线性代数§6.2线性空间的维数、基与坐标
《维数基与坐标》课件

维数基可以用来描述物体在空间中的 运动轨迹,通过在各个维度上定义坐 标值的变化,可以描述物体运动的方 向和距离。
坐标系在维数基中的应用
表达空间关系
通过坐标系,我们可以表达空间中物体之间的关系,例如距离、角度、方向等。
进行数学运算
在坐标系中,我们可以进行各种数学运算,例如加法、减法、乘法、除法等,以 解决各种实际问题。
标的应用和发展。
创新研究方法
03
鼓励数学家探索新的研究方法,以解决现有问题并开拓新的研
究领域。
感谢观看
THANKS
维数基与坐标
目 录
• 维数基的基本概念 • 坐标系的基本概念 • 维数基与坐标的关系 • 维数基与坐标的实例分析 • 维数基与坐标的未来发展
01
维数基的基本概念
定义与性质
维数基定义
维数基是线性空间中的一组基底,它由有限个线性无关的向 量组成,可以用来表示线性空间中的任意向量。
维数基的性质
维数基中的向量是线性无关的,即它们不能被其他向量线性 表示;维数基中的向量是正交的,即它们的点积为零;维数 基中的向量是单位向量,即它们的模长为1。
01
更高维度的探索
随着数学理论的发展,对高维空 间的研究将更加深入,有望揭示 更多关于宇宙的奥秘。
几何化代数
02
03
拓扑结构的研究
通过几何方法研究代数结构,将 有助于更好地理解复杂数学对象 。
利用坐标方法研究几何对象的拓 扑性质,将有助于解决一些经典 问题。
维数基与坐标在其他领域的应用前景
物理学
在量子力学和广义相对论等领域,维数基与坐标 有望提供更精确的数学工具。
参数方程
1 2
定义
线性空间的基与维数

2,
a
3,
a
T
4)
线性空间 V的任一元素在不同的基下所对的
坐标一般不同,一个元素在一个基下对应的坐标是
唯一的.
例2 所有二阶实矩阵组成的集合V,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性
空间.对于V中的矩阵
E
11
1 0
0 0
,
E
12
0 0
1 , 0
0 0
0 0
E
21
1
0
,
E
22
( x1, x2 , , xn )T
结论
1.数域 P上任意两个n 维线性空间都同
构2..同构的线性空间之间具有反身性、对称性
与传递性.
3.同维数的线性空间必同构.
同构的意义
在线性空间的抽象讨论中,无论构成线性空间 的元素是什么,其中的运算是如何定义的,我们所 关心的只是这些运算的代数性质.从这个意义上可 以说,同构的线性空间是可以不加区别的,而有限 维线性空间唯一本质的特征就是它的维数.
( 2)
V中任一元素总可由1,2 ,
,
线
n
性
表示,
那末, 1,2 , ,n 就称为线性空间V 的一个
基, n 称为线性空间V 的维数.
维数为n的线性空间称为n 维线性空间,记作Vn . 当一个线性空间 V 中存在任意多个线性无关
的向量时,就称 V 是无限维的.
若1 ,2 , ,n为Vn的一个基,则Vn可表示为
一、线性空间的基与维数
已知:在 Rn中,线性无关的向量组最多由 n 个向量组成,而任意 n 1个向量都是线性相关的.
问题:线性空间的一个重要特征——在线性空 间V 中,最多能有多少线性无关的向量?
6.2维数、基与坐标

都可表示为 p a0 p1 a1 p2 a2 p3 a3 p4 +a4 p5 ,
因此 p 在这个基中的坐标为
a0 , a1 , a2 , a3 , a4
T
.
若另取一个基 q1 1, q2 1 x, q3 2 x 2 , q4 x 3 , q5 x 4 ,
线性空间的结构完全被它的维数所决定.
谢谢
x1 , x2 , , xn 这组有序数就称为向量 在这个基中的坐标,
并记作 x1 ,
, xn
T
.
