循环流化床锅炉效率计算表
130t循环流化床锅炉设计计算表

饱和蒸汽焓
21
饱和水焓
22
给水温度
23
给水焓
24
最大连续蒸发量
25
锅炉排污水流量
26
锅炉机组有效利用热量
27
脱硫工况时当量燃料消耗量
28
脱硫工况时计算燃料消耗量
29
脱硫工况时燃料消耗量
30
计算石灰石消耗量
31
石灰石消耗量
32
计算燃料当量消耗量
3.3 炉膛膜式水冷壁传热系数计算
trk θpy tlk
pg pgs ηpw Dpw
3
石灰石水分
4
石灰石灰分
2、燃烧脱硫计算
2.1 无脱硫工况时的燃烧计算
序号
名称
1
理论空气量
2
三原子气体体积
3
理论氮气体积
4
理论水蒸气体积
5 2.3 脱硫计算 序号
飞灰份额 名称
1
SO2原始排放浓度
2
SO2最高允许排放浓度
3
计算脱硫效率
4
燃煤自脱硫能力系数
5
石灰石脱硫能力系数
6
钙硫摩尔比
7
石灰石中CaCO3含量
ACaO ACaSO4
ADar ad aDd af aDf ηf an a μDSO2 ηSO2
η
符号 DMCR pgr t''gr Dp Dd tgs
7
热空气温度
8
排烟温度
9பைடு நூலகம்
冷空气温度
10
锅筒蒸汽压力
11
给水压力
12
锅炉排污率
13
锅炉排污流量
14
燃烧方式
75th循环流化床锅炉设计说明

返料风系统
返料风主要用来流化回料装置内循环物料,以确保物料通过回料装置返回到燃烧室中,返料风起到松动物料及输送物料的作用。返料风要求具有较高压力。该返料风机的风量约为2500Nm3,压头为2000mmH2O。
6
锅炉水系统简述
6.1
水循环系统
给水(一部分经面式减温器)进入尾部烟道内的省煤器,再进入汽包,炉水经汽包下降管到下水集箱,经蒸发受热面(膜式水冷壁)回到汽包。饱和蒸汽从汽包引出后,首先经顶棚过热器后经尾部烟道的包墙过热器进入低温过热器,再经面式减温器进入高温过热器。
6.4
过热器
高温过热器布置在炉膛上部的水平烟道内,呈逆流顺列布置,其管径为φ38×4mm,材质为15CrMoG。低温过热器布置在尾部竖井烟道内,呈卧式逆流布置,管径为φ32×4mm,材质为20G(GB5310)。饱和蒸汽经4根φ108×4.5mm连接管,由锅筒引到顶棚管进口集箱,蒸汽从顶棚管尾部后包墙管,再经U型集箱,分别引到两侧包墙,蒸汽在两侧墙管内自下而上,汇集到两侧包墙上集箱,顶棚管及后包墙管均采用φ51×5mm的管子,两侧包墙采用φ42×4mm,蒸汽由两侧包墙上集箱再引到过热器吊挂集箱,通过54根φ42×5mm吊挂管将蒸汽引到低温过热器进口集箱。低温过热器管重量全部由吊挂管承担。为调节过热器中蒸汽温度,在低温过热器与高温过热器之间,布置一面式减温器,其减温能力可达到50℃。
燃烧室壁面开有:二次风口、回料口(包括循环灰入口、石灰石入口、燃料入口)、排渣口、启动燃烧器口、测温口、测压口、出烟口、人孔等各种门孔。
5.2
布风及点火系统
锅炉采用床下热烟气点火,水冷风箱和布风板等技术。在靠近风室入口的主风管道上开一旁通、油枪在旁通中先燃烧加热空气,并与主风道空气混合至800~900℃,作为点火期间一次风道入水冷风室。锅炉正常运行时,旁通要关闭。油枪工作压力2~2.5MPa。
25mw高压循环流化床锅炉参数

