必修411任意角和弧度制

合集下载

《任意角和弧度制》教案

《任意角和弧度制》教案

《任意角和弧度制》教案《任意角和弧度制》教案篇一:人教A版高中数学必修四1.1《任意角和弧度制》1.1《任意角和弧度制》教案【教学目标】1.理解任意角的概念.2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写.3.了解弧度制,能进行弧度与角度的换算.4.认识弧长公式,能进行简单应用.对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.5.了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.【导入新课】复习初中学习过的:角的度量、圆心角的度数与弧的度数及弧长的关系提出问题:1.初中所学角的概念.2.实际生活中出现一系列关于角的问题.3.初中的角是如何度量的?度量单位是什么?4.1°的角是如何定义的?弧长公式是什么?5.角的范围是什么?如何分类的?新授课阶段一、角的定义与范围的扩大1.角的定义:一条射线绕着它的端点O,从起始位置OA旋转到终止位置OB,形成一个角,点O是角的顶点,射线OA,OB分别是角的终边、始边.:在不引起混淆的前提下,“角”或“”可以简记为.2.角的分类:正角:按逆时针方向旋转形成的角叫做正角;负角:按顺时针方向旋转形成的角叫做负角;零角:如果一条射线没有做任何旋转,我们称它为零角.说明:零角的始边和终边重合.3.象限角:在直角坐标系中,使角的顶点与坐标原点重合,角的始边与某轴的非负轴重合,则(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例如:30,390,330都是第一象限角;300,60是第四象限角.(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限.例如:90,180,2等等.说明:角的始边“与某轴的非负半轴重合”不能说成是“与某轴的正半轴重合”.因为某轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线.4.终边相同的角的集合:由特殊角30看出:所有与30角终边相同的角,连同30角自身在内,都可以写成30k360kZ的形式;反之,所有形如30k360kZ的角都与30角的终边相同.从而得出一般规律:所有与角终边相同的角,连同角在内,可构成一个集合S|k360,kZ,即:任一与角终边相同的角,都可以表示成角与整数个周角的和.说明:终边相同的角不一定相等,相等的角终边一定相同.例1在0与360范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?(1)120;(2)640;(3)95012.解:(1)120240360,所以,与120角终边相同的角是240,它是第三象限角;(2)640280360,所以,与640角终边相同的角是280角,它是第四象限角;(3)95012129483360,所以,95012角终边相同的角是12948角,它是第二象限角.例2若k3601575,kZ,试判断角所在象限.解:∵k3601575(k5)360225,(k5)Z∴与225终边相同,所以,在第三象限.例3写出下列各边相同的角的集合S,并把S中适合不等式360720的元素写出来:(1)60;(2)21;(3)36314.解:(1)S|60k360,kZ,S中适合360720的元素是601360300,60036060,601360420.(2)S|21k360,kZ,S中适合360720的元素是21036021,211360339,212260699(3)S|36314k360,kZS中适合360720的元素是36314236035646,363141360314,36314036036314.例4写出第一象限角的集合M.分析:(1)在360内第一象限角可表示为090;(2)与0,90终边相同的角分别为0k360,90k360,(kZ);(3)第一象限角的集合就是夹在这两个终边相同的角中间的角的集合,我们表示为:M|k36090k360,kZ.学生讨论,归纳出第二、三、四象限角的集合的表示法:P|90k360180k360,kZ;N|90k360180k360,kZ;Q|2k360360k360,kZ.说明:区间角的集合的表示不唯一.例5写出y某(某0)所夹区域内的角的集合.解:当终边落在y某(某0)上时,角的集合为|45k360,kZ;当终边落在y某(某0)上时,角的集合为|45k360,kZ;所以,按逆时针方向旋转有集合:S|45k36045k360,kZ.二、弧度制与弧长公式1.角度制与弧度制的换算:∵360=2(rad),∴180=rad.∴1=180rad0.01745rad.1801rad57.305718.oSl2.弧长公式:lr.由公式:lnrlr.比公式l简单.r1801lR,其中l是扇形弧长,R是圆的半径.2弧长等于弧所对的圆心角(的弧度数)的绝对值与半径的积3.扇形面积公式S注意几点:1.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略,如:3表示3rad,in表示rad角的正弦;2.一些特殊角的度数与弧度数的对应值应该记住:3.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系.任意角的集合实数集R例6把下列各角从度化为弧度:(1)252;(2)1115;(3)30;(4)6730.解:(1)/71(2)0.0625(3)(4)0.37556变式练习:把下列各角从度化为弧度:(1)22o30′;(2)-210o;(3)1200o.解:(1);(2)18720;(3).63例7把下列各角从弧度化为度:(1);(2)3.5;(3)2;(4)35.4解:(1)108o;(2)200.5o;(3)114.6o;(4)45o.变式练习:把下列各角从弧度化为度:(1)43;(2)-;(3).12310解:(1)15o;(2)-240o;(3)54o.例8知扇形的周长为8cm,圆心角为2rad,,求该扇形的面积.解:因为2R+2R=8,所以R=2,S=4.课堂小结1.弧度制的定义;2.弧度制与角度制的转换与区别;3..弧度制下的弧长公式和扇形面积公式,并灵活运用;篇二:(教案3)1.1任意角和弧度制1.1.1任意角教学目标:要求学生掌握用“旋转”定义角的概念,理解任意角的概念,学会在平面内建立适当的坐标系来讨论角;并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

