差分放大器设计的实验报告

差分放大器设计的实验报告
差分放大器设计的实验报告

设计课题

设计一个具有恒流偏置的单端输入-单端输出差分放大器。

学校:延安大学

一: 已知条件

正负电源电压V

V V V EE cc

12,12-=-+=+;负载Ω=k R

L

20;输入差

模信号mV

V

id

20=。

二:性能指标要求

差模输入电阻Ω>k R id

10;差模电压增益15≥vd A ;共模抑制

比dB K CMR

50>。

三:方案设计及论证

方案一:

方案二

方案论证:

在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。

论证方案一:用电阻R6来抑制温漂

?优点:R6 越大抑制温漂的能力越强;

?缺点:<1>在集成电路中难以制作大电阻;

<2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化)

论证方案二

优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况;

(2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。

通过分析最终选择方案二。

四:实验工作原理及元器件参数确定

?静态分析:当输入信号为0时,

?I EQ≈(Vee-U BEQ)/2Re

?I BQ= I EQ /(1+β)

?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ

动态分析

?已知:R1=R4,R2=R3

?Rid=2(R1+Rbe)+Rw1+Rw2>10K Uid=2ib1(R1+Rbe) Uod=βIb1(Rc五:实验仿真及数据计算(1)差模增益仿真图

(2)共模增益仿真图

(3):输入电阻测量:

由仿真图(1)得:Aid=>15 (2)得: Aic=

(3)得:Ri=[∕()]*1k=>10k

Kcmr= Aid∕Aic=>320=50dB

六:实验调试

静态工作点的调试:

理论上为达到性能指标,输入为零时,实验过程中应用万用表测量Q1和Q2的电压,同时调节47K电位器,使得电压为零,然后调节10k电位器,使得R10电压为5V.

实际调试,通过调节47k电位器,Q1和Q2的电压最小只能达到,R10上的电阻可以达到5V。

动态特性调试:

当输入电阻为时,测得输入电阻为,差模电压增益为;实际要求差模电压增益大于15,因此不满足指标要求,因此根据理论差模电压增益的计算公式知:可通过减小R1和R4(R1= R4),

来提高差模电压增益,故换用R1,R4为500R,此时测得放大倍数为,但输入电阻为,不满足要求,根据理论输入电阻计算公式得应适当增大R1,R4,故换用R1,R4为1K,此时测得差模增益,输入电阻为,满足指标要求,并测得共模增益为,计算得共模抑制比为,大于50dB,满足指标要求。

七:实验改进措施:

在此次实验中,我们通过调整两个电位器使静态工作点得以改

变,并且调整使电路对称性最好,提高了电路的可控性和实验精度,减小了实验误差。

八:实验心得:

通过本次实验,我们对此电路原理有了深刻的认识,在焊接元器件和实验的调试过程中,我们不断地改进电路性能,发现问题并解决问题,最终达到性能指标要求。这对我们的动手实践能力、解决实际问题的能力都有了很大的提高。

差动放大器实验报告

差动放大器实验报告 以下是为大家整理的差动放大器实验报告的相关范文,本文关键词为差动,放大器,实验,报告,篇一,实验,差动,放大器,南昌大学,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在工作报告中查看更多范文。 篇一:实验五差动放大器 南昌大学实验报告 实验五差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。当开关K拨向左边时,构成典型的差动放大器。调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号ui=0时,双端输出电压uo=0。Re为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较

强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1差动放大器实验电路 1、静态工作点的估算典型电路Ic1=Ic2=1/2Ie恒流源电路Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出:Re=∞,Rp在中心位置时, Ad? 单端输出 △uoβRc ?? △ui Rb?rbe??β)Rp 2 Ad1? △uc11?Ad △ui2 Ad2? △uc21 ??Ad △ui2 当输入共模信号时,若为单端输出,则有 △uc1?βRcR

Ac1?Ac2????c △uiR?r?(1?β)(1R?2R)2Re bbepe 3、共模抑制比cmRR2 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比AA cmRR?d或cmRR?20Logd?db? AcAc 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、典型差动放大器性能测试 按图5-1连接实验电路,开关K拨向左边构成典型差动放大器。 1)测量静态工作点2)①调节放大器零点 信号源不接入。将放大器输入端A、b与地短接,接通±12V直流电源,用直流电压表测量输出电压uo,调节调零电位器Rp,使uo=0。调节要仔细,力求准确。 ②测量静态工作点 零点调好以后,用直流电压表测量T1、T2管各电极电位及射极电阻Re两端电压uRe,记入表5-1。