25MW高压循环流化床锅炉参数循环流化床锅炉是一种主要用于发电和供热的设备,其参数的设定对于设备的运行效率和安全性都至关重要。
本文将对25MW高压循环流化床锅炉的参数进行详细介绍,以帮助读者对该设备有更深入的了解。
1. 高压循环流化床锅炉的基本原理高压循环流化床锅炉是利用流化床的原理来进行燃烧的一种锅炉设备。
在高压条件下,燃料和气体通过流化作用形成了固液两相悬浮状态,这样可以提高燃料的燃烧效率和燃烧温度,从而达到更高的发电或供热效果。
2. 25MW高压循环流化床锅炉的参数- 额定蒸汽流量:25吨/小时- 额定蒸汽压力:3.82MPa- 额定蒸汽温度:450℃- 设计燃料:煤炭、生物质颗粒等- 燃烧效率:≥90- 萤光测温系统:采用高精度萤光测温系统,实时监测锅炉燃烧温度,确保燃烧效果最佳。
3. 循环流化床锅炉的主要优点- 温度均匀:循环流化床锅炉能够保持燃烧温度的均匀性,使燃烧更加稳定。
- 燃烧效率高:由于燃料和气体在循环流化床中形成悬浮状态,燃烧效率很高。
- 燃烧废气排放少:由于循环流化床燃烧过程中的气体经过顶部的固定床再次被混合,使燃烧废气中的颗粒物得到破碎和剪切,因此废气排放量大为降低。
4. 循环流化床锅炉的适用范围循环流化床锅炉主要适用于煤炭、生物质颗粒等固体燃料的燃烧,并且在发电厂和供热厂得到广泛应用。
由于其高效环保的特点,其在工业领域也有着一定的应用前景。
5. 高压循环流化床锅炉的发展趋势随着环保意识的日益增强和能源结构的逐步调整,循环流化床锅炉作为一种高效环保的燃烧设备,其发展前景较为乐观。
未来,循环流化床锅炉在发电、供热、工业以及生活领域的应用将会更加广泛。
通过对25MW高压循环流化床锅炉的参数进行介绍,读者可以更加深入地了解这种设备的特点和优势。
希望本文对读者了解循环流化床锅炉有所帮助。
高压循环流化床锅炉是一种先进的燃烧设备,具有高燃烧效率、低排放、安全可靠等优点。
能够满足工业生产、供热和发电等领域的需求,广泛应用于各种工业和生活场景。
循环流化床热水锅炉技术参数表优选全文

优选全文完整版(可编辑修改)
循环流化床热水锅炉技术参数表
注:
*点火方式除床上点火外, 还有标准床下点火装置可供选择。
*给煤具有三种标准给煤方式可供选择: 螺旋给煤机负压给煤、螺旋给煤机正压给煤、皮带给煤负压给煤。
*燃料消耗量按标准低位发热值29308kj/kg(7000kcal/kg)计算。
*我们遵循不断完善产品性能原则, 对产品的部分改变或许难以及时通知阁下, 参数表中内容仅供参考。
若需要新资料, 请向我公司相关部索取。
*根据用户具体情况, 可以提供其他技术参数及适用煤种锅炉。
循环流化床蒸汽锅炉技术参数表。
循环流化床锅炉运行经济性分析(一)

