矩阵论在人口迁移问题中的应用矩阵论报告

合集下载

“矩阵论”课程教学中理论与应用相结合的思考与探索

“矩阵论”课程教学中理论与应用相结合的思考与探索

“矩阵论”课程教学中理论与应用相结合的思考与探索摘要:研究生课程教学改革是目前研究生教育改革的关键环节,主要针对研究生的一门基础理论课程“矩阵论”的课程教学,分析了教学实际中存在的主要问题,阐述了矩阵论在工程技术、科学研究中的应用情况,在此基础上,提出了“矩阵论”课程教学中应注重理论与应用相结合的问题。

关键词:矩阵论;范数;矩阵函数
作者简介:罗从文(1965-),男,湖北仙桃人,三峡大学理学院,教授;王高峡(1969-),女,湖北秭归人,三峡大学理学院,教授。

(湖北
宜昌?443002)
中图分类号:g643.2?????文献标识码:a?????文章编号:
1007-0079(2012)26-0076-02。

矩阵论在人口迁移问题中的应用 矩阵论报告

矩阵论在人口迁移问题中的应用 矩阵论报告

研究生“矩阵论”课程课外作业姓名:学号:学院:专业:类别:上课时间:成绩:矩阵论在人口迁移问题中的应用摘要本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。

文中运用方阵函数()f A 的相关基本理论来解决这一实际问题,使得实际问题得到简化解决,最终得出人口迁移问题的最终结论。

1、待解决问题内容:假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样?2、基本术语解释方阵函数()f A :最简单的方阵函数是矩阵多项式01()n n B f A a E a A a A ==+++ ,其中,n n i A C a C ⨯∈∈。

一般运用复变幂级数的和函数定义方阵幂级数和函数—方阵函数。

3、基本理论阐述:1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为()f λ,则有()0f A =。

设A 的特征多项式为:()1101n n n f a a a λλλλ--=++++Hamilton-Cayley 定理表明:()11010n n n f A A a A a A a E --=++++= ,即方阵函数可以由1,,,,n n A A A E - 的线性组合表示。

方阵函数是多项式()01f A a E a A =++ ,其中,n n i A C a C ⨯∈∈。

2、最小多项式的相关理论:定义1:A 是n 阶方阵,()f λ是方阵A 的特征多项式。

如果有()0f A =,则称()f λ是方阵A 的零化多项式。

由Hamilton-Cayley 定理知一个矩阵的零化多项式一定存在。

定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。

设n nA C ⨯∈的最小多项式为1212()()()()s tt t s m λλλλλλλ=---其中12s t t t t +++= ,(,,1,2,,)i j i j i j s λλ≠≠= ,而方阵函数()f A 是收敛的方阵幂级数k k k a A ∞=∑的和函数,即 0()k k k f A a A ∞==∑设1011()t t T b b b λλλ--=+++ ,使()()()()l l i i fT λλ= 1,2,,0,1,,1i i s l t =⎛⎫ ⎪=-⎝⎭,则0()()kk k T A f A a A ∞===∑ 3、运用()f z 在A 上的谱值计算方阵函数()f A 的理论:设n 阶方阵A 的最小多项式为1212()()()()s ttts m λλλλλλλ=--- ,其中2,,,s λλλ 是A 的互不相同的特征根。

矩阵论报告-人口迁移问题

矩阵论报告-人口迁移问题

矩阵理论及其应用报告题目:人口迁移问题姓名:学号:专业:机械电子工程学院:机械工程学院2012年4月8日人口迁移问题摘要:运用所学的矩阵理论及其应用知识对所提出的人口迁移问题进行了分析和计算,从而得出了人口并不会集中于一方,最终南北人口数将会趋于一个稳定值。

关键词:人口迁移南方北方矩阵论一、人口迁移问题的提出假设有两个地区——如南方和北方之间发生人口迁移。

每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图所示:问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?二、运用矩阵理论及其应用的知识进行分析根据以上人口迁移的情况,解答如下:设最初南方和北方的人口数分别为0x 、0y ,经过()1,2,3...n 年以后,南北方得人口数分别为n x ,n y 。

则由题意可知:1年后南北人口数分别为10010031421142x x y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩, (1) 即:011031421142x x y y ⎛⎫⎪⎛⎫⎛⎫= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭, (2) 由此类推,经过()11,2,3...n -年以后,南北方得人口数分别为1n x -,1n y -,则n 年后南北方人口数分别如下:111131421142n n n n n n x x y y x y ----⎧=+⎪⎪⎨⎪=+⎪⎩, (3)由(3)递归调用得10103131424211114242nn n n n x x x y y y --⎛⎫⎛⎫⎪ ⎪⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭(4) 令矩阵3142A 1142⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,上式问题转化为求矩阵n A 。

