煤质分析方法

合集下载

煤质分析方法

煤质分析方法

煤质分析方法煤的工业分析1[煤的工业分析]煤的工业分析,又叫煤的技术分析或实用分析,是评价煤质的基本依据。

在国家标准种,煤的工业分析包括煤的水分、灰分、挥发分和固定碳等指标的测定。

通常煤的水分、灰分、挥发分和固定碳等指标的测定。

通常煤的水分、灰分、挥发分是直接测出的,而固定碳是用差减法计算出来的。

广义上讲,煤的工业分析还包括煤的全硫分和发热量的测定,又叫煤的全工业分析。

1、煤的水分煤的水分,是煤炭计价中的一个辅助指标。

煤的水分直接影响煤的使用、运输和储存。

煤的水分增加,煤中有用成分相对减少,且水分在燃烧时变成蒸汽要吸热,因而降低了煤的发热量。

煤的水分增加,还增加了无效运输,并给卸车带来了困难。

特点是冬季寒冷地区,经常发生冻车,影响卸车,影响生产,影响车皮周转,加剧了运输的紧张。

煤的水分也容易引起煤炭粘仓而减小煤仓容量,甚至发生堵仓事故。

随着矿井开采深度的增加,采掘机械化的发展和井下安全生产的加强,以及喷露洒水、煤层注水、综合防尘等措施的实施,原煤水分呈增加的趋势。

为此,煤矿除在开采设计上和开采过程中的采煤、掘进、通风和运输等各个环节上制定减少煤的水分的措施外,还应在煤的地面加工中采取措施减少煤的水分。

(1)煤中游离水和化合水煤中水分按存在形态的不同分为两类,既游离水和化合水。

游离水是以物理状态吸附在煤颗粒内部毛细管中和附着在煤颗粒表面的水分;化合水也叫结晶水,是以化合的方式同煤中矿物质结合的水。

如硫酸钙(NaSO4.2H2O)和高龄土(AL2O3.2SiO2.2H2O)中的结晶水。

游离水在105~110C的温度下经过1~2小时可蒸发掉,而结晶水通常要在200C以上才能分解析出。

煤的工业分析中只测试游离水,不测结晶水。

(2)煤的外在水分和内在水分煤的游离水分又分为外在水分和内在水分。

外在水分,是附着在煤颗粒表面的水分。

外在水分很容易在常温下的干燥空气中蒸发,蒸发到煤颗粒表面的水蒸气压与空气的湿度平衡时就不再蒸发了。

煤 质 分 析 方 法

煤 质 分 析 方 法

煤质分析方法1.灰分:把煤粉碎后称1克,放入850度的马弗炉中燃烧1小时后取出,冷却后称量(温度低煤时长)。

计算公式:灰分=(烧后总重-灰皿重)÷原煤总重×100%注:记录准确每个灰皿重量2.挥发分:把煤粉碎后称1克,放入900度的马弗炉中燃烧7分钟后取出,冷却后称量(温度时间要准确)计算公式:挥发分=(原煤重-烧后灰重)÷原煤重×100%-分析水注:记录准确每个挥发分坩埚带盖的总重3.分析水:把煤粉碎后称1克,放入145度的干燥箱中烘干30分钟后取出,冷却后称量。

计算公式:分析水=(原煤重-烘干后的煤重)÷原煤重×100%注:记录准确每个小称量瓶带盖的总重4.全水:取13mm以下的原煤10克,放入145度的干燥箱中烘干30分钟后取出,冷却后称量。

计算公式:全水=(原煤重-烘干后的煤重)÷原煤重×100%注:记录准确每个大称量瓶带盖的总重计算公式:固定碳=100-灰分-挥发分-分析水6.发热量:①分析基低位发热量焦耳/克烟煤:35860-73.7×挥发分-395.7×灰分-702×分析水+173.6焦×焦碴特性无烟煤:34814-24.7×挥发分-382.2×灰分-563×分析水②收到基低位发热量[(23×分析水+分析基低位发热量)×(100-全水)]÷(100-全水)-23×全水H=2.888+0.393×√V-0.0023×A7.焦渣特性分类:测定挥发分所得焦渣特征,按下列规定加以区分:①粉状:全部是粉末,没有相互粘着的颗粒。

