最新版结构力学精品课件 内力包括弯矩、剪力和轴力
合集下载
第四章梁的内力剪力和弯矩PPT课件

M
M图(kN·m)
(c)
28
第28页/共59页
29
例题 4-8 解: 1. 校核剪力图
该梁的荷载及约束均与跨中对称,可得FA和FB为
y q
FA
1
F FB A
FB
100 2 2
100
kN
A
1m C
E 2m
D
B
AC段和DB段内无荷载
FS 100 kN
4m
(a) (b) +
FS 图
作用,剪力图均为水平线。
ql
l/2
C l/2
Bx
FB
1 8
ql
2. 分段建立剪力方程和弯矩方程
AC段:
Q( x) 3 ql qx 8
(0 x l ) 2
M ( x) 3 qlx 1 qx2 (0 x l )
8
2
2
CB段:
(以x截面右边
为分离)
Q( x) 1 ql 8
(l x l) 2
M( x) 1 ql(l x) ( l x l)
③外伸梁(overhanging beam)
第6页/共59页
§4-2 梁的内力—剪力和弯矩
截面法求梁的内力
a
F11
m
例:求截面1-1上的内力。 A
B
解:(1)确定支反力RA和RB
RA
x1
(2)取左段梁为脱离体:
RB
F1
Fy 0 : RA F1 Q 0
CM
Q RA F1
RA
MC 0 :
M F1(x a) RA x 0
M RA x F1(x a)
x
Q
对截面形心C取矩!
《轴力剪力弯矩》课件

剪力:平行于截面的力,用于描述物体在剪切方向受到的力
弯矩:垂直于截面的力矩,用于描述物体在弯曲方向受到的力矩 关系:轴力、剪力和弯矩是相互关联的,它们共同作用于物体,影响物 体的变形和破坏。
Part Six
轴力剪力弯矩的应 用
在工程结构中的应用
轴力:用于计算梁、柱等构件的承载能力 剪力:用于计算梁、板等构件的抗剪强度 弯矩:用于计算梁、柱等构件的抗弯强度 轴力剪力弯矩的综合应用:用于计算复杂结构的承载能力和稳定性
剪力符号:F
剪力方向:垂直于截面
剪力作用:使物体发生剪 切变形
Part Four
弯矩
定义
弯矩是物体受力后产生的一种内力,通常用M表示 弯矩的大小与力的大小、力的方向、力的作用点有关 弯矩的方向与力的方向垂直,与力的作用点所在的平面平行 弯矩的作用效果是使物体产生弯曲变形
计算方法
截面法:将结构简化为平面截面,计算截面上的弯矩 积分法:将结构简化为连续体,通过积分计算弯矩 矩阵法:将结构简化为有限元模型,通过矩阵计算弯矩 数值法:通过数值模拟计算弯矩,如有限元分析、边界元分析等
符号规定
弯矩:表示弯 曲变形时截面
上的内力
符号:M,表 示弯矩
单位:牛顿·米 (N·m)
计算公式: M=F*L,其中 F为作用力,L
为力臂长度
单位
弯矩的单位是牛顿·米(N·m) 弯矩是衡量物体弯曲程度的物理量 弯矩的大小与物体的材料、截面形状、受力情况等因素有关 弯矩的计算公式为:弯矩=力×力臂
应变:单 位为m/m (米/米)
弹性模量: 单位为Pa (帕斯卡)
Part Three
剪力
定义
剪力:物体受到的平行于其表面的力 剪力方向:与受力面垂直 剪力作用:使物体发生剪切变形 剪力计算:通过剪力公式进行计算,如F=P*L
弯矩:垂直于截面的力矩,用于描述物体在弯曲方向受到的力矩 关系:轴力、剪力和弯矩是相互关联的,它们共同作用于物体,影响物 体的变形和破坏。
Part Six
轴力剪力弯矩的应 用
在工程结构中的应用
轴力:用于计算梁、柱等构件的承载能力 剪力:用于计算梁、板等构件的抗剪强度 弯矩:用于计算梁、柱等构件的抗弯强度 轴力剪力弯矩的综合应用:用于计算复杂结构的承载能力和稳定性
剪力符号:F
剪力方向:垂直于截面
剪力作用:使物体发生剪 切变形
Part Four
弯矩
定义
弯矩是物体受力后产生的一种内力,通常用M表示 弯矩的大小与力的大小、力的方向、力的作用点有关 弯矩的方向与力的方向垂直,与力的作用点所在的平面平行 弯矩的作用效果是使物体产生弯曲变形
计算方法
截面法:将结构简化为平面截面,计算截面上的弯矩 积分法:将结构简化为连续体,通过积分计算弯矩 矩阵法:将结构简化为有限元模型,通过矩阵计算弯矩 数值法:通过数值模拟计算弯矩,如有限元分析、边界元分析等
符号规定
弯矩:表示弯 曲变形时截面
上的内力
符号:M,表 示弯矩
单位:牛顿·米 (N·m)
计算公式: M=F*L,其中 F为作用力,L
为力臂长度
单位
弯矩的单位是牛顿·米(N·m) 弯矩是衡量物体弯曲程度的物理量 弯矩的大小与物体的材料、截面形状、受力情况等因素有关 弯矩的计算公式为:弯矩=力×力臂
应变:单 位为m/m (米/米)
弹性模量: 单位为Pa (帕斯卡)
Part Three
剪力
定义
剪力:物体受到的平行于其表面的力 剪力方向:与受力面垂直 剪力作用:使物体发生剪切变形 剪力计算:通过剪力公式进行计算,如F=P*L
静定结构的内力分析与计算页课件.ppt