例 在线性空间 P x 中, 4 p1 1, p2 x, p3 x 2 , p4 x 3 , p5 x 4
就是它的一个基. 任一不超过 4 次的多项式
p a4 x4 a3 x3 a2 x 2 a1 x a0
维数、基与坐标
定义:设有线性空间 V , 如果存在n个向量a1, a2, …, an
满足 (i) a1, a2, …, an 线性无关;
(ii) V 中任意一个向量都能由 a1, a2, …, an线性表示; 那么称向量组 a1, a2, …, an是线性空间 V 的一个基, n称为线性空间 V 的维数,
则 p a0 a1 x a2 x 2 a3 x 3 a4 x 4
a0
a1
a1
1
x
a2 2
2x2
a3 x3
a4
x4
a0 a1
q1
a1q2
a2 2
q3
a3q4
a4q5
,
线性代数§6.2线性空间的维数、基与坐标

0 0
10,
E 21
0 1
00,
E 22
0 0
10,
设
k1E11
+
k2E12
+
k3E21
+
k4E22
=O
0 0
0 0
,
而
k1E11 +
k2E12 + k3E21 +
k4E22 =
k1 k3
k k
2 4
,
因此, 有
k1=k2=k3=k4=0.
p(x) =(a0, a1, a2, a3, a4)T.
若取另一个基: q0=1, q1=1+x, q2=2x2, q3=x3, q4=x4,
则
p( x)
(a0
a1 )q0
a1q1
1 2 a2q2
a3q3
a4q4 .
因此, p(x)在这个基下的坐标为
p( x)
(a0
a1 ,
a1 ,
间V的维数.
维数为n的线性空间V称为n维线性空间, 记作Vn. 当一个线性空间V中存在任意多个线性无关的向
量时, 就称V是无限维的.
若1, 2, ···, n为Vn的一个基, 则Vn可表示为:
Vn = { = x11+x22+···+xnn | x1, x2, ···, xnR }
生成的子空间的基与维数.
思考题解答
f2(x) = 2x3–3x2+9x–1, f4(x) = 2x3–5x2+7x+5
第三节 维数 基与坐标

( r 1 ) 称为线性相关,如果在数域 P 中有 r 个不 全为零的数 k1 , k2 , … , kr , 使 k11 + k22 + …+ krr = 0.
(3)
如果向量组 1 , 2 , …, r 不线性相关,就称为线性 无关. 换句话说,向量组 1 , 2 , …, r 称为线性
如果看作 间,那么这是一维的,数 1 就是一个基; 是实数域上的线性空间,那么就是二维的, 1,i
就是一个基.
注 ◆ 线性空间的维数与所考虑的数域有关.
▲
§6.3 维数 基与坐标
例3
在 n 维空间 P n 中,显然
1 (1,0, ,0) , (0,1, ,0) , 2 n (0,0, ,1)
是一个基. 对每一个向量 = ( a1 , a2 , … , an ) , 都有
= a1 1 + a2 2 + … + an n .
= a1 1 + a2 2 + … + an n ,
其中系数 a1, a2 , … an 是被向量 和基 1 , 2 , …,
n 唯一确定的, 这组数就称为 在基 1 , 2 , … , n 下的坐标,记为 ( a1, a2 , … , an ) .
§6.3 维数 基与坐标
= a11 + ( a2 - a1 )2 + … + ( an - an -1 ) n .
所以 在基 1 , 2 , …, n 下的坐标为
(a1, a2 - a1 , … , an - an -1 ) .
§6.3 维数 基与坐标
例4
如果复数域 C 看作是自身上的线性空
02 第二节 维数、基与坐标

例6 (E04) 证明维线性空间 与维数组向量空间同构.
证 (1) 中的元素与中的元素形成一一对应关系;
(2) 则有
结论 1. 数域上任意两个维线性空间都同构. 2. 同构的线性空间之间具有反身性、对称性与传递性. 3. 同维数的线性空间必同构.
例4(E02) 所有二阶实矩阵组成的集合对于矩阵的加法和数量乘法, 构成实数域R上的一个线性空间. 试证
,,, 是中的一组基, 并求其中矩阵A在该基下的坐标.