②粘着:用手指轻碰即成粉末或基本上是粉末,其中较大的团块轻轻一碰即成粉末。

③弱粘结:用手指轻压即成小块。

④不熔融粘结:手指用力压才裂成小块,焦渣上表面无光泽,下表面稍有银白色光泽。

煤质分析计算公式

煤质分析计算公式

煤质分析计算公式煤质分析是煤炭品质评价的重要手段,可以通过分析煤的主要成分和特性,评估煤的燃烧性能、利用价值等。

煤质分析计算公式是进行煤质分析时使用的数学模型,用于计算煤的各项指标。

以下是一些常用的煤质分析计算公式:1.硫分计算公式:煤中硫分的含量对煤的利用具有重要影响,常用的硫分计算公式如下:硫分(%)=(烧失量(%)-挥发分(%)-固定碳(%)-灰分(%))/1002.燃烧热计算公式:燃烧热是评价煤的能量价值的重要指标,常用的燃烧热计算公式如下:Q(kcal/kg)= 80.09×固定碳(%)+336.76×挥发分(%)+26.03×灰分(%)+6.31×硫分(%)3.空气需求量计算公式:空气需求量是指煤炭燃烧所需要的空气量,常用的空气需求量计算公式如下:空气需求量(m^3/kg)=(100-挥发分(%))/ 214.灰熔化温度计算公式:灰熔化温度是指煤灰在燃烧过程中熔化的温度,常用的灰熔化温度计算公式如下:灰熔化温度(℃)=1.5×Si(%)+0.8×Fe(%)+0.5×Al(%)-0.7×CaO(%)其中,Si代表二氧化硅的质量分数,Fe代表氧化铁的质量分数,Al代表氧化铝的质量分数,CaO代表氧化钙的质量分数。

5.可磨性指数计算公式:可磨性指数是评价煤炭可磨性的指标,常用的可磨性指数计算公式如下:可磨性指数(HGI)=13+6.93×黏结组分(%)其中,黏结组分包括黏结水、玻璃体和焦油等。

6.卡伯分析公式:卡伯指数是用来评价煤炭结块性质的指标,常用的卡伯分析公式如下:卡伯指数(G)=13.6×灰分(%)+2.8×黏结指数(%)其中,灰分和黏结指数都是衡量煤炭颗粒结构以及结块性质的指标。

以上是一些常用的煤质分析计算公式,可以通过这些公式来评价煤炭的品质和性能,为煤炭的利用提供参考。

煤质分析

煤质分析

分类检测项目检测方法检测标准操作步骤水分干燥称重法GB 212-2001方法A:通氮干燥法称取一定量的空气干燥煤样,置于105-110℃干燥箱中。

在燥氮气流中干燥到质量恒定。

然后根据煤样的质量损失计出水分的质量分数方法B:空气干燥法称取一定量的空气干燥煤样,置于105-110℃干燥箱内,于气流中干燥到质量恒定。

根据煤样质量损失计算出水分的量分数灰分高温灰化法GB 212-20011. 缓慢灰化法称取一定量的空气干燥煤样,放人马弗炉中,以一定的速加热到(815士10)℃ ,灰化并灼烧到质量恒定。

以残留物质量占煤样质量的百分数作为煤样的灰分。

2. 快速灰化法方法A:将装有煤样的灰皿放在预先加热至(815士10)℃的灰快速测定仪的传送带上,煤样自动送人仪器内完全灰化,后送出。

以残留物的质量占煤样质量的百分数作为煤样的分方法B:将装有煤样的灰皿由炉外逐渐送人预先加热至(815110)℃的马弗炉中灰化并灼烧至质量恒定以残留物的量占煤样质量的百分数作为煤样的灰分挥发分加热称重法GB 212-2001称取一定量的空气干燥煤样,放在带盖的瓷柑涡中,在(9士10)℃下,隔绝空气加热7min,以减少的质量占煤样质量百分数,减去该煤样的水分含量作为煤样的挥发分。

固定碳减重法GB 212-2001100-(水分+灰分+挥发分)1.高位发热量;一定量的分析试样在氧弹热量计中.在充有过量氧气的氧弹燃烧,根据试样燃烧前后量热系统产生的温升,并对点火等附加热进行校正后即可求得试样的弹筒发热量。