FN
x
A
平衡:
FX 0
3. 轴力
FN F 0
FN F
轴向拉伸、压缩时,杆的内力与杆轴线重合,称为轴力,
用FN 表示。
轴力的正负规定: FN 与外法线同向,为正轴力(拉力) FN
FN FN>0
FN与外法线反向,为负轴力(压力) FN 4、 轴力图
FN FN<0
FN (x) 的图象表示。以平行于杆轴的坐标表示横截 面的位置,垂直于杆轴的另一坐标表示轴力
在截开面上相应的内力(力或力偶)代替。 ③ 平衡:对留下的部分建立平衡方。由于整体平衡的要求,对于 截开的每一部分也必须是平衡,因此,作用在每一部分上的外力 必须与截面上分布内力相平衡,组成平衡力系(此时截开面上的 内力对所留部分而言是外力)。
例如: 截面法求FN。
F
A
F
截开:
F
A F
简图
代替:
F
FC
FD
FN4
D
轴力图如右图
FD
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的 F, 轴力N 增量为正; 遇到向右的 F , 轴力N 增量为负。
8kN
5kN
3kN
[例4-2] 图示杆长为L,受分布力 q = kx 作用,方向如图, 试画出杆的轴力图。
解:x坐标向右为正,坐标原点在
杆件的轴向拉伸和压缩的力学模型
F
轴向拉伸,对应的力称为拉力。
F
轴向压缩,对应的力称为压力。
F F
二、轴向拉伸与压缩的内力
1、 内力的定义 内力指由外力作用所引起的、物体内相邻部分之间分布
内力系的合成(附加内力)。
梁的内力剪力和弯矩共61页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
梁的内力剪力和弯矩
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
Байду номын сангаас
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
结构力学ppt课件