证 先证其线性无关, 由有
即线性无关. 又对于任意二阶实矩阵 有 因此为的一组基. 而矩阵在这组基下的坐标是
例5 (E03) 求子空间的维数,其中 解 易知是由下列向量的全体线性组合所构成的集合:
第二节 基、维数与坐标
分布图示
★ 引言
★ 线性空间的基与维数
★ 生成子空间
★ 例1
★ 坐标
★ 例2
★ 例3 ★ 例4
★ 线性空间的同构
★ 例6
★ 内容小结
★ 课堂练习
★ 习题6-2
★ 例5 ★ 例7
内容要点
一、线性空间的基与维数 我们已知在中,线性无关的向量组最多由个向量组成,而任意个向
量都是线行相关的。现在我们要问:在线性空间中,最多能有多少个线 性无关的向量?
元素有序数组 定义2 设是线性空间的一个基,对于任一元素, 有且仅有一组有序数 使,则称有序数组为元素在基下的坐标, 并记作.
二、线性空间的同构 设是维线性空间的一组基,在这组基下,中的每个向量都有唯一确
定的坐标,而向量的坐标可以看作中的元素,因此向量与它的坐标之间 的对应就是到的一个映射。对于中不同的向量它们的坐标也不同,即对 应于中的不同元素。反过来,由于中的每个元素都有中的向量与之对 应,我们称这样的映射是与的一个一一对应的映射。这个映射的一个重 要特征表现在它保持线性运算(加法和数乘)的关系不变。
维数基与坐标 基变换与坐标变换

§3.维数、基、坐标复习1. ⎧⎪⎨⎪⎩线性组合、线性表出基本概念向量组等价线性无关(相关) 1101112210,0,r rk k r r r r k k k k k ααααααα===⎧−−−−−→⎪+++=⎨−−−−−−−→⎪⎩只有存在不全为的,线性无关线性相关2. 性质:1)α线性相关⇔0α=;2)1r αα⇔,,线性相关其中一个向量是其余向量线性组合; 3)s r >且r ααα,,,21 可以用s βββ,,,21 线性表出,则r ααα,,,21 线性相关;r ααα,,,21 可以用s βββ,,,21 线性表出且r ααα,,,21 线性无关,则s r ≤;4)两个等价线性无关向量组含有相同个数向量; 5)r ααα,,,21 线性无关,βααα,,,,21r 线性相关⇒1,,r βαα可以被线性表出;6)1n ,,αα无关则其部分组1,,r αα也无关(整体无关则部分相关,部分相关则整体相关);新课一 线性空间的基与维数定义1 在线性空间V 中,若存在n 个元素n ααα,,,21 ,满足: 1)n ααα,,,21 线性无关,2)V 中任意元素α总可由n ααα,,,21 线性表出,那么n ααα,,,21 就称为线性空间V 的一组基,n 称为线性空间V 的维数.Note :1)维数为n 的线性空间称为n 维线性空间,记作n V ;2)当一个线性空间V 中存在任意多个线性无关的向量时,就称V 是无限维的;例:=V { 所有实系数多项式 } 3)若n ααα,,,21 为n V 的一组基,则n V 可表示为: },,,{212211R x x x x x x V n n n n ∈+++== αααα 4)基不唯一,维数一定.[]n P x 中12,,,,1-n x x x 是n 个线性无关的向量,每一个()[]n f x P x ∈都可以由12,,,,1-n x x x 线性表出,即12,,,,1-n x x x 是[]n P x 的一组基.二 元素在给定基下的坐标定义2 设n ααα,,,21 是线性空间n V 的一组基,对于任意元素n V ∈α,总有且仅有一组有序数n x x x ,,,21 使得n n x x x αααα+++= 2211,则有序数组n x x x ,,,21 称为元素α在基n ααα,,,21 下的坐标,并记为),,,(21'n x x x .例2:在n 维空间n P 中 12(1,0,,0)(0,1,,0)(0,0,,1)n εεε=⎧⎪=⎪⎨⎪⎪=⎩ 是一组基,设12(,,)n n a a a P α=∈,有'1'21122'(1,1,,1)(0,1,,1)(0,0,,1)n n n a a a εεαεεεε⎧=⎪=⎪=++→⎨⎪⎪=⎩基'''112121,()()n n n nP a a a a a ααεεε-∀∈=+-+-则§问题:在n 维线性空间n V 中,任意n 个线性无关的向量都可以作为n V 的一组基.对于不同的基,同一个向量的坐标是不同的,那么不同的基之间有怎样的联系呢?同一个向量在不同基下的坐标有什么关系呢?换句话说,随着基的改变,向量的坐标如何变化呢? 