人教A版高中数学必修四任意角和弧度制任意角和弧度制知识梳理文字素材

《任意角和弧度制》知识梳理一、要点知识精析1.任意角是由角的终边按照一定方向旋转而定义的,由于旋转有逆时针和顺时针两个方向,因此旋转所得到的角也有正负之分.如果角的终边没有作任何旋转,则称该角为零角.注意:一般情况下,角的始边与x 轴的正半轴重合,定点在坐标原点.2.正确理解直角坐标系中的几种角象限角:是指始边与x 轴的正半轴重合,顶点在坐标原点,而终边落在某个象限内的角(注意:终边落在坐标轴上的角不属于任何象限的角);如:α是第一象限角,则2k πα<22k ππ<+()k Z ∈.轴线角:终边落在坐标轴上的角.如α的终边在x 轴的正半轴,则2k απ=;α的终边在x 轴,则k απ=;α的终边在坐标轴上,则2k πα=;(以上)k Z ∈. 区间角:是指介于两个角之间的角的集合,如030150x <≤;区域角:是介于某两条终边之间的角集,如0030360k α+∙<0090360k <+∙k Z ∈,显然区域角是无数个区间角的集合,而且象限角可以用区域角来表示.终边相同的角:具有同一终边的角的集合,与角α终边相同的角可用集合表示为{β∣0360,k k Z βα=+∙∈}或{β∣2,k k Z βαπ=+∈}.在写与角α终边相同的角的集合时要注意单位统一,避免出现“0302()k k Z π+∈或0360,6k k Z π∙+∈” 之类的错误;3.等于半径长的圆弧所对的圆心角叫1弧度的角.这一定义与圆的半径大小无关.由弧度制的定义,衍生出两个公式:弧长公式(l r α=)和扇形面积公式(212S r α=),应用这两个公式时,角的单位都必须用弧度制,这两个公式都比用角度制下的弧长公式和扇形面积公式简单.无论是角度制或是弧度制,都能在角的集合与实数集R之间建立一种一、一对应关系.4.弧度制和角度制可以相互转化:00/1801()5718rad π=≈,010.01745180rad rad π=≈.用弧度制表示角时,“弧度”二字可以省略不写,但用角度表225图2 图3示时,“度”(或“0”)不能省略.在同一个式子中,两种单位不能混用.二、解题方法指津1.判断角终边所在象限的方法角所在的象限的确定,是三角函数求值问题的关键环节,为此,要利用题中的若干条件准确地对角所在的象限进行判断. (1)利用终边相同的角的表示法判断判断一个角的终边所在位置,可先将此角化为α+∙0360k 003600(<≤α,Z k ∈)或),20(2Z k k ∈<≤+πααπ的形式,找出与此角终边相同的角α,再由角α的象限来判断此角的位置. (2)确定角的范围判断 已知单角α的象限,求2α、3α、2α等角的范围问题,通常先把α角的范围用不等式表示出来,再利用不等式的性质得出所讨论的角的范围,对k 的取值进行讨论,确定出所在象限.(3).由α所在象限,确定nα所在象限的方法 求nα所在象限,可先将各个象限n 等分,从第一象限离x 轴最近的区域开始逆时针方向依次重复标注数码1,2,3,4,直到将所有区域标完为止.如果α在第几象限,则nα就在图中标号为几的区域内.如图2所示,将各象限2等分,若α在第一象限,则2α就在图中标号为1的区域内,即一、三象限的前半区域.如图3,若α在第三象限,则3α就在图中标号为3的区域内,即一、三、四象限.依次类推.。

