人教版数学八年级下册教案19.2.2 一次函数(第3课时)
新人教版八年级数学下册《十九章 一次函数 19.2 一次函数 待定系数法求一次函数的解析式》教案_0

八年级数学·下 新课标[人]19.2.2 一次函数(3)一、复习提问:1、什么叫做一次函数?一般地,形如y=kx+b (其中k 、b 是常数,k 不等于0)的函数,叫做一次函数,其中k 叫做比例系数.当b=0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数.2、一次函数图象是怎样的?一般地,一次函数y=kx+b (其中k 、b 是常数,k 不等于0)的图象是一条直线,我们称它为直线y=kx+b.当k>0时.直线y=kx+b 的图象,从左向右上升,即y 随着x 的增大而增大;当k<0时,直线y=kx+b 的图象,从左向右下降,即y 随着x 的增大而减小.提 问: 已知某个一次函数y=kx+b ,当自变量x =-2时,函数值y =-1,当x =3时,y =-3. 能否求出这个一次函数的解析式吗?解:由已知条件x =-2时,y =-1,得-1=-2k +b ;由已知条件x =3时,y =-3,得-3=3k +b .两个条件都要满足,即解关于k,b 的二元一次方程组: 解得 所以一次函数的解析式为 像上述过程,先设出解析式,再根据条件确定解析式中未知的系数,从而得到解析式的方法,叫做待定系数法.归 纳: 如何求一次函数y=kx+b 的解析式,需要具备几个条件才可以求出k 和b 的值?(1)设出一次函数解析式的一般形式为y=kx+b.(2)把自变量x 与函数y 的对应值(可能是以函数图象上点的坐标的形式给出)代入函数解析式中,得到关于待定系数k 、b 的方程组.(3)解方程组,求出待定系数中k 、b 的值.(4)写出一次函数的解析式.二、学习新知:1=23=3k b k b.--+⎧⎨-+⎩,2=59=.5k -b -⎧⎪⎪⎨⎪⎪⎩,29=.55y x --例1:已知一次函数的图象过点(3,5)与(-4,-9),求这个一次函数的解析式.解析:求一次函数y=kx+b 的解析式,关键是求出k,b 的值.因为图象过点(3,5)与(-4,-9),所以这两个点的坐标适合解析式,从而得到关于k,b 的二元一次方程组,解方程组求出k,b 即可确定一次函数解析式.解:设这个一次函数的解析式为y =kx+b (k ≠0).因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解方程组得所以这个一次函数的解析式为y=2x -1.例2:已知一次函数的图象如图所示,求出函数的解析式.讨论:(1)根据图象你能得到哪些信息? (2)你能找到确定一次函数解析式的条件吗?解:设所求的一次函数的解析式为y=kx+b (k≠0).因为直线经过点(2,0),(0,4),所以把这两点坐标代入解析式,得 解得所以所求的一次函数的解析式是y=-2x+4.三、检测反馈:1.已知一次函数y=kx+b ,当x = - 4时y =9,当x =6时y =-1,则此函数的解析式为 .2.如图所示,求直线AB 对应的函数解析式.5=39=4k b k b.+⎧⎨--+⎩,=2=-1k b .⎧⎨⎩,0=24=k b b.+⎧⎨⎩,=-2=4k b .⎧⎨⎩,3.一条平行于直线y=-3x的直线交x轴于点(2,0),则该直线的解析式是.四、课堂小结:1.求一次函数解析式的一般步骤有:①设出一次函数解析式y=kx+b(k≠0),②将两个点的坐标代入解析式,得到二元一次方程组,③解方程组求出k和b的值,④写出答案.2.一次函数解析式的确定通常有下列几种情况:(1)利用待定系数法,根据两对x和y的值,列出方程组确定k,b的值,进而求出一次函数的解析式.(2)根据图象上两点坐标求出一次函数的解析式.五、课后作业:第99页第3、7题、第109页第13题。
