确保其正常运行。

化工原理课程设计——列管式换热器的设计

化工原理课程设计——列管式换热器的设计

XX大学XX学院化工原理课程设计班级姓名学号指导教师 ____二零一X年X月X日化工原理课程设计任务书皖西学院生物与制药工程学院课程设计说明书题目:水冷却煤油列管式换热器的设计课程:化工原理系(部):专业:班级:学生姓名:学号:指导教师:完成日期:课程设计说明书目录第一章设计资料一、设计简介 (5)二、设计任务、参数和质量标准 (7)第二章工艺设计与说明一、工艺流程图 (8)二、工艺说明 (8)第三章物料衡算、能量衡算与设备选型一、物料衡算 (9)二、能量衡算 (11)三、主要设备选型 (13)第四章结论与分析结论与分析 (15)第五章设计总结设计总结 (17)参考文献 (17)第一章设计资料一、设计简介换热器是许多工业生产部门的通用工艺设备,尤其是石油、化工生产应用更为广泛。

在化工厂中换热器可用作加热器、冷却器、冷凝器、蒸发器和再沸器等。

进行换热器的设计,首先是根据工艺要求选用适当的类型,同时计算完成给定生产任务所需的传热面积,并确定换热器的工艺尺寸。

根据操作条件设计出符合条件的换热器,设计方案的确定包括换热器形式的选择,加热剂或冷却剂的选择,流体流入换热器的空间以及流体速度的选择。

本课程设计是根据任务给出的操作目的及条件、任务,合理设计适当的换热器类型,以满足生产要求。

1、固定板式换热器(代号G)设备型号内容有:壳体公称直径(mm),管程数,公称压力(×9.81×104 Pa),公称换热面积(m2),如G800I-6-100型换热器,G表示固定板式列管换热器,壳体公称直径为800mm,管程数为1,公称压力为6×9.81×104 Pa,换热面积为100m22、浮头式列管换热器(代号F)设备型号内容有:壳体公称直径(mm),传热面积(m2),承受压力(×9.81×104 Pa),管程数,如F A600-13-16-2型换热器,F代表浮头是列管换热器,B表示换热器为管径错误!未找到引用源。

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。

本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。

一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。

它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。

二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。

2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。

3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。

4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。

5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。

6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。

7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。

8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。

三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。

2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。

3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。

4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。

5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。

综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。

设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。

同时,还需要计算换热器的传热系数、压降和热力学参数等。

列管式换热器工艺设计

列管式换热器工艺设计

列管式换热器工艺设计列管式换热器是一种常用的热交换设备,广泛应用于化工、石油、能源、医药等领域。

其工艺设计涉及到换热区的结构和管束布局、进出口管道设计、冷却介质的选择、换热器的尺寸计算等方面。

本文将对列管式换热器的工艺设计进行详细介绍。

首先,在进行列管式换热器的工艺设计时,需要确定换热器的工作参数。

包括流体的流量、进出口温度、换热效率等。

这些参数可以根据工艺流程需要和热力计算来确定。

然后需要确定换热器的结构和管束布局。

列管式换热器一般由壳体和管束组成,壳体内有多个并联的管束,通过壳体和管束间的两端盖固定。

在确定结构和布局时,需要考虑流体的流动方向、流动形式、管道排列方式等。

通常有以下几种管束布局形式:平行流、逆流和混合流。

根据换热区的结构和管束布局,可以进行进出口管道的设计。

进出口管道应考虑流体的流量、流速、压降等参数。

一般采用接近等径管道,并且尽量减小进出口管道对管束的阻力影响。

在进行换热器工艺设计时,还需要确定冷却介质的选择。

冷却介质的选择对换热器的性能和使用寿命有着重要影响。

应根据工艺要求、介质的物化性质和成本等因素进行选择。

最后,需要进行换热器的尺寸计算。

换热器的尺寸是根据工艺参数和热力计算结果来确定的。

一般包括换热面积、管道长度、管径等。

换热面积的计算可以通过换热器的热负荷、进出口温度差和换热系数来确定。

综上所述,列管式换热器的工艺设计涉及到换热区的结构和管束布局、进出口管道设计、冷却介质的选择、换热器的尺寸计算等方面。

通过合理设计,可以提高换热器的热交换效率,满足工艺需要,并确保换热器的安全可靠运行。

课程设计,列管式换热器设计

课程设计,列管式换热器设计

设计(论文)题目:列管式换热器的设计目录1 前言 (3)2 设计任务及操作条件 (3)3 列管式换热器的工艺设计 (3)换热器设计方案的确定 (3)物性数据的确定 (4)平均温差的计算 (4)传热总系数K的确定 (4)传热面积A的确定 (6)主要工艺尺寸的确定 (6)管子的选用 (6)管子总数n和管程数Np的确定 (6)校核平均温度差 t m及壳程数Ns (7)传热管排列和分程方法 (7)壳体内径 (7)折流板······························· (7)核算换热器传热能力及流体阻力 (7)热量核算 (7)换热器压降校核 (9)4 列管式换热器机械设计 (10)壳体壁厚的计算 (10)换热器封头选择 (10)其他部件 (11)5 课程设计评价 (11)可靠性评价 (11)个人感想 (11)6 参考文献 (11)附表换热器主要结构尺寸和计算结果 (12)1 前言换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。