现用待定系数法求解。

由0E A λ-=,可解得特征值114λ=,21λ=故设01()=a nf A A E a A =+, (5) 则01()=a nf a λλλ=+, (6)将114λ=,21λ=代入上(6)式,解得方程组01110122nn a a a a λλλλ⎧+=⎪⎨+=⎪⎩, (7) 当 n →∞,解得011343a a ⎧=-⎪⎪⎨⎪=⎪⎩所以()221433=-113333nf A A E A ⎛⎫ ⎪=+=⎪ ⎪ ⎪⎝⎭(8) 由以上(4)、(8)式求解可得0022331133n n x x y y ⎛⎫⎪⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭= 即()()00002313n n x x y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩三、结论根据以上分析和计算的结果可知,如果这个移民过程持续下去,北方的人是不会全部都到南方去的,最终的南北的人口将会趋于稳定。

矩阵理论研究生课程大作业

矩阵理论研究生课程大作业

研究生“矩阵论”课程课外作业姓名:学号:学院:专业:类别:组数:成绩:人口迁移问题和航班问题(重庆大学 机械工程学院,机械传动国家重点实验室)摘要:随着人类文明的进程,一些关于数学类的问题越来越贴近我们的生活,越发觉得数学与我们息息相关。

本文将利用矩阵理论的知识对人口迁移问题和航班问题进行分析。

人口迁移问题假设有两个地区——如南方和北方,之间发生人口迁移。

每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:问题:如果这个移民过程持续下去,北方的人会不会全部都到南方?如果会请说明理由;如果不会,那么北方的最终人口分布会怎样?解 设n 年后北方和南方的人口分别为n x 和n y , 我们假设最初北方有0x 人,南方有0y 人。

则我们可得,1=n 时,一年后北方和南方的人口为⎩⎨⎧+=+=00100175.05.025.05.0y x y y x x (1-1)将上述方程组(1-1)写成矩阵的形式⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛0011y x A y x其中 ⎥⎦⎤⎢⎣⎡=75.05.025.05.0A2=n 时,两年后北方和南方的人口为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0021122y x A y x A y x依次类推下去,n 年后北方和南方的人口为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x n n n (1-2) N S 0.5 0.25 0.5 0.75现在只需求出n A 就可得出若干年后北方和南方的人口数。

下面将使用待定系数法[1]求n A)1)(25.0(25.025.125.05.0)75.0)(5.0(75.05.025.05.02--=+-=⨯---=----=-λλλλλλλλλA E所以 1,25.021==λλ矩阵A 的最小多项式为 )1)(25.0()(--=λλλm 设A a E a A n 10+= 由此可得方程组⎩⎨⎧=+=+125.025.01010a a a a n解方程组得⎪⎪⎩⎪⎪⎨⎧-=+-=75.025.0175.025.025.010n na a 所以⎥⎦⎤⎢⎣⎡+⨯--⨯+=-++-=+=++111025.05.025.05.05.025.025.025.05.025.075.0175.025.0175.025.025.0n n n n nn nAE A a E a A 所以由式(1-2),我们得到n 年后北方和南方的人口北方:01075.025.025.075.025.05.025.0y x x n n n +-+⨯+=南方:01075.025.05.075.025.05.05.0y x y n n n +++⨯-=当∞→n 时,得)(31)75.025.025.075.025.05.025.0(lim lim 00010y x y x x n n n n n +=-+⨯+=+∞→∞→()000103275.025.05.075.025.05.05.0lim lim y x y x y n n n n n +=⎪⎪⎭⎫⎝⎛++⨯-=+∞∞→∞→ 由上面计算可以得到,如果移民过程持续下去,北方的人不会全部都到南方。

人口流动矩阵案例分析

人口流动矩阵案例分析

人口流动矩阵案例分析本文是以人口流动矩阵的形式对现今的中国进行了简要分析,并提出一些建议,期望有更多的专家能加入这个讨论。

不得不说当前世界经济发展速度明显缓慢,而且还呈下滑趋势,全球人民似乎都已感受到压力与困难,那么我们应该怎样做才可以使各方面持续稳定增长呢?在全球范围内造成人员流动性大,引起工作岗位、生活地点变换频繁的主要原因就是世界人口流动率大,同时各种经济政策也导致农村剩余劳动力进城务工,但是我国在调整人口结构上没有采取好措施,只注重数量而忽视质量。