教育学年八年级数学下册192一次函数第3课时教案新版新人教版.docx

小学 +初中 +高中一次函数第 3 课时教学目标1.学会用列表、描点、连线画函数图象,知道画函数图象的一般步骤.2.学会观察、分析函数图象信息,提高识图能力、分析函数图象信息能力.3.体会数形结合思想,并利用它解决实际生活中的问题,提高解决问题能力.教学重点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.教学难点通过观察实际问题的函数图象,使学生感受到解析法和图象法表示函数关系的相互转换这一数形结合的思想.一、导入新课问题上节课我们从气温曲线上获得了许多信息,知道了一些问题.现在让我们来看看下图,如何从图上找到各个时刻的气温?分析:图中,有一个直角坐标系,它的横轴是t 轴,表示时间;它的纵轴是T 轴,表示气温.这一气温曲线实质上给出了某日的气温T (℃)与时间 t (时)的函数关系.例如,上午10 时的气温是 2℃,表现在气温曲线上,就是可以找到这样的对应点,它的坐标是(10 , 2) .实质上也就是说,当 t =10时,对应的函数值T=2.气温曲线上每一个点的坐标( t,T) ,表示时间为t 时的气温是T.二、新教学例 1 如所示,小明家、食堂、在同一条直上.小明从家去食堂吃早餐,接着去,然后回家.右反映了个程中,小明离家的距离x 与 y 之的关系.根据象回答下列:( 1)食堂离小明家多?小明从家到食堂用了多少?(2)小明吃早餐用了多少?( 3)食堂离多?小明从食堂到用了多少?( 4)小明用了多少?(5)离小明家多?小明从回家的平均速度是多少?教首先要引学生看函数的象:个函数的象是由几条段成的折,其中每条段代表一个段的活,条段的左右端点是横坐的差,相活所用的.分析:小明离家的距离y 是 x 的函数.由象中有两段平行于x 的段可知,小明离家后有两段先后停留在食堂与里.例 2在式子y=x+0.5中,于x 的每一个确定的,y 有唯一的,即y 是 x 的函数,画出个函数的象.解:从式子y= x+0.5可以看出, x 取任意数个式子都有意,所以y 的取范是全体数 .从 x 的取范中出一些数,算出y 的,列表如下.x⋯- 3- 2- 10123⋯y⋯- 2.5- 1.5- 0.50.5 1.5 2.5 3.5⋯根据表中数描点(x, y),并用平滑的曲接些点(下).从函数的图象可以看出,直线从左向右上升,即当x 由小变大时, y=x+0.5随之增大.通过对函数S= x2( x>0)和 y= x+0.5的具体分析和讨论,让学生经历列表、描点、连线等绘制函数图象的具体过程,即加深了对图象意义的认识,了解图象上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及描点法画函数图象的一般步骤进行归纳做了准备.归纳:描点法画函数图象的一般步骤如下:第一步,列表——表中给出一些自变量的值及其对应的函数值;第二步,描点——在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点;第三步,连线——按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来.三、课堂练习:教材第79 页练习 1、 2.四、布置作业:习题第19.2 第 7、 8、 9、 10 题.教学反思:。
19.2.2一次函数——待定系数法求一次函数解析式教案2022-2023学年人教版八年级下册数学

19.2.2 一次函数——待定系数法求一次函数解析式教案引言本教案旨在教授八年级下册数学课程中的一次函数待定系数法求解问题。