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 2.4.2. 具有平衡电位器的差动放大器 分析容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 1.13mA 6.4V 7.1V 双出 A m 100.43-? 1.13mA 6.4V 7.1V 单出 A m 100.43-? 1.13mA 3.2V 3.9V 分析容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 1.12mA 6.4V 7.1V 双出 A m 109.83-? 1.12mA 6.4V 7.1V 单出 A m 100.93-? 1.10mA 3.2V 4.0V 分析容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 -93.3 15k Ω 10k Ω ∞ 单出 -46.7 15k Ω 5k Ω 184.2 分析容 u A i R o R CMR K 空载 -179.4 15k Ω 10k Ω ∞ 双出 -90.1 15k Ω 10k Ω ∞ 单出 -45.5 15k Ω 5k Ω 189.4

差动放大器实验报告

差动放大电路的分析与综合(计算与设计)实验报告 1、实验时间 10月31日(周五)17:50-21:00 2、实验地点 实验楼902 3、实验目的 1. 熟悉差动放大器的工作原理(熟练掌握差动放大器的静态、动态分析方法) 2. 加深对差动放大器性能及特点的理解 3. 学习差动放大电路静态工作点的测量 4. 学习差动放大器主要性能指标的测试方法 5. 熟悉恒流源的恒流特性 6. 通过对典型差动放大器的分析,锻炼根据实际要求独立设计基本电路的能力 7. 练习使用电路仿真软件,辅助分析设计实际应用电路 8. 培养实际工作中分析问题、解决问题的能力 4、实验仪器 数字示波器、数字万用表、模拟实验板、三极管、电容电阻若干、连接线 5、电路原理 1. 基本差动放大器 图是差动放大器的基本结构。它由两个元件参数相同的基本共射放大电路组成。 部分模拟图如下

1.直流分析数据 2.直流分析仿真数据 3.交流分析数据 4.交流分析仿真数据 具有平衡电位器的差动放大器 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 100.43-? 双出 A m 100.43-? 单出 A m 100.43-? 分析内容 BQ I CQ I CQ U CEQ U 空载 A m 109.83-? 双出 A m 109.83-? 单出 A m 100.93-? 分析内容 u A i R o R CMR K 空载 -189 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω 分析内容 u A i R o R CMR K 空载 15k Ω 10k Ω ∞ 双出 15k Ω 10k Ω ∞ 单出 15k Ω 5k Ω

T型功分器的设计与仿真.

T型功分器的设计与仿真 1.改进型威尔金森功分器的工作原理 功率分配器属于无源微波器件,它的作用是将一个输入信号分成两个(或多个)较小功率的信号,工程上常用的功分器有T型结和威尔金森功分器。 威尔金森功分器是最常用的一种功率分配器。图1所示的为标准的二路威尔 金森等功率分配器。从合路端口输入的射频信号被分成幅度和相位都相等的两路信号,分别经过传输线Bl和BZ,到达隔离电阻两端,然后从两个分路端口输出,离电阻R两端的信号幅度和相位都相等,R上不存在差模信号,所以它不会消耗功率,如果我们不考虑传输线的损耗,则每路分路端口将输出二分之一功率的信号。 图1威尔金森功分器 但是这种经典威尔金森等功率分配器有几个缺点: 1、大功率应用的时候,要求隔离电阻的耗散功率大因此电阻的体积也会比较大 2、如果功分器应用于较高的频段,波长就会与大功率电阻的尺寸相比拟,这样就需要考虑电阻的分布参数。 3、为了提高功分器性能,就要尽量减小Bl和BZ这两段传输线之间的藕合,因此在实际设计时,要求四分之一波长传输线Bl、BZ之间的距离较大,在低频应用时,由于四分之一波长较长,占用面积还是太大了,此外,四分之一波长传输线Bl、BZ的阻抗较高,因此线宽较细,制板的相对误差更大[24]。为克服这些缺点,本文采用了一种改进型的威尔金森等功率分配器,如图2所示