根据目前情况看,如果再不及时处理会给社会带来很大影响,虽然我国不断优化教育制度,加强人们素质培养,但由于国情决定我们只能将精力放在城市,在农村学校设置并不完善,同时家庭状况也无法支撑小孩接受良好教育,相比之下,城镇待遇较高等问题,而且城乡二元体系极其严重。

由此产生两种想法:第一,向外移居;第二,人口回归原始社会。

但最终一切行动只停留在理论阶段,若想实际操作就会受到阻碍。

所以我认为必须解决这个难题,既需合理规划人口布局,又需深化农业改革,将农业转型升级,不过近年来关于农业科技发展迅猛,加快机械化水平,完善信息网络便捷设备等促进机械化耕作技术的研究,使农民更容易掌握技术。

自从改革开放以来,农民收入逐步增加,生活条件得到巨大改善,所以就算不是基础教育程度偏低,许多农村青少年都选择去城里求学或者打工挣钱,就算毕业后仍旧会返回家乡工作,那他们大部分也选择在本省内继续读书,特别是那些独生子女越来越依赖父母,不愿意离开亲人,并且随着社会发展,农村土地逐渐减少,资源被污染日益严重,虽然我国各地区差异大,交通运输事业蓬勃发展,农村经济也十分兴盛,但唯一缺陷的环境治理,就算工厂众多,人均收入却普遍偏低。

正值三四线城市和二线城市崛起时期,出门不坐车或走路也挺快乐,随着老龄化加剧,不知何时高考成绩出炉,未来也不排除扩招高校的政策,以此鼓励更多的大学生报考。

其次,将官、贪污纳税户从监狱释放,并帮助恢复地方的商贸业和农业,适当开放旅游景点,让农村青年在经历工作的苦累疲倦后拥抱新的田野,创造属于自己的新天地。

矩阵论大论文(张晋红)

矩阵论大论文(张晋红)

“矩阵论”课程研究报告科目:矩阵理论及应用教师:舒永录姓名:张晋红学号:20140702109 专业:机械工程类别:学术上课时间:2014 年09月至2014 年12月考生成绩:阅卷评语:阅卷教师(签名)航班问题摘要:针对城市路线选择中的航道数目统计问题,采用最小多项式的方法,得出了城市A 到B 的某个数目的相连的航班数目和不超过某个数目的相连的航班数目。

本文所提出的方法适用于多城市间航道统计问题。

正文一、问题描述一家航空公司经营A 、B 、C 、D 和H 五个城市的航线业务,其中H 为中心城市。

各个城市间的路线见图1。

图 1假设你想从A 城市飞往B 城市,因此要完成这次路线,至少需要两个相连的航班,即A →H 和H →B 。

如果没有中转站的话,就不得不要至少三个相连的航班。

那么问题如下:(1) 从A 到B ,有多少条路线刚好是三个相连的航班;(2) 从A 到B ,有多少条路线要求不多于四个相连的航班。

二、方法简述定义:设A 是n 阶方阵,若存在多项式)(λf ,使得()f 0A =,即()f A 是零矩阵,称)(λf 是矩阵A 的零化多项式。

下面指出两点:1)对任何n 阶方阵A ,都存在零化多项式。

因为线性空间n n K ⨯是2n 维的,故E , A ,……,2n A 必线性相关。

故存在不全为0的数0122,,......,n k k k k ,使220122......n n k k k k ++++=0E A A A即多项式220122().....n n f k k k k λλλλ=++++是A 的零化多项式。

2)任何矩阵的零化多项式不唯一。

因为若)(λf 是A 的零化多项式,则)()(λλg f 也是A 的零化多项式,这里的)(λg 可以是任意的非零多项式。

定理(Hamliton-Caley 定理)设111()||n n n n f a a a λλλλλ--=-=++++ E A则11()...n n n n f a a a -=+++=0A A A A E定义:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式,记为)(λm 。