循环流化床锅炉运行经济性分析(一)摘要华电淄博热电有限公司#3、4锅炉系哈尔滨锅炉厂制造的HG-465/13.7-L.PM型循环流化床锅炉,分别于2003年8月和2003年12月相继投产运行,由于我公司的两台循环流化床锅炉投运早、容量大、经验少,自机组投运以来曾多次出现问题,影响了机组的安全经济运行。
在这期间我们总结了大量的经验和教训,采取了诸多保证锅炉安全运行的措施,取得了较理想的效果,但在经济运行方面与煤粉炉相比还存在较大差距。
本文试图从循环流化床锅炉的几个主要经济指标(燃烧效率、飞灰含碳量、煤耗、风机电耗)方面进行分析,并依据我公司现状,总结一些提高其经济性的运行调整经验,以便在实际运行中加以实施,充分发挥循环流化床锅炉的优势。
关键词循环流化床锅炉经济性燃烧效率电耗运行调整0前言随着近几年电力工业的高速发展和环保力度的逐步加大,特别是洁净发电技术的推广应用,循环流化床技术(CFB)得到了较快的发展和普及。
提高大型循环流化床锅炉运行的安全性、经济性、环保性和可靠性受到了越来越多的关注和重视。
目前已投运的高参数循环流化床锅炉,经过不断的经验交流和总结,已基本能保证锅炉的安全运行,连续运行天数可达百日以上,但在运行经济性方面却不容乐观,如风机电耗高、飞灰大、煤耗高、非计划停炉次数多、点火耗油量大等,因此分析和研究循环流化床锅炉的运行调整和优化运行方式,对提高循环流化床锅炉的运行可靠性和可利用率有着重要的现实指导意义。
华电淄博热电有限公司#3、4锅炉是哈尔滨锅炉厂生产的465t/h循环流化床锅炉,锅炉各热力参数基本能达到设计值,并能满负荷稳定运行,在安全运行基础上,我公司积极研讨循环流化床锅炉的运行调整和优化运行方式,并进行认真分析,总结经验教训,积极对设备加以改造,目前两台循环流化床锅炉的运行经济性有了显著的提高。
本文试图从锅炉设备改造、运行调整等方面进行分析,总结提高循环流化床锅炉经济性的有效节能改造措施,为国内大型循环流化床锅炉的安全、经济运行提供经验参考和借鉴。
220t h 循环流化床锅炉说明书

220t/h循环流化床锅炉说明书目录一、锅炉基本特性 (3)1、主要工作参数 (3)2、设计燃料 (3)3、安装和运行条件 (4)4、锅炉基本尺寸 (4)二、锅炉结构简述 (5)1. 炉膛水冷壁 (5)2. 高效蜗壳式汽冷旋风分离器 (7)3. 锅筒及锅筒内部设备 (7)4. 燃烧设备 (8)5. 过热器系统及其调温装置 (11)6. 省煤器 (11)7. 空气预热器 (12)8. 锅炉范围内管道 (12)9. 吹灰装置 (12)10. 密封装置 (12)11. 炉墙 (13)12. 构架 (13)13.膨胀系统 (14)14.锅炉水压试验 (14)15.锅炉过程监控 (14)三、性能说明 (16)一、锅炉基本特性1、主要工作参数额定蒸发量 220 t/h额定蒸汽温度 540 ℃额定蒸汽压力(表压) 9.8 MPa给水温度 215 ℃锅炉排烟温度 ~140 ℃排污率≤2 %空气预热器进风温度 20 ℃锅炉计算热效率 90.5 %锅炉保证热效率 90%燃料消耗量 41.7 t/h 石灰石消耗量 585 kg/h 一次热风温度 200 ℃二次热风温度210 ℃一、二次风量比 55:45循环倍率 25~30脱硫效率(钙硫摩尔比为2.5时)≥ 70 % 2、设计燃料(1)煤种及煤质煤的入炉粒度要求:粒度范围0~10mm,50%切割粒径d50=2mm,详见附图。
(2)点火及助燃用油锅炉点火用油:甲醇和甲醇油(3)石灰石特性颗粒度0-1mm.d50=0.25mm.3、安装和运行条件地震烈度里氏6度,按7度设防。
锅炉给水满足GB/T12145《火力发电机组及蒸汽动力设备水汽质量》标准。
4、锅炉基本尺寸炉膛宽度(两侧水冷壁中心线间距离) 8770mm炉膛深度(前后水冷壁中心线间距离) 6610mm炉膛顶棚管标高 37600mm锅筒中心线标高 41000mm锅炉最高点标高 45000mm运转层标高 8000mm操作层标高 5400mm锅炉宽度(两侧柱间中心距离) 23000mm锅炉深度(柱Z1与柱Z4之间距离) 27600mm二、锅炉结构简述锅炉为高温高压,单锅筒横置式,单炉膛,自然循环,全悬吊结构,全钢架π型布置。
循环流化床锅炉炉膛热力计算