图2 改进型威尔金森功分器 可以看到,它仅由四段传输线组成,没有隔离电阻。传输线A 、Cl 、CZ 的特 征阻抗均为Z0。传输线B 位于A 和Cl 、CZ 之间,它的电长度为四分之一波长, 特征阻抗为Z0/2。从合路端输入的信号,通过传输线B ,被分成幅度和相位相等的的两路信号,分别经过传输线Cl 和C2到达分路端口一和二,在整个结构中,传输线B 起到了阻抗变换的作用。从传输线A 、B 相接处向左看,输入阻抗为Z0。从传输线B 与C1、C2相接处向右看,输入阻抗为Z0/2。利用四分之一阻抗变换器的原理我们知道,传输线的特征阻抗为2/00Z Z ?,即Z0/2。因此,整个电路处于功率分配与合成时,在中心频点处,三个端口都能匹配良好,没有反射。这种改进型的结构克服了标准威尔金森功分器的一系列缺点,同时由于省略了隔离电阻,所以成本降低,也不存在电阻分布参数的问题,与传统威尔金森功分器相比,减少了一段四分之一波长传输线,另外,构成变换器的四分之一波长传输线B 的特征阻抗较低,线宽较宽,能有效降低制板误差。 2功分器的设计与仿真 通过前面的分析,我们知道改进型威尔金森功分器四段传输线特征阻抗之间 的比例关系。由此可得,传输线A 、C1和C2的特征阻抗均为50Ω,而传输线B 的特征阻抗为352/0=Z Ω 为了实现右旋圆极化,经过C2输出的信号要比经过Cl 的相位超前?90,即Cl 要比C2长λ4/1g (λg 为中心频率所对应的介质波长)。设计的功率分配器 如图3所示,传输线段B 的长度约为λ4/1g ,起阻抗变换的作用。传输线段

实验五 差动放大器

南昌大学实验报告 实验五 差动放大器 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 下图是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图5-1 差动放大器实验电路 1、静态工作点的估算 典型电路 Ic1=Ic2=1/2IE 恒流源电路 Ic1=Ic2=1/2Ic3 2、差模电压放大倍数和共模电压放大倍数 双端输出: R E =∞,R P 在中心位置时, P be B C i O d β)R (121r R βR △U △U A +++- == 单端输出 d i C1d1A 2 1△U △U A ==

d i C2d2A 21 △U △U A -== 当输入共模信号时,若为单端输出,则有 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 或 三、实验设备与器材 1、函数信号发生器 2、示波器 3、交流毫伏表 4、万用表 5、实验箱 6、差动放大器集成块 四、实验内容 1、 典型差动放大器性能测试 按图5-1连接实验电路,开关K 拨向左边构成典型差动放大器。 1) 测量静态工作点 2) ①调节放大器零点 信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压U O ,调节调零电位器R P ,使U O =0。 调节要仔细,力求准确。 E C E P be B C i C1C2C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-====d c A CMRR A () =d c A CMRR 20Log dB A

【原创】南京邮电大学 课程设计 Wilkinson(威尔金森)功分器的设计

南京邮电大学电子科学与工程学院电磁场与无线技术Wilkinson功分器 课题报告 课题名称 Wilkinson功分器 学院电子科学与工程学院 专业电磁场与无线技术 班级 组长 组员 开课时间 2012/2013学年第一学期

一、课题名称 Wilkinson(威尔金森)功分器的设计 二、课题任务 运用功分器设计原理,利用HFSS软件设计一个Wilkinson功分器,中心工作频率3.0GHz。 ?基本要求 实现一个单阶Wilkinson等功分设计,带内匹配≤-10dB,输出端口隔离≤-10dB,任选一种微波传输线结构实现。 ?进阶要求 多阶(N≥2),匹配良好(S11≤-15dB),不等分,带阻抗变换器(输出端口阻抗 不为50Ω),多种传输线实现。 三、实现方式 自选一种或者多种传输线实现,如微带线,同轴线,带状线等,要求输入输出端口阻抗为50Ω,要求有隔离电阻(通过添加额外的端口实现) 四、具体过程 1.计算基本参数 通过ADS Tool中的Linecalc这个软件来进行初步的计算。 在HFSS中选定版型为Rogers RT/duroid 5880 (tm),如具体参数下图

50Ω微带线计算 得到选取微带线宽度约为0.67mm。 70.7Ω微带线计算 得到选取微带线宽度约为0.34mm,由于微带线电长度与其宽度没有必然联系,所以两个分支微带线的长度根据具体情况进行更改。