矩阵论在数据分析中的重要性

矩阵论在数据分析中的重要性

矩阵论在数据分析中的重要性矩阵论作为数学中的一个重要分支,广泛应用于各个领域,尤其在数据分析领域中扮演着至关重要的角色。

矩阵论提供了一种高效的数学工具,可以帮助数据分析师处理和分析大量复杂的数据,从而揭示数据背后的规律和信息。

本文将探讨矩阵论在数据分析中的重要性,以及其在数据处理、特征提取、模型建立等方面的应用。

1. 矩阵在数据表示和处理中的作用在数据分析中,数据通常以矩阵的形式进行表示和处理。

矩阵可以将数据结构化地存储起来,方便进行各种运算和分析。

通过矩阵,数据分析师可以将复杂的数据集整理成易于处理的形式,从而更好地理解数据的特征和规律。

例如,对于一个包含多个特征的数据集,可以将其表示为一个矩阵,每一行代表一个样本,每一列代表一个特征,这样就可以方便地进行数据处理和分析。

2. 矩阵在特征提取和降维中的应用在数据分析中,特征提取和降维是非常重要的步骤,可以帮助数据分析师从海量的数据中提取出最具代表性和有效性的特征,从而更好地建立模型和进行预测。

矩阵在特征提取和降维中发挥着关键作用。

通过矩阵分解、奇异值分解等技术,可以将原始数据转换为更低维度的表示,保留数据的主要特征,去除噪声和冗余信息,从而提高数据的表征能力和模型的泛化能力。

3. 矩阵在模型建立和求解中的应用在数据分析中,建立合适的数学模型是解决问题的关键。

而矩阵论提供了丰富的数学工具和方法,可以帮助数据分析师建立各种类型的模型,并对模型进行求解和优化。

例如,在机器学习领域,矩阵在线性回归、逻辑回归、支持向量机等模型中都有广泛的应用。

通过矩阵运算和优化算法,可以高效地求解模型的参数,从而实现对数据的准确建模和预测。

4. 矩阵在数据可视化和图像处理中的应用除了在传统的数据分析中发挥作用外,矩阵论还在数据可视化和图像处理领域有着重要的应用。

通过矩阵变换和处理,可以对图像进行压缩、去噪、增强等操作,实现对图像的高效处理和分析。

同时,矩阵在数据可视化中也扮演着重要角色,可以将高维数据映射到低维空间,实现对数据的可视化展示,帮助人们更直观地理解数据的内在结构和规律。

数学模型在人口迁移研究中的应用

数学模型在人口迁移研究中的应用

数学模型在人口迁移研究中的应用近年来,随着全球化的不断推进和国际交流的日益频繁,人口迁移成为了一个世界范围内的热门话题。

人口迁移不仅涉及到社会、经济等方面的问题,也对城市规划、资源分配等方面带来了巨大的影响。

为了更好地研究人口迁移现象及其影响,数学模型应运而生,并在人口迁移研究中发挥着重要的作用。

一、人口流动模型人口流动是指人口从一个地区向另一个地区的迁移过程。

为了研究人口流动的规律性以及预测未来的趋势,数学模型提供了一种有效的工具。

人口流动模型通常基于人口迁移的原因和影响因素进行构建,在分析人口流动时,可以采用不同的数学方法,比如图论、随机过程、最优化等。

以城市间人口流动为例,可以使用图论的方法来构建人口流动网络模型。

将每个城市看作网络中的一个节点,城市之间的人口流动则表示为节点之间的连边。

通过分析这个网络,可以研究不同城市之间的人口迁移规律,比如人口迁移的方向、规模以及周期性等。

二、人口分布模型人口分布模型用于研究人口在不同地区的分布情况。

人口分布模型可以帮助我们理解人口的空间分布特征,并为城市规划和资源分配提供科学依据。

常用的人口分布模型包括人口密度模型和人口分布函数模型。

人口密度模型通过考虑人口数量和地理条件等因素,来描述不同地区的人口密度差异。

而人口分布函数模型则用数学公式来拟合实际的人口分布情况,从而得到一个能够精确描述人口分布的数学模型。

三、人口预测模型人口预测是对未来人口发展趋势的估计。

利用数学模型进行人口预测可以帮助政府和决策者制定合理的人口政策,合理规划社会资源。

在人口预测模型中,可以运用回归分析、时间序列分析和人口动力学等方法。

这些方法能根据历史数据和现有趋势,对未来的人口发展趋势进行预测和模拟。

将不同的因素纳入模型,如出生率、死亡率和迁移率等,可以使人口预测结果更加准确和全面。

四、人口政策模拟模型人口政策模拟模型用于评估不同人口政策对人口发展的影响。

通过建立数学模型来模拟人口政策的实施,并分析其在人口结构、人口规模等方面的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究生“矩阵论”课程课外作业
姓 名: 学 号: 学 院: 专 业: 类 别: 上课时间: 成 绩:
矩阵论在人口迁移问题中的应用
摘要
本文根据矩阵论的理论解决实际中的人口迁移问题,做出简单的分析和概括。