在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

列管式换热器工业上使用最广泛的一种换热设备。

其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。

列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。

列管式换热器的设计

列管式换热器的设计
定性温度 ℃
物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器的设计

列管式换热器的设计

列管式换热器的设计列管式换热器的应用已有很悠久的历史。

现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。

为此本章对这两类换热器的工艺设计进行介绍。

列管式换热器的设计资料较完善,已有系列化标准。

目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。

列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。

其中以热力设计最为重要。

不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。

热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。

流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。

当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。

结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。

在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。

对于在高温高压下工作的换热器,更不能忽视这方面的工作。

这是保证安全生产的前提。

在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。

列管式换热器的工艺设计主要包括以下内容:①根据换热任务和有关要求确定设计方案;②初步确定换热器的结构和尺寸;③核算换热器的传热面积和流体阻力;④确定换热器的工艺结构。

1.1设计方案的确定1.1.1换热器类型的选择(1)固定管板式换热器这类换热器如图2-1(a)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列管式换热器的工艺设计
1. 选择合适的管束布置方式。

常见的管束布置方式有并列布置、交叉布置、三角形布置等。

不同的布置方式会影响换热器的传热效率和压降。

在设计中需要根据具体的工艺要求和流
体性质选择合适的管束布置方式。

2. 确定换热器的传热面积。

传热面积是影响换热器传热效果的重要参数。

在工艺设计中需
要根据需要传热的热负荷和流体的性质确定合适的传热面积,从而实现换热效果的最优化。

3. 确定换热介质的流体参数。

在工艺设计中需要考虑换热介质的流体参数,包括流体的流速、流量、温度、压力等。

这些参数将影响换热器的设计工况和传热效果。

4. 确定换热器材质和结构。

对于换热介质具有腐蚀性的情况,需要选择耐腐蚀的材质,如
不锈钢、合金钢等。

同时还需考虑换热器的结构设计,包括管束的支撑、固定、热胀冷缩
等问题。

5. 考虑换热器的清洗和维护问题。

在工艺设计中需要考虑换热器的清洗和维护问题,包括
布置清洗口、维护通道等,以便于日常的维护和保养。

综上所述,列管式换热器的工艺设计需要考虑多个方面的因素,涉及流体力学、传热学、
材料科学等多个领域的知识。

只有综合考虑这些因素,才能实现换热器的高效、可靠和经
济运行。

列管式换热器是一种重要的传热设备,其设计涉及多个方面的工程和科学原理。

在工艺设计中,除了考虑传热面积、布置方式、介质参数、材质和结构等方面,还需要考
虑换热器的热损失、压降、噪声和振动等问题。

这些因素都对换热器的正常运行和性能有
重要影响,因此在工艺设计中需要进行充分考虑。

首先,要合理设计换热器的传热面积。

传热面积是换热器的关键设计参数,直接影响着换
热器的传热效果。

如果传热面积过小,会造成传热不足,影响换热效率;而如果传热面积
过大,会增加设备成本和占地面积。

因此,在工艺设计中需要根据具体的工艺要求和传热
性能,合理确定换热器的传热面积。

其次,布置方式的选择对换热器的传热效果和压降有重要影响。

不同的布置方式会影响介
质在管束中的流动状态,从而影响换热器的传热效果和压降。

并列布置可以提高传热效率,但会增加压降;交叉布置可以降低压降,但传热效率较低。

在工艺设计中需要根据具体情
况综合考虑,并选择最合适的布置方式。

换热器的介质参数也是工艺设计中需要重点考虑的因素。

不同的介质具有不同的流动性质、传热特性和热物性。

在工艺设计中需要充分了解介质的性质,包括流速、温度、压力等参数,以便合理设计换热器的尺寸和工况。

此外,对于换热介质具有腐蚀性的情况,需要选择耐腐蚀的材质,在设计中需要充分考虑
介质的化学性质和腐蚀问题,选用合适的材质来保证设备的长期稳定运行。

换热器的结构设计也是工艺设计中需要重点考虑的问题。

合理的结构设计可以保证换热器
的牢固稳定,减少热胀冷缩对设备造成的影响,同时还要考虑换热器的清洗和维护问题,
设计合适的清洗口和维护通道,方便日常的维护和保养。

在工艺设计中,还需要考虑列管式换热器的能耗、热损失和噪声问题。

合理的设计可以降
低设备的能耗和热损失,减少对环境的影响。

对于一些对噪声要求较高的场合,还需要采
取相应的措施来降低换热器的噪声和振动水平。

换热器的工艺设计是一个复杂的系统工程,需要涉及多个领域的知识和技术,包括传热学、流体力学、材料科学、工程热力学等。

只有综合考虑这些因素,才能设计出性能优越、稳
定可靠、经济高效的列管式换热器。

在实际工程中,换热器的工艺设计需要根据具体的工艺要求和环境条件,结合现代计算机
辅助设计技术,进行系统的仿真分析和优化设计。

这将有助于实现换热器的最佳设计和性能。

总的来说,列管式换热器的工艺设计需要全面考虑多个方面的因素,充分理解介质性质、
传热特性和工程要求,灵活运用不同的设计方法和技术手段,从而实现换热器的高效、可
靠和经济运行。

只有在工艺设计中做到全面考虑,才能为企业的生产提供更好的换热解决
方案。

相关文档
最新文档