2.绘制仿真模型 微带单阶功分器

◆微带参数:w50:阻抗为50Ω的微带线宽度;w2:两分支线宽度; l1,l2,l3,l4:各部分微带线长度; rad1,rad2:各部分分支线长度(即半环半径) ◆在本例中,需要调整的调整关键参数为w2,rad1,空气腔参数随关键参数相应调 整即可。 ◆根据计算,此处的吸收电阻值应该为100Ω,但是在实际情况中,选取97Ω。 微带多阶功分器

功分器的设计原理

设计资料项目名称:微带功率分配器设计方法 拟制: 审核: 会签: 批准: 二00六年一月

微带功率分配器设计方法 1. 功率分配器论述: 1.1定义: 功率分配器是一种将一路输入信号能量分成两路或多路信号能量输出的器件,也可反过来将多路信号能量合成一路输出,此时也可称为合路器。 1.2分类: 1.2.1功率分配器按路数分为:2路、3路和4路及通过它们级联形成的多路功率分配器。 1.2.2功率分配器按结构分为:微带功率分配器及腔体功率分配器。 1.2.2根据能量的分配分为:等分功率分配器及不等分功率分配器。 1.2.3根据电路形式可分为:微带线、带状线、同轴腔功率分配器。 1.3概述: 常用的功率分配器都是等功率分配,从电路形式上来分,主要有微带线、带状线、同轴腔功率分配器,几者间的区别如下: (1)同轴腔功分器优点是承受功率大,插损小,缺点是输出端驻波比大,而且输出端口间无任何隔离。微带线、带状线功分器优点是价格便宜,输出端口间有很好的隔离,缺点是插损大,承受功率小。(2)微带线、带状线和同轴腔的实现形式也有所不同:同轴腔功分器是在要求设计的带宽下先对输入端进行匹配,到输出端进行分路;而微带功分器先进行分路,然后对输入端和输出端进行匹配。

下面对微带线、带状线功率分配器的原理及设计方法进行分析。 2.设计原理: 2.1分配原理: 微带线、带状线的功分器设计原理是相同的,只是带状线的采用的是对称性空气填充或介质板填充,而微带线的主要采用的是非对称性部分介质填充和部分空气填充。下面我们以一分二微带线功率分配的设计为例进行分析。传输线的结构如下图所示,它是通过阻抗变换来实现的功率的分配。 图1:一分二功分器示意图 在现有的通信系统中,终端负载均为50Ω,也就是说在分支处的阻抗并联后到阻抗结处应为50Ω。如上图匹配网络,从输入端口看Ω==500Z Z in ,而Ω==50//21in in in Z Z Z ,且是等分的,所以1in Z =2in Z ,①处1in Z 、②处2in Z 的输入阻抗应为100Ω,这样由①、②处到输出终端50Ω需要通过阻抗变换来实现匹配。 2.2阶梯阻抗变换: 在微波电路中,为了解决阻抗不同的元件、器件相互连接而又不使其各自的性能受到严重的影响,常用各种形式的阻抗变换器。其中最简单又最常用的四分之一波长传输线阶梯阻抗变换器(图2)。它

加法器及差分放大器项目实验报告

加法器及差分放大器项目实验报告 一、项目内容和要求 (一)、加法器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容: 2.1 设计一个反相加法器电路,技术指标如下: (1)电路指标 运算关系:)25(21i i O U U U +-=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 5.0,5.021±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1.0,1,5.021为正弦波±=信号,测试两种输入组合情况下的输出电 压波形。 C :输入信号V U i 01=,改变2i U 的幅度,测量该加法器的动态范围。 D :输入信号V U i 01=,V U i 1,2为正弦波,改变正弦波的频率,从1kHz 逐渐增加,步长为 2kHz ,测量该加法器的幅频特性。 2.2 设计一个同相加法器电路,技术指标如下: (1)电路指标 运算关系:21i i O U U U +=。 (2)设计条件 电源电压Ec=±5V ; 负载阻抗Ω=K R L 1.5 (3)测试项目 A :输入信号V U V U i i 1,121±=±=,测试4种组合下的输出电压; B :输入信号V KHz U V U i i 1,1,121为正弦波±=信号,测试两种输入组合情况下的输出电压 波形。 (二)、差分放大器 1、任务目的: (1)掌握运算放大器线性电路的设计方法; (2)理解运算放大器的工作原理; (3)掌握应用仿真软件对运算放大器进行仿真分析的方法。 2、任务内容 2.1 设计一个基本运放差分放大器电路,技术指标如下: (1)电路指标 运算关系:)(521i i O U U U --=。 输入阻抗Ω≥Ω≥K R K R i i 5,521。 (2)设计条件