煤发热量热量计法GB 213-2003从弹筒发热量中扣除硝酸生成热和硫酸校正热(硫酸与二氧硫形成热之差)即得高位发热量,氧弹热量计的热容量通过相近条件下燃烧一定量的基准量热物苯甲酸来确定2.低位发热量恒容低位发热量和恒压低位发热量可以通过分析试样的高发热量计算得出 计恒容低位发热量,要知道煤样中水分和氢的含量.计算恒压低位发热量,要知道煤样中氧和氮的含量硫GB 214-2007艾士卡法①.将空气干燥煤样和艾氏剂混合均匀。

煤质分析化验

煤质分析化验

01
有机硫含量测定
通过化学反应将煤中的硫元素转化为硫 酸盐,再测定硫酸盐的含量,以评估煤 中硫的含量和脱硫效果。
02
03
灰分和挥发分测定
测定煤在高温下燃烧后的残留物和挥 发性组分的含量,以评估煤的燃烧特 性和工业应用价值。
工业分析方法
粘结指数测定
通过测定煤在加热过程中粘结力的变化,评 估煤的粘结性和结焦性,以指导炼焦配煤和 焦炭质量预测。
确保不同实验室之间的分析结果具有可比性。
规范操作流程
制定详细的操作规程,确保分析结果的准确 性和可靠性。
建立质量管理体系
强化质量监控,确保分析结果的准确性和可 靠性。
智能化和自动化
01
02
03
自动化采样系统
实现自动采样、制样和送 样,减少人为误差和操作 时间。
智能化数据分析
利用人工智能技术对煤质 分析数据进行处理和解析, 提高数据分析的效率和准 确性。
煤质分析化验的重要性
煤质分析化验是煤炭科学利用的前提,通过了解煤的品质,可以更好地选择适合的燃烧技术和设备,提高燃煤效率和减少污 染物排放。
煤质分析化验有助于实现煤炭资源的优化配置,提高煤炭利用率,降低能源消耗和生产成本,对于节能减排和可持续发展具 有重要意义。
02
煤质分析化验方法
物理分析方法
新技术应用
01
02
03
人工智能
物联网技术
新型检测仪器
利用人工智能技术进行煤质分析, 通过机器学习算法提高分析准确 性和效率。
将物联网技术与煤质分析相结合, 实现远程监控和实时数据传输, 提高分析效率。
研发更高效、更精准的煤质分析 仪器,提高分析的可靠性和准确 性。

煤质分析基础知识

煤质分析基础知识

煤质分析基础知识目录一、煤质概述 (3)1. 煤的成因及分类 (4)2. 煤的性质与特点 (5)3. 煤质分析的重要性 (6)二、煤质分析方法 (7)1. 采样与制备 (9)1.1 采样原则及方法 (10)1.2 样品制备流程 (11)2. 物理分析方法 (12)2.1 工业分析 (13)2.2 元素分析 (14)3. 化学分析方法 (15)3.1 无机质分析 (16)3.2 有机质分析 (18)三、煤质指标与评价 (19)1. 煤质指标介绍 (20)2. 煤质评价原则 (21)2.1 动力煤评价要点 (22)2.2 炼焦煤评价要点 (23)四、煤质分析技术应用 (24)1. 常规煤质分析技术 (25)1.1 常规物理测试技术 (27)1.2 常规化学测试技术 (28)2. 现代分析技术在煤质分析中的应用 (29)2.1 红外光谱分析 (31)2.2 核磁共振分析 (32)2.3 其他现代分析技术 (33)五、煤质分析实验及操作规范 (35)1. 实验室建设与管理规范 (36)1.1 实验室基本要求 (37)1.2 实验室安全管理制度 (39)2. 实验操作规范及注意事项 (40)2.1 实验前的准备 (41)2.2 实验过程规范操作 (42)2.3 实验后的整理与记录 (43)六、煤质分析的质量控制与标准化管理 (44)1. 质量控制系统建立与实施 (45)1.1 质量管理体系构建 (46)1.2 质量控制的实施要点 (48)2. 标准化管理要求与实施策略 (50)2.1 标准化管理概述 (51)2.2 标准制定与执行监控 (51)一、煤质概述煤是一种由古代植物经过生物化学和物理化学变化逐渐形成的固体可燃性矿物。