1 基变换公式设12,,n εεε及'''12,,nεεε均是维线性空间n V 的一组基,且有 '11112121'21212222'1122n nn nn n n nn na a a a a a a a a εεεεεεεεεεεε⎧=+++⎪=+++⎪⎨⎪⎪=++⎩↓⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'''n nn nnn n n a a a a a a a a a εεεεεε 2121222121211121↓A n n ),,,(),,,(2121εεεεεε =''' 称此公式为基变换公式. 2 过渡矩阵在基变换公式A n n ),,,(),,,(2121εεεεεε ='''中,矩阵A 称为由基12,,n εεε到基'''12,,nεεε的过渡矩阵. Note :1)过渡矩阵A 是可逆的.2)设n ααα,,,21 和n βββ,,,21 是n V 中两个向量组)(ij a A =,)(ij b B =是两个n n ⨯矩阵,那么))(,,,()),,,((2121AB B A n n αααααα =;))(,,,(),,,(),,,(212121B A B A n n n +=+ααααααααα ; A A A n n n n ),,,(),,,(),,,(22112121βαβαβαβββααα+++=+ . 3 坐标变换公式设向量α是线性空间n V 中的任意元素,在基12,,n εεε下的坐标为),,,(21'n x x x ,在基'''12,,nεεε下的坐标为),,,(21''''n x x x ,于是有12112212(,,,)n n n n x x x x x x αεεεεεε⎛⎫ ⎪ ⎪=+++= ⎪ ⎪⎝⎭'1''''''''11221'(,,)n n n n x x x x x εεεεε⎛⎫⎪=+++= ⎪ ⎪⎝⎭即 ()11121'121222''111'1211,,(,,)(,,)(,,)n n n n n n n n nn n n a a a x a a a A x a a a x x εεεεαεεεε⎛⎫⎛⎫⎪ ⎪ ⎪=→= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎛⎫ ⎪= ⎪⎪⎝⎭而基向量线性无关,则'11'n nx x A x x ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭即1'1112111'2122222'12n n n n nn n n a a a x x a a a x xa a a x x -⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例题分析:在4P 中,求由基1234,,,εεεε到基1234,,,ηηηη的过渡矩阵,并求向量ξ在所指基下坐标1234(1,0,0,0)(0,1,0,0)(0,0,1,0)(0,0,0,1)εεεε=⎧⎪=⎪⎨=⎪⎪=⎩ 1234(2,1,1,1)(0,3,1,0)(5,3,2,1)(6,6,1,3)ηηηη=-⎧⎪=⎪⎨=⎪⎪=⎩ 1234(,,,)x x x x ξ=在1234,,,ηηηη下的坐标小结:↓→↓⎧→⎨⎩向量线性相(无)关 基维数 基变换坐标坐标变换。
高等代数 第6章线性空间 6.2 基底、坐标与维数

任一不超过4次的多项式 p a 4 x 4 a 3 x 3 a 2 x 2 a1 x a 0 可表示为 p a 0 p1 a 1 p 2 a 2 p 3 a 3 p 4 a 4 p 5
因此 p 在这个基下的坐标为 ( a 0 , a 1, a 2 , a 3 , a 4 )
T
若取另一基q1 1, q 2 1 x , q 3 2 x 2 , q 4 x 3 , q5 x4 , 则 1 p (a 0 a 1 )q1 a 1 q 2 a 2 q 3 a 3 q 4 a 4 q 5 2 因此 p 在这个基下的坐标为
1 ( a 0 a 1, a 1, a 2 , a 3 , a 4 ) 2 注意 线性空间 V的任一元素在不同的基下所对的 坐标一般不同,一个元素在一个基下对应的坐标是 唯一的.
T
例2 所有二阶实矩阵组成的集合 V ,对于矩阵 的加法和数量乘法,构成实数域 R上的一个线性 空间.对于 V 中的矩阵
有
1 E 11 0 0 E 21 1
0 0 1 , E 12 , 0 0 0 0 0 0 , E 22 0 0 1
而矩阵A在这组基下的坐标是 (a 11, a 12, a 21, a 22) .