差动放大电路_实验报告

实验五差动放大电路 (本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~) 一、实验目的 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理 R P用来调节T1、T2管的静态工作点, V i=0时, V O=0。R E为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。 差分放大器实验电路图 三、实验设备与器件 1、±12V直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。 四、实验内容 1、典型差动放大器性能测试 开关K拨向左边构成典型差动放大器。 1) 测量静态工作点 ①调节放大器零点

信号源不接入。将放大器输入端A 、B 与地短接,接通±12V 直流电源,用直流电压表测量输出电压V O ,调节调零电位器R P ,使V O =0。 ②测量静态工作点 再记下下表。 2) 测量差模电压放大倍数(须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 3) 测量共模电压放大倍数 理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点: E3 BE EE CC 212 E3 C3R V )V (V R R R I I -++≈≈=1.153mA I c Q =I c 3/2=0.577mA, I b Q =I c /β=0.577/100=5.77uA U CEQ =V cc-I c R c+U BEQ =12-0.577*10+0.7=6.93V 双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨) P be B C i O d β)R (12 1 r R βR △V △V A +++- ===-33.71 A c 双 =0.

武汉大学差动放大电路实验报告

武汉大学计算机学院教学实验报告 课题名称:电工实验专业:计算机科学与技术2013 年12 月14 日实验名称差动放大电路实验台号实验时数3小时姓名学号年级2013班3班 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识点;实验内容;必要的原理分析) 一、实验目的 1 、熟悉差动放大器工作原理 2、掌握差动放大器的基本测试方法 实验内容 1.计算下列差动放大器的静态工作点和电压放大 倍数电路图见5.1 信号源已替代 5.1 在图5.1的基础上画出单端输入时和共模输入时的电路图 二、实验环境及实验步骤 (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用表 4.TPE-A3模拟电路实验箱 3、实验步骤: 1、将电路图5.1接线 2、测量静态工作点 3、测量差模电压放大倍数 4、测量共模电压放大倍数 5、在实验台上组成单端输入的差动电路进行下列实验

三、实验过程与分析 (详细记录实验过程中发生的故障和问题,进行故障分析,说明故障排除的过程和方法。根据具体实验,记录、整理相应的数据表格、绘制曲线、波形图等) 实验内容及数据记录 1、将电路图5.1接线 2、测量静态工作点 ①调零 将放大器输入端V11、V12接地,接通直流电源,调节调零电位器R P,使V O=0。 ②测量静态工作点:测量V1,V2,V3各极各地电压, 并填入表5.1中。 5.1 对地 电压 Vc1 Vc2 Vc3 Vb1 Vb2 Vb3 Ve1 Ve2 Ve3 测量值 6.29 6.31 -0.74 0 0 - 7.77 -0.61 -0.61 - 8.39 3)测量差模电压放大倍数 在两个输入端各自加入直流电压信号,按有5.2要求测量并记录,由测量得到的数据计算出单端和输出的电压放大倍数。接入到V11t和V12,调节Dc信号源,使其输出为0.1和-0.1. (须调节直流电压源Ui1=0.1V ,Ui2=-0.1V) 4) 测量共模电压放大倍数 将输入端b1和b2 短接,接到信号源的输入端,信号源另一端接地。DC信号先后接OUT1和OUT2 测量有关数据后填入表5.32.,由测量得到的数据计算出单端和双端输出的电压放大倍数,并进一步计算出共模抑制比。 5.2 差模输入共模输入抑制 比测量值计算值测量值计算值计算 值Uc1 Uc2 Uo双Ad1 Ad2 Ad双Uc1 Uc2 Uco双Ac1 Ac2 Ac双CMRR +0.1V 10.08 2.55 7.46 -16. 8616.8 6-33. 71 6.29 6.31 -0.02 0.00 5 0.00 5 0 186.5 -0.1V 6.29 6.31 -0.02 0.00 50.00 5 0 186.5