根据成因和形成过程,煤可分为石炭纪、二叠纪、侏罗纪和白垩纪四大类。

煤的主要组成元素有碳、氢、氧、氮和硫等,其中碳含量最高,氧、氮和硫含量相对较低。

煤质分析是对煤炭质量进行评价的一系列方法和指标,主要包括工业分析、元素分析、煤岩分析和煤质特性分析等方面。

GBT212_2024煤的工业分析方法

GBT212_2024煤的工业分析方法

GBT212_2024煤的工业分析方法煤是一种重要的能源资源,广泛应用于发电、炼焦、冶金等工业领域。

煤的工业分析方法是评价煤质特性和适应性的关键工作,对于确保工业生产的安全、高效运行有着重要意义。

下面将介绍GBT212-2024标准中常用的煤工业分析方法。

首先,煤样制备是煤工业分析的前提工作。

为了得到准确可靠的煤质分析结果,必须对煤样进行适当的制备。

煤样制备包括煤样切割、研磨和均质处理等步骤。

切割时应选取具有代表性的煤样,确保分析结果能真实反映整体煤质情况。

研磨则是将煤样颗粒细化,以满足煤质分析的需要。

均质处理则是使煤样更加均匀,避免分析结果受局部差异的影响。

然后,工业分析是煤质测定的核心环节。

工业分析方法主要包括热量测定、含碳和挥发分测定、灰分和硫分测定等。

热量测定是评价煤的燃烧性能的重要指标,常用的热量测定方法有工业分析热计法、DC-KJ热计法等。

含碳和挥发分测定是评价煤的热解性能的关键指标,常用的含碳测定方法有光热反射率法、化学吸收法等,常用的挥发分测定方法有固定碳熔融法、精密天平法等。

灰分和硫分测定是评价煤的燃烧残留物和污染物排放的重要指标,常用的灰分测定方法有高温烧蚀法、高温熔融法等,常用的硫分测定方法有高温脱硫法、自动高温洗滤法等。

最后,质量计算是根据煤质分析结果,计算煤的各项指标的过程。

质量计算主要包括低位发热量的计算、高位发热量的计算、低位发热量修正值的计算等。

低位发热量是指煤在常压下完全燃烧时所释放的热量,是评价煤的燃烧性能的重要指标。

高位发热量则是在理论燃烧条件下,燃烧气体完全冷却至与外界温度相同时所释放的热量,常用湿基高位发热量修正公式进行计算。

低位发热量修正值则是对采用计算修正方法进行计算得出的低位发热量修正结果。

GBT212-2024标准中的煤工业分析方法为煤质测定提供了具体的操作步骤和技术要求,能够确保煤质分析结果的准确性和可靠性,对于工业生产的安全和高效运行具有重要意义。

煤质分析化验

煤质分析化验
操作:
用预先干燥并称量过的称量瓶迅速称取10-12g粒度小 于6mm的煤样,打开称量瓶盖,放入预先通入干燥氮气并已 加热到105-110℃的干燥箱中,烟煤干燥1.5h, 褐煤和无烟 煤干燥2h, 取出后盖上盖子,放入干燥器中冷却至室温后 称量,再干燥后称重,直到连续两次干燥后的质量相差不 超过0.01g为止,根据煤样的质量损失计算水分的含量。
2.测定过程
称 取 分 析 煤 样 1 0 . 0 1 g ( 精 确 至 0.0001g ) , 于 已 在 90010℃灼烧恒量的专用坩锅内,轻敲坩埚使试样摊平,然 后盖上坩埚盖,置于坩埚架上,迅速将坩埚架推至已预先加 热至90010℃的高温炉的稳定温度区内,并立即开动秒表, 关闭炉门(3min内回复炉温)。准确灼烧恰好7min,迅速取 出坩埚架,在空气中放置5~6min,再将坩锅置于干燥器中 冷却至室温,称量。计算挥发分产率。
CaSO4 2H 2O CaSO4 2H 2O AI 2O3 2SiO 2 2H 2O AI 2O3 2SiO 2 2H 2O
(2)当温度灰在分5的00℃测左定右(时二的主)要反应:
CaCO3 CaO CO2
FeCO3 FeO CO2
(3)4当F温eS度2在61010oOC左2 右时2:Fe2O3 8SO 2 2CaO 2SO 2 O 2 2CaSO4 4FeO O2 2Fe2O3
煤样在微波炉内,利用微波发生器产生的交变电 场作用,引起摩擦发热,使水分迅速蒸发。 特点:受热均匀,水分蒸发快;不适用于无烟煤和 焦炭等导电性较强的试样。
(三)分析水Mad的测定
分析水(空气干燥基水分 ):指煤在空气干 燥状态下所含的水份,也就是内在水分。
空气干燥煤样:粒度小于0.2mm、与周围空气湿度达 到平衡的煤样 。 样品制备:将粒度小于0.2mm煤样,在20℃和相对湿度 70%的空气下连续干燥1小时后质量变化不超过0.1%, 即认为已达到空气干燥状态。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤炭1 范围煤炭的检验包括的项目很多,指标复杂,现根据本公司使用的煤种及实际情况,制定了煤炭检测标准。