T
例3 在线性空间R, 2 ( x a ), 3 ( x a ) , , n ( x a )
则由泰勒公式知
2
n 1
f ' ' (a ) 2 f ( x ) f (a ) f ' (a )( x a ) ( x a) 2! ( n 1) (a ) f n 1 ( x a) ( n 1)! 因此 f ( x )在基 1 , 2 , 3 , , n 下的坐标是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
于是 + 与 k 的坐标分别为: (a1+b1, a2+b2, · · · , an+bn) = (a1, a2, · · · , an)T+(b1, b2, · · · , bn)T, (k a1, k a2, · · · , k an)T = k(a1, a2, · · · , an)T.
即, 向量, Vn在基1, 2, · · · , n下的坐标分别为: = (a1, a2, · · · , an)T, = (b1, b2, · · · , bn)T, · · + (a1 + b1)n 则 + = (a1 + b1)1 + (a1 + b1)2 + · k = ka11 + ka22 + · · · + kann
二、元素在给定基下的坐标
定义: 设1, 2, · · · , n为线性空间Vn的一个基, 对 任意V, 总有且仅有一组有序数x1, x2, · · · , x n, 使 = x11+x22+· · · +x n n , 则称有序数组 x1, x2, · · · , xn 为元素在基1, 2, · · · , n下 的坐标, 并记作 = (x1, x2, · · · , xn)T. 例1: 在线性空间P[x]4中, p0=1, p1=x, p2=x2, p3=x3, p4=x4 就是P[x]4的一个基. 任意不超过4次的多项式: p(x) = a0 + a1x + a2x2 + a3x3 + a4x4P[x]4, 都可表示为 p(x) = a0 p0 + a1p1 + a2p2 + a3p3 + a4p4 因此, p(x)在这个基1, x, x2, x3, x4下的坐标为 p(x) =(a0, a1, a2, a3, a4)T.
若取另一个基: q0=1, q1=1+x, q2=2x2, q3=x3, q4=x4, 1 则 p( x ) (a0 a1 )q0 a1q1 a 2 q2 a 3 q3 a 4 q4 . 2 因此, p(x)在这个基下的坐标为 1 p( x ) (a 0 a1 , a1 , a 2 , a 3 , a 4 )T , 2 注意: 线性空间V的任一元素在一个基下对应的 坐标是唯一的, 在不同的基下所对应的坐标一般不同. 例2: 所有二阶实矩阵组成的集合R22, 对于矩阵的 加法和数量乘法, 构成实数域R上的一个线性空间. 对 于R22中的矩阵 1 0 0 1 0 0 0 0 , , , E , E11 E 21 E 22 12 0 0 0 0 1 0 0 1
Vn:
= x11+x22+· · · +x n n
Rn : x = (x1, x2, · · · , x n) T (2) 设 (a1, a2, · · · , an)T, (b1, b2, · · · , bn)T, 则有 + (a1, a2, · · · , an)T+(b1, b2, · · · , bn)T, k k(a1, a2, · · · , an)T. 结论: 1. 同一数域P上的同维数线性空间都同构; 2. 同构的线性空间之间具有等价性(即自反性, 对 称性与传递性).
§6.2 线性空间的维数、基与坐标
已知: 在Rn中, 线性无关的向量组最多由n个向量 组成, 而任意n+1个向量都是线性相关的. 问题1: 在线性空间中是否也可以定义线性无关的 概念? 问题2: 线性空间的一个重要特征——在线性空间 V中, 最多能有多少线性无关的向量?
一、线性空间的基与维数
定义: 设V为线性空间, 对1, 2, · · · , m V, 如果存 在不全为零的数 k1, k2, · · · ,kmR, 使 k11 + k22 + · · · + kmm = 0 则称1, 2, · · · , m是线性相关的, 否则称它是线性无关.