循环流化床锅炉炉膛热力计算引言循环流化床锅炉燃烧效率高,污染排放低,燃料适应性广,被广泛应用于蒸汽生产中。
随着循环流化床锅炉的发展,其容量和规模都在增大。
目前美国在建的300 MWe循环流化床锅炉即将投入运行,600 MWe容量的循环流化床锅炉也已在设计中。
利用国内技术生产的35 t/h、75 t/h循环流化床锅炉有大量运行,目前国内投入运行的最大循环流化床锅炉是高温高压420 t/h容量的锅炉,高温高压450 t/h循环流化床锅炉也已在建,但运用的是国外技术。
在循环流化床锅炉的开发与发展过程中,各设计单位和锅炉制造厂家开发出各种炉型,针对各自不同的炉型采用各自的热力计算方法,即使是相同的炉型设计方法也可能不同,各有特点。
这与煤粉锅炉和鼓泡流化床锅炉在设计过程中有统一的热力计算方法[1]可供参考不同。
有关循环流化床锅炉热力计算方法在文献中也少见发表。
本文结合作者在循环流化床锅炉传热和设计理论研究及实践的基础上,建立了一种简单的循环流化床锅炉炉膛热力计算方法[2-9]。
与一般沸腾燃烧鼓泡流化床锅炉不同,循环流化床锅炉类型较多,炉型不同,其热力计算方法有所不同。
本方法针对采用高温分离装置的循环流化床锅炉,提出的计算方法可用于一般高温分离的循环流化床锅炉的设计计算,其余炉型可在此基础上根据具体炉型特点修改使用。
典型的高温分离器型循环流化床锅炉采用高温立式旋风分离器,安置在锅炉炉膛上部烟气出口处。
离开炉膛的大部分颗粒,由高温分离器所捕集并通过固体物料再循环系统从靠近炉膛底部的物料回送口送回炉膛。
经高温分离器分离后的高温烟气则进入尾部烟道,与布置在尾部烟道中的受热面进行换热后排出。
计算中未考虑添加石灰石的影响,若添加石灰石,则入炉热量、灰浓度和烟气量等有变化,需修正。
2 循环流化床锅炉炉膛几何尺寸的确定2.1 炉膛横截面积循环流化床锅炉炉膛一般由膜式水冷璧构成,其传热面积以通过水冷璧管中心面的面积计算。
若炉膛由轻型炉墙或敷管炉墙构成,则需考虑角系数的影响。
循环流化床锅炉脱硫计算

mg/Nm 1180 3kg/h 217
计算 计算
烟气脱硫计 石灰石粉理论消耗量 kg/h 340
计算
算
石灰石粉实际消耗量 kg/h 494
计算
CaSO4生成量
kg/h 462
计算
炉内脱硫70%
给定
FGD入口SO2含量
mg/Nm 3539
FGD装置SO2反应量 3kg/h 742
计算 计算
石灰石粉理论消耗量 kg/h 1160
计算
石灰石粉实际消耗量 kg/h 1688
计算
CaSO4生成量
kg/h 1577
计算
备注:本表数据来自遵义公司锅炉数据,有些数据可能考虑不周不完全正确,只作交流参考。ytg
计算
空预器、除尘器漏风系数
0.05
给定
氧化风机风量
Nm3/h
FGD出口SO2排放浓度 mg/Nm
3200
氧化风机技术协议,两台 运行风量
给定
200
给定
实际钙硫比
3
1.31 验证数据
给定
FGD入口烟气量
Nm3/h 222502
计算
FGD入口粉尘浓度 g/Nm3 22
计算
炉内脱硫90%
给定
FGD入口SO2含量 FGD装置SO2反应量
CaCO3+SO2+1/2O2=CaSO4+CO 2(合并反应式)
计算
计算
石灰石粉实际需要量 kg/h 8202
计算
灰渣生成量
kg/h 20234
排灰与下渣比例按6:4 计算
其中:锅炉出口飞灰量 kg/h 12309
计算
除尘器输灰量 kg/h 12304