本标准主要涉及以下内容:煤炭的取样、煤样的制备、煤中全水分的测定、煤的工业分析、煤中总硫的测定、灰熔点的测定及低位发热量的计算及煤的粒度测定。

本标准还规定了上述方法所用的试剂和材料、仪器设备、实验步骤、结果计算及精密度等。

本标准适用于褐煤、烟煤和无烟煤。

2 规范性引用文件下列标准所包含的条文,通过在本标准中引用而构成本标准的条文,本标准发布时所有版本均为有效,所有标准都会被修订,使用本标准的各方应探讨使用下列标准的最新版本的可能性。

GB475—1996 商品煤样采取方法GB474—1996 煤样的制备方法GB/T211—1996 煤中全水分的测定GB/T212—2001 煤的工业分析方法GB/T214—1996 煤中全硫的测定GB/T219—1996 煤灰熔融性的测定方法GB/T1573—2001 煤的热稳定性测定方法3 技术指标本标准涉及的水煤气用无烟煤质量指标如表1表1项目质量指标水分Mt,% ≤ 5.0灰分Aad,% ≤ 20.0挥发分Vad,% ≤ 9.0固定碳FCad,% ≥ 75.0总硫含量St,ad,% ≤ 1.0灰熔点,oC ≥ 1350收到基低位发热量Qnet.ar,Kcal/Kg ≥ 6500 粒度,mm25-75,% ≥ 88>75,% ≤ 7<25,% ≤ 5热稳定性TS+6,% ≥ 70本标准涉及到的烟煤质量指标如表2表2指标名称质量指标优等品合格品水分Mt,% ≤ 10.00 10.00灰分Aar,% ≤ 15.00 20.00挥发分Var,% ≥ 25.00 22.00收到基低位发热量Qnet.ar,Kcal/Kg ≥ 6000 55004 检验方法4.1 煤样的采取及制备4.1.1 工具4.1.1.1 采样铲:铲的长和宽均不小于被采煤样最大粒度的2.5~3倍;4.1.1.2 钢板:厚度6mm;4.1.1.3 铁锤4.1.1.4 搪瓷盘:40×30cm;4.1.1.5 铁盒:40×20×15cm;4.1.1.6 标准筛:6mm及0.2mm。

4.1.2 操作步骤4.1.2.1 一般所采的煤堆的重量不超过1000t,所采的点数(子样的数目)为30个。

4.1.2.2 根据煤堆的形状可均匀将子样分布在煤堆的顶、腰和底(距地面0. 5m)上,采样要先去掉0.2m的表面层。

4.1.2.3 先去掉0.2的表面层,将铁锹插入20cm后垂直向上端出,在此过程铁锹要保持水平不得倾斜,大约取1.0~1.5Kg。

4.1.2.4 将所取的煤样放在钢板上(总共30~50Kg)用铁锤敲碎至13mm以下,堆成圆锥形,用铁锹从锥体顶端将煤样分成四个相等的扇形,将相对的两个扇形体弃去。