结构力学ppt课件
目录
• 结构力学简介 • 结构力学的基本原理 • 结构分析的方法 • 结构力学的应用 • 结构力学的挑战与未来发展 • 结构力学案例分析
01
结构力学简介
什么是结构力学
01
结构力学是研究工程结构在各种外力作用下产生的响
应的一门学科。
02
它主要涉及结构的强度、刚度和稳定性等方面的分析
04
有限元法
有限元法是一种将结构分解为有限个小 的单元,并对每个单元进行力学分析的 方法。
有限元法具有适用范围广、精度较高等 优点,但也存在计算量大、需要较强的 计算机能力等缺点。
通过对所有单元的力学行为进行组合, 可以得到结构的整体力学行为。
它适用于对复杂结构进行分析,例如板 壳结构、三维实体等。
结构力学的历史与发展
结构力学起源于19世纪中叶,随着土木工程和机械工程的发展而逐渐形成。
早期的结构力学主。
目前,结构力学已经广泛应用于各个工程领域,包括建筑、桥梁、机械、航空航天等。同时,结构力学 的研究也在不断深入和发展,以适应各种复杂工程结构的需要。
案例一:桥梁的力学分析
总结词
桥梁结构是力学分析的重要案例,涉及到多种力学因素,包括静载、动载、应 力、应变等。
详细描述
桥梁的力学分析需要考虑多种因素,包括桥梁的跨度、桥墩的支撑方式、桥梁 的材料性质等。在分析过程中,需要建立力学模型,进行静载和动载测试,并 运用结构力学的基本原理进行优化设计。
案例二:航空发动机的力学设计
强度理论
01
强度理论是研究结构在外力作用下达到破坏时的强度条件的科学。
02
强度理论的基本方程包括最大正应力理论、最大剪切应力理论、形状改变比能 理论和最大拉应力理论,用于描述结构在不同外力作用下达到破坏时的条件。
目录
• 结构力学简介 • 结构力学的基本原理 • 结构分析的方法 • 结构力学的应用 • 结构力学的挑战与未来发展 • 结构力学案例分析
01
结构力学简介
什么是结构力学
01
结构力学是研究工程结构在各种外力作用下产生的响
应的一门学科。
02
它主要涉及结构的强度、刚度和稳定性等方面的分析
04
有限元法
有限元法是一种将结构分解为有限个小 的单元,并对每个单元进行力学分析的 方法。
有限元法具有适用范围广、精度较高等 优点,但也存在计算量大、需要较强的 计算机能力等缺点。
通过对所有单元的力学行为进行组合, 可以得到结构的整体力学行为。
它适用于对复杂结构进行分析,例如板 壳结构、三维实体等。
结构力学的历史与发展
结构力学起源于19世纪中叶,随着土木工程和机械工程的发展而逐渐形成。
早期的结构力学主。
目前,结构力学已经广泛应用于各个工程领域,包括建筑、桥梁、机械、航空航天等。同时,结构力学 的研究也在不断深入和发展,以适应各种复杂工程结构的需要。
案例一:桥梁的力学分析
总结词
桥梁结构是力学分析的重要案例,涉及到多种力学因素,包括静载、动载、应 力、应变等。
详细描述
桥梁的力学分析需要考虑多种因素,包括桥梁的跨度、桥墩的支撑方式、桥梁 的材料性质等。在分析过程中,需要建立力学模型,进行静载和动载测试,并 运用结构力学的基本原理进行优化设计。
案例二:航空发动机的力学设计
强度理论
01
强度理论是研究结构在外力作用下达到破坏时的强度条件的科学。
02
强度理论的基本方程包括最大正应力理论、最大剪切应力理论、形状改变比能 理论和最大拉应力理论,用于描述结构在不同外力作用下达到破坏时的条件。
最新结构力学总结复习ppt课件

叠加法: MM 1X1M P
第八章 位移法
R11 R1P=0
r11Z1R1P=0
Z1
3FPa 2 160 EI1
r1
=
1
10
E a
I
1பைடு நூலகம்
R1 P
=-
3 16
FP a
Z1 1 4 i
4i 8i
4i
i I
2i
4
r11 8i
4i
r1
=
1
1
2
i
4i
r2
=
1
4
i
r21 0
0
8i
Z2 1 4 i 4i 8i
计算δ11的两个 弯矩图
1PM E M P d I x E 1 1 3 Iq 2 2 ll 3 4 l8 q E 4lI
11M E M IdxE 1 I l2 l2 3 l 3lE 3I
1P1X 110 可解得
3 X1 8 ql
基本未知量解得后,可利用静力平衡方程求解其他约束反 力,然后可绘制内力图。
A51 1702 148 130 63 11
9.6104弧 度
CV
5
1 10
7
(
2 3
4 .5
10
3
1 .5
1 .5 2
1 48 10 3 1 .5 2 1 .5
2
3
1 48 10 3 6 2 1 .5 )
2
3
3 .5 1 3 0 m
例 试求图示刚架在截面C处的转角,EI=5107N·m2。
M
A
A
=
Aj
S Aj S
——分配系数
Aj=1
A
第八章 位移法
R11 R1P=0
r11Z1R1P=0
Z1
3FPa 2 160 EI1
r1
=
1
10
E a
I
1பைடு நூலகம்
R1 P
=-
3 16
FP a
Z1 1 4 i
4i 8i
4i
i I
2i
4
r11 8i
4i
r1
=
1
1
2
i
4i
r2
=
1
4
i
r21 0
0
8i
Z2 1 4 i 4i 8i
计算δ11的两个 弯矩图
1PM E M P d I x E 1 1 3 Iq 2 2 ll 3 4 l8 q E 4lI
11M E M IdxE 1 I l2 l2 3 l 3lE 3I
1P1X 110 可解得
3 X1 8 ql
基本未知量解得后,可利用静力平衡方程求解其他约束反 力,然后可绘制内力图。
A51 1702 148 130 63 11
9.6104弧 度
CV
5
1 10
7
(
2 3
4 .5
10
3
1 .5
1 .5 2
1 48 10 3 1 .5 2 1 .5
2
3
1 48 10 3 6 2 1 .5 )
2
3
3 .5 1 3 0 m
例 试求图示刚架在截面C处的转角,EI=5107N·m2。
M
A
A
=
Aj
S Aj S
——分配系数
Aj=1
A
梁的内力剪力和弯矩共36页PPT