必修4-1.1-任意角和弧度制PPT课件

必修4-1.1-任意角和弧度制PPT课件
的顶点重合于坐标原点,角的始边重合于x轴的
正半轴。
➢角的终边落在第几象限,就说这个角是第几 象限的角(包含第一、 二、三、 四象限角)
➢角的终边落在哪坐标轴上,就说这个角是 哪坐标轴上角(包含x,y正负半轴上的角)
.
7
2.象限角和坐标轴上角
终边
终边
y
x
o
始边
终边
终边 是第一象限角
是 第 二 象 限 角 是 第 三 象 限 角 是 第 四 象 限 角
1.{β| β=k∙1800 ,k∈Z} {β| β=kπ ,k∈Z}
2.{β| β=k∙900 ,k∈Z}
{β| β=k∙
2
,k∈Z}
3.{β| k ∙ <β<2kπ
3600 +
<β<k∙ 3600+900 ,k∈Z}
,k∈Z}
={β| β=900+(2K+1)1800 ,K∈Z} ={β| β=900+1800 的奇数倍}
.
11
所以 终边落在y轴上的角的集合为
S=S1∪S2 ={β| β=900+1800 的偶数倍} ∪{β| β=900+1800 的奇数倍} ={β| β=900+1800 的整数倍} ={β| β=900+K∙1800 ,K∈Z}
现状生活中:体操、跳水、滑冰、 转体720度的高难度动作,直体后空 翻转体900度及以上的旋转 时钟的时针、分针转动和调准时间 时顺时针、逆时针拨转角度 主从动轮转动角 车的轮子的转动角 风车,风扇叶片等转动
.
4
思考:这些旋转形成的角该如何表示和区分?
引入新的角定义:
定义2:平面内一条射线绕着端点从一个位 置旋转到另一个位置所成的图形.射线OA、 OB分别是角的始边和终边,端点O为角的 顶点。

1.1 任意角和弧度制 课件(34张PPT) 高中数学必修4(人教版A版)

1.1  任意角和弧度制  课件(34张PPT) 高中数学必修4(人教版A版)

圆心角为30°时
圆心角为60° 时
结论:圆心角不变则比值不变
比值的大小只与角度大小有关, 我们可以利用这个比值来度量 角,这就是度量角的另外一种 单位制——弧度制。
弧度制的定义
定义:长度等于半径 长的圆弧所对的圆心 角叫做弧度的角,用 符号1 rad表示,读 作1弧度。这种以弧 度为单位来度量角的 制度叫做弧度制。
3、终边相同的角
一般地,所有与角α 终边相同的角,连同角 α 在内,可构成一个集合
S { | k 360 , k Z}
0
即任一与角α终边相同的角,都可以表示成角α与 整数个周角的和. 注意:1 、α是任意的角(可以是正的,可以 是负的,也可以是0o) 2、k取整数
例l、在0°~360°范围内,找出与下列各角终 边相同的角,并判定它们是第几象限角: ①480° ② -150° ③ 665° ④-950° 解:① 480°=120°+1×360° 与120°的角终边相同,是第二象限角 ② -150°=210°+(-1)×360° 与210°的角终边相同,是第三象限角 ③ 665°=305°+360° 与305°的角终边相同,是第四象限角 ④ -950° =130°+(-3)×360° 与130°的角终边相同,是第二象限角
B' R B O A r L A'
l
即时问答:下列四个图中的圆心角的弧度数 分别是多少?
问题:
(1)若弧是一个半圆,圆心角所对的 弧度数是多少?若是一个圆呢?
(2)正角的弧度数是什么数?负角呢? 零角呢?角的正负由什么决定?
角度制与弧度制不同之处
1.定义方式不同:弧度制是以“弧度”为单 位的度量角的单位制,角度制是以“度”为 单位来度量角的单位制;1°≠1 弧度; 2. 进位制不同:弧度制是十进制,而角度 制是六十进制.