差动放大电路实验

差动放大电路实验报告 严宇杰141242069 匡亚明学院 1.实验目的 (1)进一步熟悉差动放大器的工作原理; (2)掌握测量差动放大器的方法。 2.实验仪器 双踪示波器、信号发生器、数字多用表、交流毫伏表。 3.预习内容 (1)差动放大器的工作原理性能。 (2)根据图3.1画出单端输入、双端输出的差动放大器电路图。 4.实验内容 实验电路如图3.1。它是具有恒流源的差动放大电路。在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。对于共模信号,若 Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。从而使差动放大器有较强的抑制共模干扰的能力。调零电位器 R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0. 差动放大器常被用作前置放大器。前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。于是人们希望只放大差模信号,不放大共模

功分器的设计

功分器现在有如下几种系列[11]: 1、400MHz-500MHz 频率段二、三功分器,应用于常规无线电通讯、铁路通 信以及450MHz 无线本地环路系统。 2、800MHz-2500MHz 频率段二、三、四微带系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 3、800MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于GSM / CDMA/PHS/WLAN 室内覆盖工程。 4、1700MHz-2500MHz 频率段二、三、四腔体系列功分器,应用于PHS/WLAN 室内覆盖工程。 5、800MHz-1200MHz/1600MHz-2000MHz 频率段小体积设备内使用的微带二、三功分器。 这里介绍几种常见的功分器: 一、威尔金森功分器 我们将两分支线长度由原来的4λ变为43λ,这样使分支线长度变长,但作用效果与4λ线相同。在两分支线之间留出电阻尺寸大小的缝隙,做成如图1-1所示结构。 图1-1 威尔金森功分器 二、变形威尔金森功分器 将威尔金森功分器进行变形,做成如图1-2所示结构。两圆弧长度由原来的4λ变为43λ,且将圆伸展开形成一个近似的半圆。每个支路通过2λ传输线与隔离电阻相连,这样做虽然会减小电路的工作带宽,但使输出耦合问题得到了解决,而且可以用于不对称,功分比高的电路,隔离电阻的放置更加容易,且两支路间的距离足够大,在输出口可直接接芯片。

图1-2 变形威尔金森功分器 三、混合环 混合环又称为环形桥路,它也可作为一种功率分配器使用。早期的混合环 是由矩形波导及其4个E-T 分支构成的,由于体积庞大已被微带或带状线环形桥路所取代。图1-3为制作在介质基片上的微带混合环的几何图形,环的平均周长为 23g λ,环上有四个输出端口,四个端口的中心间距均为4g λ。环路各段归一化特性导纳分别为a, b, c ,四个分支特性导纳均为0Y 。这种形式的 功率分配器具有较宽的带宽,低的驻波比和高的输出功率。理论上来说,它的带宽可以同威尔金森功分器相比。混合环功分器相对威尔金森功分器的优点在于,在实际应用中它在高频率上的性能更好一些。 图1-3 混合环 对比以上三种功分器,首先对比威尔金森功分器及变形威尔金森功分器, 变形威尔金森功分器性能与仿真结果相差较大,其原因可能有以下几点:加入两个21波长微带线,引入了T 型接头,使微带线产生不连续性;为了保证两21波长微带线之间的距离正好可以焊接电阻,两微带线均倾斜,使焊接电阻处微带不均匀,另外电阻焊接的非对称性影响了功分器输出两端的功分比[9]。 威尔金森功分器和混合环的插损性能较好,可以满足一般功率合成的要求。在隔离方面,威尔金森功分器隔离较好,混合环的隔离要稍差。 从上述三种功分器分析可以得出:要获得具有良好性能的微波毫米波功分 器,需保证一定的加工精度,对加隔离电阻的功分器,要特别注意选择尺寸较小的电阻,焊接时要求电阻两端对称,且从电阻反面焊接,也可以考虑使用薄膜电阻来实现。这三种功分器都可以串联用作多路功率分配/合成器。 1.3 本课题研究内容 4g λ4g λ4 g λ43g λ对称平面

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

差动放大器实验报告_0

差动放大器实验报告 篇一:差动放大器实验报告 东莞理工学院实验报告 系(院)、专业班级:电气自动化(2)班姓名:吴捷学号:202041310202日期:2020.12.28成绩: 篇二:差动放大器实验报告 2.6 差动放大器 2.6.1 实验目的 1.加深对差动放大器性能及特点的理解。 2.学习差动放大器主要性能指标的测试方法 2.6.2 实验原理 1.实验电路 图2-6-1差动放大电路实验电路图 实验电路如图2-6-1所示。当开关K拨向左边时,构成典型的差动放大器。调零电位器 用来调节、 管的静态工作点,使得输入信号 。 为两管共用的发射极电阻,它对差 时,双端输出电压 模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有 较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻,可以进一步提高差动放大器抑制共模信号的能力。 2.差动放大器主要性能指标(1)静态工作点 典型电路:(认为) 恒流源电路:

(2)差模电压放大倍数 当差动放大器的射极电阻足够大,或采用恒流源电路时,差模电 压放大倍数 由输出端决定,而与输入方式无关。 双端输出时,若 在中心位置 单端输出时 式中出电压。 和分别为输入差模信号时晶体管、集电极的差模输 (3)共模电压放大倍数 双端输出时 不会绝对等于零。 实际上由于元件不可能完全对称,因此 单端输出时 式中压。 (4)共模抑制比 为了表征差动放大器对有用信号(差模信号)的放大能力和对无用信号(共模信号)的抑制能力,通常用一个综合指标来衡量,即共模抑制比 和 为输入共模信号时晶体管、集电极的共模输出电 或 (dB) 2.6.3 实验内容和步骤 1.典型差动放大器性能测试 按图2-6-1连接实验电路,开关K拨向左边构成典型差动放大器。(1)测量静态工作点 ①调零:将放大器输入端A、B与地短接,接通直流电源,用万用表测量输出

实验三 差动放大器

肇 庆 学 院 学院 课实验报告 年级 班 组 实验日期 姓名 老师评定 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 实验题目 差动放大器 一、实验目的: 1、加深对差动放大器性能及特点的理解 2、学习差动放大器主要性能指标的测试方法 二、实验原理与内容: 图3-1是差动放大器的基本结构。 它由两个元件参数相同的基本共射放大电路组成。当开关K 拨向左边时,构成典型的差动放大器。调零电位器R P 用来调节T 1、T 2管的静态工作点,使得输入信号U i =0时,双端输出电压U O =0。R E 为两管共用的发射极电阻, 它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。 图3-1 差动放大器实验电路 当开关K 拨向右边时,构成具有恒流源的差动放大器。 它用晶体管恒流源代替发射极电阻R E ,可以进一步提高差动放大器抑制共模信号的能力。 1、静态工作点的估算 典型电路 E BE EE E R U U I -≈ (认为U B1=U B2≈0)

E C2C1I 2 1 I I == 恒流源电路 E3 BE EE CC 2 1 2 E3C3R U )U (U R R R I I -++≈≈ C3C1C1I 2 1 I I == 2、差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E 足够大,或采用恒流源电路时,差模电压放大倍数A d 由输出端方式决定,而与输入方式无关。 双端输出: R E =∞,R P 在中心位置时,P be B C i O d β)R (12 1r R βR △U △U A +++- == 单端输出 d i C1d1A 21 △U △U A == d i C2d2A 2 1 △U △U A -== 当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下: 0△U △U A i O C == 实际上由于元件不可能完全对称,因此A C 也不会绝对等于零。 3、 共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 c d A A CMRR = 或()dB A A 20Log CMRR c d = 差动放大器的输入信号可采用直流信号也可采用交流信号。本实验由函数信号发 生器提供频率f =1KHZ 的正弦信号作为输入信号。 三、实验设备与器件 1、±12V 直流电源 2、函数信号发生器 3、双踪示波器 4、交流毫伏表 5、直流电压表 6、晶体三极管3DG6×3,要求把 T 1、T 2管特性参数一致, (或9011×3) 电阻器、电容器若干。 E C E P be B C i C1C2 C12R R )2R R 2 1β)((1r R βR △U △U A A -≈++++-===

实验一 差动放大器实验

实验一差动放大器实验 一、实验目的 1.加深对差动放大器性能的理解。 2.学习差动放大器的主要性能指标的测试方法。 二、实验原理 图1-1是差动放大器的实验电路图。它由两个元件参数相同的基本共射放大电路组成。 当开关K拨向左边时,构成典型的差动放大器。当开关K拨向右边时,构成恒流的差动放大器。调零电位器Rp用来调节T1,T2管的静态工作点。 图1-1 差动放大器实验电路图 当开关K拨向右边时,构成具有恒流源的差动放大器。它用晶体管恒流源代替发射极电阻Re,可以进一步提高差动放大器抑制共模信号的能力。 1.静态工作点的估算 典型电路: 恒流源电路: 2.差模电压放大倍数和共模电压放大倍数 当差动放大器的射极电阻R E足够大,或采用恒流源电路时,差模电压放大倍数A d由输出端方式决定,而与输入方式无关。 双端输出:R E=∞,W电位器在中心位置时,