一次函数是初等数学中最基本的函数之一,待定系数法则是解决一次函数问题中常用的一种方法。
本教案将帮助学生掌握待定系数法的基本原理,并通过具体例题的讲解,引导学生能够独立解决一次函数问题,并运用所学知识解决实际生活中的问题。
目标•理解一次函数的概念及特征•掌握待定系数法求解一次函数的步骤和方法•能够独立解决一次函数相关问题•运用所学知识解决实际问题教学内容1.一次函数回顾2.待定系数法求一次函数解析式的步骤和方法3.实例分析与解题训练4.应用案例分析教学步骤一、一次函数回顾1.提问:什么是一次函数?2.引导学生回顾一次函数的定义和示例,并讨论函数的特征。
二、待定系数法求一次函数解析式的步骤和方法1.引入待定系数法的概念,解释其基本原理。
2.解释待定系数法的求解步骤:–步骤一:列方程–步骤二:解方程–步骤三:找到解析式3.用具体例子演示待定系数法的求解过程,并解释其中的关键步骤和技巧。
三、实例分析与解题训练1.展示一些具体的一次函数问题,并引导学生运用待定系数法解决这些问题。
2.让学生分组进行练习,相互交流并解答问题。
四、应用案例分析1.提供一些实际生活中的问题,要求学生运用所学知识解决这些问题。
2.引导学生思考如何用一次函数和待定系数法来建立模型和解决问题。
总结与反思通过本节课的学习,学生应该对一次函数的特点和待定系数法有较为全面的理解,并能够灵活运用待定系数法解决一次函数问题。
同时,学生应该能够将所学知识运用到实际生活中,解决与一次函数相关的问题。
希望学生们能够通过课后的复习和实践,进一步巩固所学内容,并提升自己的问题解决能力。
课后作业1.自选一个实际生活中的问题,并用一次函数和待定系数法解决。
2.阅读教材相关章节,复习一次函数的相关知识。
注意:以上内容仅供参考,老师可以根据班级实际情况和教学需要进行适当调整。
19.2.2一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)

19.2.2 一次函数的概念-2022-2023学年人教版八年级数学下册教案(含详解)教学目标1.了解一次函数的定义和概念;2.学会绘制一次函数的图像;3.掌握一次函数的性质和使用方法。
教学准备1.教材:2022-2023学年人教版八年级数学下册;2.教具:白板、黑板、彩色粉笔、直尺、铅笔。
教学过程1. 导入新知•引出问题:我们在前几节课学过的函数都是二次函数或三次函数,那么一次函数是如何定义的呢?它和其他函数有什么不同之处?•学生思考并回答问题。
2. 学习新知•引导学生打开教材第19页,阅读19.2.2节的内容,了解一次函数的定义和概念。
•进行示范演示,并让学生一起完成例题。
3. 拓展应用•将学生分成小组,进行小组赛。
•每组从现实生活中选择一个具体问题,使用一次函数解决,并讲解解题步骤和思路。
•学生通过小组讨论,提出问题并解决问题,培养团队合作能力和问题解决能力。
4. 巩固练习•随堂练习:教师提供一些练习题,让学生进行课堂练习。
•将答案在黑板上进行公开讲解,指导学生进行自我纠错。
5. 归纳总结•总结本节课学习的要点,强调一次函数的特点和性质。
课后作业1.阅读教材第19页的相关内容,加深对一次函数的理解;2.完成课后习题第2、3题。
教学反思本节课通过引入问题的方式激发了学生的学习兴趣,使学生主动思考和回答问题,培养了他们的思维能力。
同时,采用了小组赛的形式,增强了学生的合作意识和团队精神。
在拓展应用环节中,学生通过解决具体问题的方式,将理论知识应用到实践中,提高了他们的问题解决能力。
通过课堂练习和归纳总结等环节,巩固了学生对一次函数的理解和掌握程度。
在以后的教学中,可以在导入新知环节引入更多的问题,加强学生的探究性学习。
人教版八年级数学下19.2.2一次函数公开课教学设计