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

高二数学必修4知识点:任意角和弧度制

高二数学必修4知识点:任意角和弧度制

高二数学必修 4 知识点:随意角和弧度制在中国古代把数学叫算术,又称算学,最后才改为数学。

小编准备了高二数学必修 4 知识点,希望你喜爱。

1.随意角(1)角的分类:①按旋转方向不一样分为正角、负角、零角.②按终边地点不一样分为象限角和轴线角.(2)终边同样的角:终边与角同样的角可写成+k360(kZ).(3)弧度制:① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角 .②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,||=, l 是以角作为圆心角时所对圆弧的长,r 为半径 .③用弧度做单位来胸怀角的制度叫做弧度制.比值与所取的r 的大小没关,仅与角的大小相关.④弧度与角度的换算:360 弧度 ;180 弧度 .⑤弧长公式: l=||r ,扇形面积公式:S 扇形 =lr=||r2.2.随意角的三角函数(1)随意角的三角函数定义:设是一个随意角,角的终边与单位圆交于点P(x, y) ,那么角的正弦、余弦、正切分别是:sin =y ,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数 .(2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 .3.三角函数线察看内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与少儿生活靠近的,能理解的察看内容。

随机察看也是不行少的,是相当风趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边察看,一边发问,兴趣很浓。

我供给的察看对象,注意形象传神,色彩鲜亮,大小适中,指引少儿多角度多层面地进行察看,保证每个少儿看获得,看得清。

看得清才能说得正确。

在察看过程中指导。

我注意帮助少儿学习正确的察看方法,即按次序察看和抓住事物的不一样特点重点察看,察看与说话相联合,在察看中累积词汇,理解词汇,如一次我抓住机遇,指引少儿察看雷雨,雷雨前天空急巨变化,乌云密布,我问少儿乌云是什么样子的,有的孩子说:乌云像海洋的波涛。

数学必修4(1.1任意角与弧度制课件)

数学必修4(1.1任意角与弧度制课件)
B
OA:角的始边
OB:角的终边 O:角的顶点
0
A
(二)角的大小:
正角: 按逆时针方向旋转所形成的角 . 负角: 按顺时针方向旋转所形成的角 .如α =-150º. 没有作任何旋转的角.记作 零角:
α=0º. 角的概念推广后,它包括任意大小的 正角、负角和零角
1.从中午12点到下午3点,
0 -90 时针走过的角度是__

象 限. 思考:试 判断 下列 各角 所 在的
(4) 1
0 1

2
( 3.1 4

2
1.57)
( 5) (6)
4 8
1是第一象限的角 . 3 4 2 4是第三象限的角 .
分析 : 由于 3.14, 得 2 6.28 ,
4 12.56.而 8介于两数之间. 8 4 4.56 3 3 3 又 4.56 ( 3.14 4.71) 2 2 2 8是第三象限的角 .
2. 在 同 一 直 角 坐 标 系 内 作 出 30° 、 390°、 -330°、 750°,观察它们终边 的关系 390°= 30°+1· ___ 360° (-1) · 360° -330°= 30°+___ 750°= 30°+___ 2· 360° 归纳: 与30°终边相同的角的集合 {β ︱β = 30°+ k· 360°,k∈Z}
,整个y轴指的是直线
例3
写出满足下列条件的角的集合(用弧度制):
1、 终边与X轴正半轴重合;
2、 终边与X轴负半轴重合; 3、 终边与X轴重合;
| 2 ( ) | 2 ( )
| 2 2 2 7、第一象限内的角; | 2 2 8、第二象限内的角; 2 3 | 2 2 2 9、第三象限内的角; 3 | 2 2 2 10、第四象限内的角; 2