梁的内力剪力和弯矩
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
பைடு நூலகம்
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
பைடு நூலகம்
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
最新梁的内力弯矩和剪力

梁的内力弯矩和剪力
2.内力符号规定:
•剪力符号:
•弯矩符号:
+Q -Q
+M -M
内力图画法:
• 求控制截面的内力值(截面法) • 确定内力图形状(微分关系)
例: 求下列各梁的剪力弯矩图。
A
RA
Q
M
q
B
C
2a
a
RB
qa
解:(1)支反力
qa2
qa
RA
22a
4
RB
qaRA
5qa 4
(2)作剪力图、弯矩图
B
C
qa
2a 2
qa
2
a
qa 2
qa 2
q P=qa
q
A
BA
a
a
a
qa 11 qa 2 8
qa qa 2
a
4a
a
2qa
2qa
qa
qa
qa 2
2 qa 2 3
§4-6 平面刚架和曲杆的内力图
刚架:由两根或两根以上的杆件组成的并在连接处采 用刚性连接的结构。
立柱
横梁
当杆件变形时,两杆连接处保持刚 性,即角度(一般为直角)保持不 变。
X 0 3 0 k N H B 0 H B 3 0 k N ( )
M B 0 V A 6 3 0 4 2 0 6 3 0 V A 4 0 k N ( ) M A 0 V B 6 3 0 4 2 0 6 3 0 V B 8 0 k N ( )
利用 Y 0 校核
0.36
0.27
M
2.67
RB2.67kN
2.
A
RARB50 N R A
0.2m
2.内力符号规定:
•剪力符号:
•弯矩符号:
+Q -Q
+M -M
内力图画法:
• 求控制截面的内力值(截面法) • 确定内力图形状(微分关系)
例: 求下列各梁的剪力弯矩图。
A
RA
Q
M
q
B
C
2a
a
RB
qa
解:(1)支反力
qa2
qa
RA
22a
4
RB
qaRA
5qa 4
(2)作剪力图、弯矩图
B
C
qa
2a 2
qa
2
a
qa 2
qa 2
q P=qa
q
A
BA
a
a
a
qa 11 qa 2 8
qa qa 2
a
4a
a
2qa
2qa
qa
qa
qa 2
2 qa 2 3
§4-6 平面刚架和曲杆的内力图
刚架:由两根或两根以上的杆件组成的并在连接处采 用刚性连接的结构。
立柱
横梁
当杆件变形时,两杆连接处保持刚 性,即角度(一般为直角)保持不 变。
X 0 3 0 k N H B 0 H B 3 0 k N ( )
M B 0 V A 6 3 0 4 2 0 6 3 0 V A 4 0 k N ( ) M A 0 V B 6 3 0 4 2 0 6 3 0 V B 8 0 k N ( )
利用 Y 0 校核
0.36
0.27
M
2.67
RB2.67kN
2.
A
RARB50 N R A
0.2m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内力包括弯矩、剪力和轴力
1、弯矩图画在受拉纤维的那一侧 2、使隔离体顺时针旋转的剪力为正, 逆时针旋转的剪力为负 3、轴力:拉力为正,压力为负
静定梁
简支梁
单跨静定梁
外伸梁 悬臂梁 斜梁
多跨静定梁
斜简支梁
3-1 静定梁
二、多跨静定梁
多跨静定梁是工程中常见的结构,其基 本形式有以下两种:
按几何组 成规律分
画剪力图
基本部分 附属部分
基本部分
附属部分
基本部分
附属部分
基本部分
分析顺序:先附属部分,后基本部分。 荷载仅在基本部分上,只基本部分受力,附属 部分不受力; 荷载在附属部分上,除附属部分受力外,基本 部分也受力。
第一种的层次图
计算上图中多跨静定梁,先取EF梁计算,再考 虑CE梁和AC梁,这样每一步都是单跨静定梁的计算 问题。
第二种的层次图
计算上图中多跨静定梁,先从附属部分CD梁开 始,再计算AC梁和DF梁,这样每一步都是单跨静定 梁的计算问题。
多跨梁计算实例
M
E
10 4 0 FDy 40kN
MD 0
20 2 1 10 3 M DE 0 M E 10kN m
第 3 章 图
3-1
M
D
0
10 11.22 4 15 2 M DC 0 M DC 24.88kN m
M
C
0
10 11.22 2 M CA 0 M DC 32.44kN m
画剪力图
荷载为直线分布,即q为x的一次函数,剪力图为二次抛物线,弯矩图为三 次抛物线。