4.1.2.5 将留下的两个扇形体堆成圆锥体重复上述操作两到三次。

留下的煤样为2.5Kg左右,全部装入取样袋中。

4.1.2.6 将所去的煤样敲碎使之全部通过6mm筛。

用堆锥四分法缩分煤样,取500g左右装入取样袋用于全水分的测定。

4.1.2.7 取500g左右置于干净的托盘放在空气中自然干燥24小时(也可在45oc以下烘箱内干燥2~3小时)至连续干燥到质量变化不超过0.1%,再取100g左右用制样粉碎机粉碎使之全通过0.2mm筛,装入样品袋或样品瓶待测。

注:因煤中的外在水分极易挥发,要求尽快取样,并要求尽快测全水分煤样取回后要记下批号、取样时间、地点、取样的天气、取样人,并留下5 00g左右留样,大约保留一月左右。

4.2 全水分的测定4.2.1 方法提要称取一定量的粒度小于6mm的煤样,在空气流中、于105~110oC下干燥到质量恒定,然后根据煤样的质量损失计算出水分的百分含量。

4.2.2 仪器设备4.2.2.1 干燥箱:带有自动控温装置和鼓风机,并能保持温度在105~110 oC范围内;4.2.2.2 干燥器:内装变色硅胶或粒状无水氯化钙;4.2.2.3 玻璃称量瓶:直径70mm,高35~40mm,并带有严密的磨口盖;4.2.2.4 分析天平:感量0.001g。

4.2.3 测定步骤4.2.3.1 用预先干燥并称量过的称量瓶迅速称取粒度小于6mm的煤样10~1 2g,平摊在称量瓶中。

4.2.3.2 打开称量瓶盖,放入预先鼓风并已加热到105~110oC的干燥箱中,在鼓风条件下、烟煤干燥2h,无烟煤干燥3h。

4.2.3.3 从干燥箱中取出称量瓶,立即盖上盖,迅速放入干燥器中,冷却至室温(大约20min),称量。

4.2.3.4 检查性干燥:把称量完毕的称量瓶重新放入干燥箱中大约30min,再称量如质量减少不超过0.01g或质量有所增加,证明已达到恒重。

如质量增加,应采用质量增加前一次的质量作为计算依据。

4.2.4 结果的计算全水分测定结果按公式(1)计算:```````````(1)式中:Mt——煤样的全水分,%;m——煤样的质量,g;m1——干燥后煤样减少的质量,g。

4.2.5 精密度两次重复测定结果的差值不得超过下表3的规定:表3水分(Mt)重复性<10 0.4>10 0.54.3 煤中内水的测定4.3.1 方法提要称取一定量的粒度小于0.2mm的煤样,在空气流中、于105~110oC下干燥到质量恒定,然后根据煤样的质量损失计算出水分的百分含量。

4.3.2 仪器设备4.3.2.1 干燥箱:带有自动控温装置和鼓风机,并能保持温度在105~110o C范围内。

4.3.2.2 干燥器:内装变色硅胶或粒状无水氯化钙。

4.3.2.3 玻璃称量瓶:直径40mm,高25mm,并带有严密的磨口盖。

4.3.2.4 分析天平:感量0.0001g。

4.3.3 测定步骤4.3.3.1 用预先干燥并称量过(精确到0.0002g)的称量瓶迅速称取(称量时要戴棉布手套)粒度为0.2mm以下的煤样1±0.1g(精确到0.0002g),平摊在称量瓶中。

4.3.3.2 打开称量瓶盖,放入预先鼓风并已加热到105~110oC的干燥箱中,在鼓风条件下、烟煤干燥1h,无烟煤干燥2h。

4.3.3.3 从干燥箱中取出称量瓶,立即盖上盖,迅速放入干燥器中,冷却至室温(大约20min),称量。

4.3.3.4 检查性干燥:把称量完毕的称量瓶重新放入干燥箱中大约30min,再称量如质量减少不超过0.001g或质量有所增加,证明已达到恒重。

如质量增加,应采用质量增加前一次的质量作为计算依据。

4.3.4 结果计算内水测定结果按公式(2)计算:```````````(2)式中:Mad——空气干燥煤样的水分含量,%;m——煤样的质量,g;m1——干燥后煤样减少的质量,g。