高一数学必修4任意角和弧度制实用知识

高一数学必修4任意角和弧度制实用知识
180 π = 180° 1rad = ≈ 57°18′ π
o
角度和弧度的关系 弧度制意义下与 α 终边相同的角 (连同 α )的集合 终边与 x 轴重合的所有角的集合
1° =
π
180°
{ β β = 2 kπ + α , k ∈ Z } { β β = kπ , k ∈ Z }
{β β = α + k • 360°, k ∈ Z } {α α = 180° + k • 360°, k ∈ Z } {α α = k • 360° {α α = 270° + k • 360°, k ∈ Z } {α α = 90° + k • 360°, k ∈ Z } {α α = 180° + k • 90°, k ∈ Z } {α k • 360° < α < k • 360° + 90°, k ∈ Z } {α k • 360° + 90° < α < k • 360° + 180°, k ∈ Z } {α k • 360° + 180° < α < k • 360° + 270°, k ∈ Z } {α k • 360° + 270° < α < k • 360° + 360°, k ∈ Z } {α α = 45° + k •180°, k ∈ Z } {α α = 135° + k •180°, k ∈ Z }
任意角和弧度制
与 α 终边相同的角(连同 α )的集合 终边在 x 轴的非正半轴上的角的集合 终边在 x 轴的非负半轴上的角的集合 终边在 x 轴上的角的集合 终边在 y 轴的非正半轴上的角的集合 终边在 y 轴的非负半轴上的角的集合 终边在 y 轴上的角的集合 终边落在第一象限角的集合 终边落在第二象限角的集合 终边落在第三象限角的集合 终边落在第四象限角的集合 终边落在 y = x 上角的集合 终边落在 y = − x 上角的集合
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将一条射线绕其端点按逆时针方向旋转 180度所形成的角,与按顺时针方向旋转180 度所形成的角是否相等?
不相同(调整时间)
思考: 为了区分形成角的两种不同的旋转方向, 可以作怎样的规定? 如果一条射线没有作任何旋转,它还形成一个角吗?
新课讲解 1.任意角定义:
? 规定: ? 1.按逆时针方向旋转形成的角叫做正角, ? 2.按顺时针方向旋转形成的角叫做负角. ? 3.如果一条射线没有作任何旋转,则称它形成
? (4)第四象限. S ? ?a 2700 ? 2n? ? a ? 3600 ? 2n? , n ? z?
4.弧度的概念
思考:在平面几何中, 1°的角是怎样定
义的?将圆周分成 360
等份,每一段圆弧
所对的圆心角就是
1°的角.
思考:在半径为r
的圆中,圆心角
n°所对的圆弧长 如何计算?
l ? 2?r ?n
了一个零角.
度量一个角的大小,既要考虑旋转方向, 又要考虑旋转量,通过上述规定,角的范 围就扩展到任意大小.
终边与始边重合的角是零角吗?
30度
终边
750度
终边
顶点 390度
始边 顶点
终边
终边 -330度
始边
顶点
始边 顶点
始边
画图表示一个大小一定的角 : (1)先画一条射线作为角的始边, (2)再由角的正负确定角的旋转方向, (3)再由角的绝对值大小确定角的旋转量,
360
定义:把长度等于半径长的圆弧所对的圆心角 叫做1弧度的角,记作1rad ,读作1弧度.
r
A
B
1rad r
O
? 约定:
L
? 正角的弧度数为正数,
? 负角的弧度数为负数,
α
? 零角的弧度数为0.
? 如果半径为r的圆的圆心 角α所对的弧长为l,那 么,角α的弧度数的绝 对值如何计算?
? ? l 一周的弧长 2?r,一周的弧度 2?r ? 2?
y
495°
135°
x o
思考:-32°,328°,-392°是第几象限的 角?这些角有什么内在联系?
y
3280 ? ? 320 ? 3600
328° o
-392° x
? 3920 ? ? 320 ? 3600
-32°
与-32°角终边相同的角有多少个? 这些角与-32°角在数量上相差多少?
? 320 ? k ? 3600 , k ? Z
例2 在0°~360°内找出与下列各角终边相同 的角 (1)9000 (2)-500 (3)4250 (4)-6700
解:(1) 9000=2×3600+1800
所以 9000的角与 1800角终边相同 (2) -500=-3600+3100
所以 -500的角与 3100角终边相同 (3) 4250=3600+650
y
y
y
y
x
x
x
x
o
o
o
o
思考 :锐角是第几象限的角?
第一象限的角是否都是锐角?
第一象限的角
不是
思考 :第二象限的角一定比第一象限的角大吗?
不一定
象限角只能反映角的终边所在象限 (位 置),不能反映角的大小 .
? 3.终边相同的角 ? 思考:在直角坐标系中,135°角的终边在什
么位置?终边在该位置的角一定是135°吗?
如果角的终边落在了坐标轴上,就认为这个 角不属于任何象限。
轴线角:终边落在坐标轴上的角.
那么下列各角: -50°,405°,210°,-200 ° 分别是第几象限的角?
y
y
y
210°
x
x
x
o
-50°
o 405°
o
y
x o -200°
? 那么下列各角:
? -90°,90°,-450°,-180°终边落在坐标轴 上
1.1任意角和弧度制
必修4
新课引入
回忆:
在初中角是如何定义的?
角的取值范围如何?
定义:从一个点出发,引出的 两条射线构成的几何图形 叫 做角.
角是平面几何中的 一个基本图 形,角是可以度量其大小的 . 在平面几何中,角的取值范 围
00 ~ 3600
边 顶点