3.导入新课:通过这个问题,我们可以发现费用与行驶公里数之间存在一种线性关系。这种关系就是我们今天要学习的一次函数。
(二)讲授新知
在讲授新知环节,我将通过以下步骤帮助学生掌握一次函数的定义、图像特点及其性质。
1.一次函数的定义:介绍一次函数的一般形式y=kx+b(k≠0),解释k、b的几何意义。
-学生在教师的指导下,运用教育软件辅助学习,提高学习效率。
3.注重学生个体差异,实施有针对性的教学策略。
-教师根据学生的认知水平、学习兴趣等个体差异,设计不同难度的练习题,满足不同层次学生的需求。
-教师关注学生在学习过程中的困惑,及时给予指导和鼓励,帮助学生克服困难,提高自信心。
(三)情感态度与价值观
五、作业布置
为了巩固学生对一次函数知识的掌握,提高学生的应用能力和解决问题的能力,特此布置以下作业:
1.必做题:
-根据教材第19.2.2节的内容,完成课后练习题1、2、3。
-利用描点法绘制y=3x-2的图像,并分析其性质。
-在生活中找到一个一次函数的实际例子,并说明其k值和b值的实际意义。
2.选做题(至少选做2题):
3.培养学生勇于探索、积极进取的精神品质。
-学生在面对数学问题时,敢于尝试,勇于探索,不怕困难,坚持不懈。
-学生在解决问题的过程中,体验成功的喜悦,激发积极进取的精神品质。
二、学情分析
八年级学生经过前期的数学学习,已经具备了一定的数学基础知识和技能,对函数的概念有了初步的认识。在此基础上,学生对一次函数的学习将面临以下挑战:
1.培养学生对数学的兴趣和热爱,树立正确的数学观念。
-学生在学习过程中,感受数学的简洁美、逻辑美,提高数学学习兴趣。
人教版八年级数学下册19.2.2一次函数的概念优秀教学案例

1.通过生活实例引入一次函数的概念,激发学生的学习兴趣。
2.引导学生通过观察、分析、归纳一次函数的性质,加深对一次函数的理解。
3.运用一次函数解决实际问题,提高学生的应用能力。
五、案例亮点
1.生活实例引入:通过生动的打车软件费用计算实例,将一次函数的概念与学生的生活实际紧密联系起来,增强了学生的学习兴趣,提高了学生的课堂参与度。
2.问题导向:本节课以问题为导向,引导学生主动探究一次函数的性质,激发了学生的求知欲和自主学习能力,培养了学生的批判性思维。
3.小组合作:通过小组合作讨论,学生不仅能够共享彼此的知识和经验,还能培养团队合作意识和沟通能力,提高了学习效果。
3.运用一次函数解决实际问题,提高学生的应用能力,培养学生的实践操作能力。
4.采用小组合作、讨论交流的形式,培养学生的团队合作意识和沟通能力。
(三)情感态度与价值观
1.培养学生对数学学科的热爱,激发学生学习数学的兴趣,树立学生学习数学的自信心。
2.通过对一次函数的学习,使学生体会数学的严谨性、逻辑性,培养学生的求真精神。
(三)学生小组讨论
1.设计具有挑战性的问题,引导学生进行小组讨论,探究一次函数的性质。
2.鼓励学生提出疑问,引导学生敢于挑战权威,培养学生的批判性思维。
3.教师巡回指导,及时解答学生在讨论过程中遇到的问题。
(四)总结归纳
1.让学生回顾本节课所学内容,总结一次函数的概念、性质和解法。
2.引导学生通过归纳总结,提高对一次函数的理解和记忆。
在教学过程中,我将注重启发式教学,引导学生主动探究,培养学生的动手操作能力和思维能力。同时,关注学生的个体差异,给予不同程度的学生适当的指导,使他们在课堂上都能有所收获。课后,及时进行教学反思,不断调整教学策略,以提高教学效果。
19.2.2一次函数(第三课时)

∵函数图象过点(3,5)与(-4,-9).
设
∴ 3k+b=5 代 解得 k=2 b=-1 -4k+b=-9 ∴这个一次函数的解析式为y=2x-1
求 写
象这样先设出函数解析式,再根据条件 确定解析式中未知的系数,从而具体写出 这个式子的方法,叫做待定系数法.