上式表明: 在向量用坐标表示后, 它们的运算就归 结为坐标的运算, 因而对线性空间Vn的讨论就归结为 线性空间Rn的讨论. 下面更确切地说明这一点 定义: 设U, V是两个线性空间, 如果它们的元素之 间有一一对应关系, 且这个对应关系保持线性组合的 对应, 那末就称线性空间U与V 同构. 例如: n维线性空间 Vn = { = x11+x22+· · · +xnn | x1, x2, · · · , x n R } 与n维数组向量空间Rn同构. 因为, (1) Vn中的元素与Rn中的元素 x = (x1, x2, · · · , x n) T 形成一一对应关系:
思考题
求由P[x]3中的元素: f1(x) = x3–2x2+4x+1, f3(x) = x3+6x– 5, 生成的子空间的基与维数.
f2(x) = 2x3–3x2+9x–1, f4(x) = 2x3–5x2+7x+5
思考题解答
k1 f1(x)+k2 f2(x)+k2 f3(x)+k4 f4(x) = 0, 3 + ( –2k –3 k –5k )x2 ( k +2 k + k +2 k ) x 则得: 1 2 3 4 1 2 4 + (4k1+9k2+6k3+7k4)x + (k1–k2 – 5k3+5k4) = 0. k1 0 1 2 1 2 k 2 3 0 5 2 0 . 因此 4 9 6 7 k 3 0 1 1 5 0 5 k 4 令
例3: 在线性空间P[x]n中, 取一组基: 0=1, 1 = (x–a), 2 = (x–a)2, · · · , n = ( x – a ) n. 则由泰勒公式知, 对任意不超过n次的多项式 f(x)都有:
( n) f (a ) f (a ) 2 n f ( x ) f (a ) f ' (a )( x a ) ( x a) ( x a) 2! n!
因此, f(x)P[x]n在基0, 1, 2, · · · , n下的坐标为: ( n) f (a ) T f (a ) ( f (a ), f (a ), , , ) . 2! n!
三、线性空间的同构
设1, 2, · · · , n是n维线性空间Vn的一组基, 在这 组基下, Vn中的每个向量都有唯一确定的坐标. 而向量 在这组基下的坐标, 可以看作Rn中的元素, 因此向量与 它的坐标之间的对应关系, 就是Vn到Rn的一个映射.
同构的意义: 在对抽象线性空间的讨论中, 无论构成线性空间 的元素是什么, 其中的运算是如何定义的, 我们所关心 的只是这些运算的代数(线性运算)性质. 从这个意义 上可以说, 同构的线性空间是可以不加区别的, 而有限 维线性空间唯一本质的特征就是它的维数.
四、小结
1. 线性空间的基与维数. 2. 线性空间的元素在给定基下的坐标: (1) 把抽象的向量与具体的数组向量联系起来; (2) 把抽象的线性运算与数组向量的线性运算联系 起来. 3. 线性空间的同构.
设该齐次线性方程组的系数矩阵为A, 则 1 0 3 4 初等行变换 0 1 2 1 A ~ 0 0 0 0 0 0 0 0 因此, f1(x), f2(x)线性无关, 且是由 f1(x), f2(x), f3(x), f4(x)所生成的子空间的基, 该子空间的维数为2, 且有 f3(x) = –3 f1(x) + 2 f2(x), f4(x) = 4 f1(x) – f2(x).
0 0 k E + k E + k E + k E = O , 设 1 11 2 12 3 21 4 22 0 0 k 1 k 2 , 而 k1E11 + k2E12 + k3E21 + k4E22 = k3 k4 k1=k2=k3=k4=0. 因此, 有
由于Rn中的每个元素都有Vn中的向量与之对应,. 我们称这样的映射是Vn与Rn的一个一一对应的 映射, 这个对应的重要性表现在它与运算的关系上. = a11 + a22 + · · · + a n n 设 = b11 + b22 + · · · + b n n
维数为n的线性空间V称为n维线性空间, 记作Vn. 当一个线性空间V中存在任意多个线性无关的向 量时, 就称V是无限维的. 若1, 2, · · · , n为Vn的一个基, 则Vn可表示为: Vn = { = x11+x22+· · · +xnn | x1, x2, · · · , x n R }
定义: 在线性空间V中, 如果存在n个元素1, 2, · · · , nV, 满足: (1) 1, 2, · · · , n 线性无关; (2) V中任意元素总可以由1, 2, · · · , n线性表示, 则称1, 2, · · · , n为线性空间V的一个基, 称n为线性空 间V的维数.