? 如果你的手表慢了30分钟,你应该如何校准?
终边相同的角的集合
一般地, 所有与角? 终边相同的角,连同角? 在内,
可构成一个集合
? ? S ? ? | ? ? ? ? k ?3600, k ? Z
即任一与角? 终边相同的角,都可以表示成角?
与整数个周角的和.
例1 判别下列各角是第几象限的角。
(1)4050 (2)4880 (3)8400 (4)-1200
? (1)第一象限;S ? ?a 00 ? 2n? ? a ? 900 ? 2n? , n ? z?
? (2)第二象限; S ? ?a 900 ? 2n? ? a ? 1800 ? 2n? , n ? z? ? (3)第三象限; S ? ?a 1800 ? 2n? ? a ? 2700 ? 2n? , n ? z?
r
r
1弧度圆心角的大小与所在圆的半径的大小无关。
解:(1) 4050=3600+450 而450是第一象限角,所以 4050是第一象限角
(2) 4880=3600+1280 而1280是第二象限角,所以 4880是第一象限角
(3) 8400=2×3600+1200 而1200是第二象限角,所以 8400是第二象限角
(4) -120 0=-3600+2400 而2400是第三象限角,所以 -1200是第三象限角
(4)画出角的终边,并用带箭头的螺旋线加以标注 .
如果你的手表慢了20分钟,或快了1.25小时, 你应该将分钟分别旋转多少度才能将时间校准?
-120°,450°.
2.象限角的定义
y
? ?Ⅱ
1)将角的顶点与原点重合 ? ? Ⅲ
2)始边重合于X轴的非负半轴
? ?I
o
x
? ?Ⅳ
终边落在第几象限就是第几象限角.
把手表分针顺时针旋转 180读
? 如果你的手表快了30分钟,你应该如何校准?
把手表分针逆时针旋转 180读
从运动状态升级角的定义
B 终边
始边
o
A
顶点
角的定义:由平面内一条射线绕其端点从一 个位置旋转到另一个位置所组成的图形.
一般地,一条射线绕其端点旋转,既可 以按逆时针方向旋转,也可以按顺时针方向旋 转.
所以 4250的角与 650角终边相同 (4) -6700=-2×360பைடு நூலகம்+500
所以 -670 0的角与 500角终边相同
练习:1. 在0o到360o范围内,找出与下列各角 终边相同的角,并判断它是哪个象限的角 .
(1) -120o;(2) 640o;(3) -950o.
? 例3 写出下列象限的角的集合.
相关文档
最新文档