利用待定系数法求一次函数的一般步骤为:
y=2x
图1
3 y x +3 2
图2
2.分析与思考
确定正比例 函数的表达 式需要几个 一 条件?确定 一次函数的 表达式需要 两 几个条件?
原点的一条直线,因此是_______ 图(1)是经过____ 正比例 函数, ( 1 ,2 ) k=2 , 可设它的解析式为y=kx ____将点 _____ 代入解析式得_____ y=2x 。 从而确定该函数的解析式为______
y=kx+b ,因为此直线经过点 图(2)设直线的解析式是________ ( 0 ,3 ) ( 2,0) ,因此将这两个点的坐标代入可得关 ______ , _______ 于k,b方程组,从而确定k,b的值,确定了解析式。
例题:已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.
-1 0 1 2 3 4
y=
{
5x
(0≤x ≤ 2),
4x+2 (x>2).
5
6
7
8
9 10 x
1、怎样用函数解决实际问题?
审清题意,明确有几个变量,理清变量之间 的关系,设合适的未知数,表示出函数表达 式。根据函数性质和自变量取值范围解决实 际问题。 2、怎样确定自变量取值范围?
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计

为了巩固所学知识,我会安排一些课堂练习。这些练习将包括基础题、提高题和应用题,以适应不同学生的学习需求。我会要求学生在规定时间内完成练习,并在完成后进行小组内或全班性的交流。
我会挑选一些典型的错误或难题进行讲解,帮助学生澄清疑惑,并强调解题过程中的关键步骤和注意事项。通过这些练习,学生能够将理论知识与实践相结合,提高解题能力。
人教版八年级数学下册19.2.2一次函数的图象与性质教学设计
一、教学目标
(一)知识与技能
本节课主要让学生掌握一次函数的图象与性质。通过学习,学生应能够:
1.理解一次函数的定义,并能用数学符号表示一次函数。
2.学会通过描点法绘制一次函数的图象,并能够识别图象的基本特征。
3.掌握一次函数的性质,包括斜率k的正负对图象的影响,以及截距b的几何意义。
4.探究题:请同学们思考以下问题,下节课分享你们的发现:
(1)一次函数的图象是一条直线,那么斜率k和截距b对这条直线的位置有什么影响?
(2)如果两个一次函数的斜率相同,但截距不同,它们的图象会有什么关系?
作业要求:
1.请同学们认真完成作业,注意书写规范,保持作业整洁。
2.对于提高题和应用题,请同学们尽量用自己的语言描述解题过程,以加深对一次函数的理解。
(三)学生小组讨论,500字
在掌握了基本知识后,我会组织学生进行小组讨论。每个小组都会得到一个或几个实际问题,要求他们利用一次函数的知识来解决。例如,“一辆汽车以固定速度行驶,行驶时间和路程之间的关系是怎样的?请用一次函数来描述。”
在小组讨论过程中,我会鼓励学生积极参与,分享自己的想法,并倾听他人的意见。我会巡回指导,帮助解决学生在讨论中遇到的问题,确保每个学生都能理解和掌握一次函数的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件中没有直接给出x和y的对应值,但由于图象上每一点的坐标(x,y)代表了函数的一对对应值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它对应的函数值.所以此题转化为已知x=0时,y=3,求m.即求关于m的一元一次方程.
三、随堂练习
1、已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y 的值.
2、某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒 )的关系如图所示.
(1)写出v与t之间的关系式;
(2)下滑3秒时物体的速度是多少?
分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设函数解析式,再把已知的坐标代入解析式求出待定系数即可.
3、已知弹簧的长度y(厘米)在一定的限度内是所挂物质量x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米,求这个一次函数的关系式.
四、课时小结
1、待定系数法求函数解析式的一般步骤。
2、数形结合解决问题的一般思路。
五、作业布置
函数解析式
y=kx+b
满足条件的两
定点(x,y)
与(x2,与y2)
选取
解出
满足条件的两
定点(x,y)
与(x2,与y2)
一次函数的图
象直线l
画出
选取。