当输入共模信号时,若为单端输出,则有 若为双端输出,在理想情况下 ,实际上由于元件不可能完全对称,因此Ac也不会绝对等于零。 3.共模抑制比CMRR 为了表征差动放大器对有用信号(差模信号)的放大作用和对共模信号的抑制能力,通常用一个综合指标来衡量,即共模抑制比 差动放大器的输入信号可以用直流信号也可以用交流信号。 三、实验设备 1、HKCK-1型测控电路综合实验平台 2、万用表、函数信号发生器、数字示波器 四、实验内容及步骤 1、接通HKCK-1挂箱上的电源并用直流电压表表观测平台上的直流电压输出是否正常,挂箱的指示灯是否正常,如果不正常,则需要检测。只有电压正常以后,方可进行下一步实验。 2.典型差动放大器性能测试 把差动放大器单元的开关拨向左边构成典型差动放大器。 (1)放大器调零 放大器输入端的“+”、“一”两端与地短接,用万用表直流电压档观测输出电压Uo,调节调零电位器101,使U o=0。调节要仔细,力求准确。(注意:本挂件的所有单元共地)。 (2)测量差模电压放大倍数 将函数信号发生器的信号加入本单元的U i端的“+”与地之间,使之输出频率为1KHz 左右的正弦波信号,幅值为100mV,用示波器观测输入、输出波形,在U o输出波形无失真的情况下,测量U i,U O+,U O一,U o对地之间电压,记入表1-2中,并观察U i,U o+,U o-之间的相位关系。 (3)测量共模电压放大倍数 将放大器的输入端“+”端和“一”端短接,信号源接输入端“+”端和地之间,构成共模输入方式,调节功率信号发生器,使之输出信号f=lKHz,1V P-P的正弦信号,用示波器观测输入、输出波形,在输出电压无失真的情况下,测量U O+、U O一的值,记入表1-2,并观察U i,U o+,U o-之间的相位关系。

ADS实验报告

射频微波EDA课程报告 学院: 班级: 姓名: 学号: 指导老师: 2015年5月

一、本课设学习目的 通过射频微波EDA课程设计的学习,在学习EDA仿真软件ADS使用方法的基础上,掌握最基本的射频无源/有源电路的工作原理与系统仿真设计。加深对于EDA的理解,并将理论与实践相结合,用实践证明理论,更深入掌握EDA。 二、本课设报告内容 (一)、利用ADS进行放大器匹配电路设计。要求:1)使用晶体管为bjt_pkg (参数beta=50),2)中心频率为1900MHz,对应的S21>30dB,S11和S22<-30dB。1)相关电路原理简介: (一)1.导入ac_vcc.dns,按照书本所示更改电路图,添加终端负载等元件,写入改变终端阻抗的方程: 2)必要的设计参数、步骤、仿真电路图 2.开始仿真,引入S21的矩形图,并插入标志,得到如下:

3.运行仿真,输出portZ (2)数据列表,可以看出,当频率大于等于400MHz 时,负载阻抗为35欧: 4.在数据显示窗中计算感抗,容抗值: (3)插入列表,显示电感值和感抗范围: freq 100.0 M Hz 200.0 M Hz 300.0 M Hz 400.0 M Hz 500.0 M Hz 600.0 M Hz 700.0 M Hz 800.0 M Hz 900.0 M Hz 1.000 GHz 1.100 GHz 1.200 GHz 1.300 GHz 1.400 GHz 1.500 GHz 1.600 GHz 1.700 GHz 1.800 GHz 1.900 GHz 2.000 GHz 2.100 GHz 2.200 GHz 2.300 GHz 2.400 GHz 2.500 GHz 2.600 GHz 2.700 GHz 2.800 GHz 2.900 GHz 3.000 GHz 3.100 GHz 3.200 GHz 3.300 GHz 3.400 GHz 3.500 GHz 3.600 GHz 3.700 GHz PortZ(2) 50.000 / 0.000 50.000 / 0.000 50.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000 35.000 / 0.000

相关文档
最新文档