4.3.5 精密度两次重复测定结果的差值不得超过下表4的规定:表4水分(Mad)重复性<5 0.205~10 0.30>10 0.404.4 灰分的测定4.4.1 方法提要本方法采用缓慢灰化法,称取一定量的空气干燥煤样,放入马弗炉中,以一定的速度加热到815±10oC,灰化并灼烧到质量恒定,以残留物的质量占煤样质量的百分数作为灰分产率。

4.4.2 仪器设备4.4.2.1 马弗炉:能保持温度为815±10oC。

炉膛具有足够的恒温区。

炉后壁的上部带有直径为25~30mm的烟囱。

4.4.2.2 瓷灰皿:长方形,底面长45mm,宽22mm,高14mm;4.4.2.3 干燥器:内装变色硅胶或粒状无水氯化钙;4.4.2.4 分析天平:感量0.0001g;4.4.2.5 灰皿夹;4.4.2.6 耐热瓷板或石棉网。

4.4.3 测定步骤4.4.3.1 用预先烧至恒重的灰皿,称取粒度为0.2mm以下的空气干燥煤样1±0.1g(精确到0.0002g),均匀地摊平在灰皿中。

4.4.3.2 将灰皿送入温度不超过100 oC的马弗炉中,关上炉门使炉门留有15mm左右的缝隙。

在不少于30min的时间内将炉温缓慢升至约500oC,在此温度下保持30min。

继续升到815±10oC,并在此温度下灼烧1h。

4.4.3.3 从炉中取出灰皿,放在石棉网上,在空气中冷却5min左右,移入到干燥器中冷却至室温(约20min),称量。

4.4.3.4 检查性灼烧把称量完毕的灰皿重新放入马弗炉灼烧大约20min,再称量如质量减少不超过0.001g或质量有Q/LSAN J 04116-2004所增加,证明已达到恒重。

如质量增加,应采用质量增加前一次的质量作为计算依据。

4.4.4 结果计算空气干燥煤样的灰分按(3)计算:```````````(3);式中:Aad——空气干燥煤样的灰分产率,%;m1——灼烧后剩余的质量,g;m——煤样的质量,g。

4.4.5 精密度两次重复测定结果的差值不得超过下表5的规定:表5灰分(Aad)重复性<15.00 0.215.00~30.00 0.30>30.00 0.504.5 挥发分的测定4.5.1 方法提要称取一定量的0.2mm以下的空气干燥煤样,放在带盖的瓷坩埚中,在900±10oC温度下,隔绝空气加热7min。

以减少的质量占煤样质量的百分数,减去该煤样的水分含量(Mad)作为挥发分产率。

4.5.2 仪器设备4.5.2.1 挥发分坩埚:带有配合严密的盖的坩埚,坩埚口直径33mm,底直径18mm,高40mm,总质量15~20g;4.5.2.2 马弗炉:能保持温度为900±10oC。

炉膛具有足够的恒温区;马弗炉的恒温区应在关闭炉门下测定,并至少半年测定一次。

高温计(包括毫伏计和热电偶)至少半年校准一次;4.5.2.3 坩埚架;4.5.2.4 坩埚夹;4.5.2.5 分析天平:感量0.0001g。

4.5.2.6 机械秒表;4.5.2.7 干燥器:内装变色硅胶或粒状无水氯化钙。

4.5.3 测定步骤4.5.3.1 用预先在900oC温度下灼烧至质量恒定的带盖瓷坩埚,称取粒度为0.2mm以下的空气干燥煤样1±0.02g(精确到0.0002g),均匀地摊平在坩埚底部,盖上盖,放在坩埚架上。

4.5.3.2 将马弗炉预先加热到920oC左右,打开炉门,迅速将放有坩埚的架子送入恒温区并关上炉门。

准确加热7min。

坩埚及架子刚放入后,炉温会有所下降,但必须在3min内使炉温恢复至900±10oC,否则此实验作废。

加热时间包括温度恢复时间在内。

4.5.3.3 从炉中取出坩埚,放在空气中冷却5min左右,移入干燥器中冷却至室温(约20min)后,称量。

Q/LSAN J 04116-20044.5.4 结果计算空气干燥煤样的挥发分按式(4)计算:```````````(4)式中:Vad——空气干燥煤样的挥发分产率,%;m1——灼烧后减少的质量,g;m——煤样的质量,g;Mad——空气干燥煤样的水分含量,%。

相关文档
最新文档