文中运用方阵函数
()f A 的相关基本理论来解决这一实际问题,使得实际问题得
到简化解决,最终得出人口迁移问题的最终结论。

1、待解决问题内容:
假设有两个地区—如北方和南方,之间发生人口迁移,每一年北方50%的人口迁移到南方,同时有25%的南方人口迁移到北方,直观上可由下图表示:
问题:这个移民过程持续下去,北方的人会不会全部搬到南方?如果会请说明理由;如果不会,那北方的人最终人口分布会怎样?
2、基本术语解释
方阵函数
()f A :最简单的方阵函数是矩阵多项式
01()n n B f A a E a A a A ==+++,其中,n n i A C a C ⨯∈∈。

一般运用
复变幂级数的和函数定义方阵幂级数和函数—方阵函数。

3、基本理论阐述:
1、Hamilton-Cayley 定理: 设矩阵A 的特征多项式为()f λ,则有()0f A =。

设A 的特征多项式为:
()1101n n n f a a a λλλλ--=++
++
Hamilton-Cayley 定理表明:
()11010n n n f A A a A a A a E --=++
++=,即方阵函数可以由
1,,
,,n n A A A E -的线性组合表示。

方阵函数是多项式
()01f A a E a A =++
,其中,n n
i A C
a C ⨯∈∈。

2、最小多项式的相关理论:
定义1:A 是n 阶方阵,()f λ是方阵A 的特征多项式。

如果有()0f A =,
则称
()f λ是方阵A 的零化多项式。

由Hamilton-Cayley 定理知一个矩阵的零化
多项式一定存在。

定义2:在n 阶方阵A 的所有零化多项式中,次数最低的首一多项式,称为A 的最小多项式。

设n n
A C ⨯∈的最小多项式为12
12()()()()s t t t
s m λλλλλλλ=---
其中12
s t t t t ++
+=,(,,1,2,
,)i j i j i j s λλ≠≠=,而方阵函数()f A 是
收敛的方阵幂级数0k k k a A ∞
=∑的和函数,即 设10
11()t t T b b b λλλ--=++
+,使
()
()
()()l l i i f
T λλ= 1,2,
,0,1,
,1i i s l t =⎛⎫
⎪=-⎝⎭,则0
()()k
k k T A f A a A ∞===∑ 3、运用
()f z 在A 上的谱值计算方阵函数()f A 的理论:
设n 阶方阵A 的最小多项式为12
12()()()()s t t
t
s m λλλλλλλ=---,
其中2,,
,s λλλ是
A 的互不相同的特征根。

如果复函数
()f z 及其各阶导数
()()l f z 在(1,2,
,)i z i s λ==处的导数值,即
均为有限值,便称函数()f z 在方阵A 的谱上给定,并称这些值为()f z 在A 上
的谱值。

4、报告正文
根据所给条件,设南方和北方第一年的人口数量分别为s 和n ,第n 年人口数量分别为n x 和n y 。

根据题意可以列出下式:
…….
以此类推,可得到一个递推公式: 将其写成矩阵形式:
令0.750.50.250.5A ⎛⎫
= ⎪
⎝⎭,同理可得110.750.50.250.5n n n n x x y y ++⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
那么,问题转化为在n →∞时,lim n
n A →∞
为多少的问题了。

下面利用
()f z 在A 上的谱值计算方阵函数n A :
得到A 的特征值:120.25,1λλ==
矩阵A 的最小多项式为()(0.25)(1)m λλλ=--,设01n A a E a A =+
可得方程组如下: 解得:0
1141441(),()334334
n n a a =-+=-
则2112212
2()()3343343
3lim lim 11111111()()334
3343
3n
n n
n n n n A →∞
→∞
⎛⎫⎛⎫+- ⎪ ⎪== ⎪
⎪ ⎪ ⎪-+
⎪ ⎪⎝⎭⎝⎭
则有:2233
1133n n x s n y s n ⎧=+⎪⎪⎨⎪=+⎪⎩
由上知:如果这个移民过程持续下去,北方的人不会全部都到北方,南北人
口将为一个稳定的值保持不变,北方人口将是11
33s n +,南方人口将是
22
33s n +。

5、报告结论
本文通过运用矩阵论的基本原理来解决实际的人口迁移问题,将解决实际问
题转化为数学模型,通过解方阵函数
()f A 和n A 以及lim n n A
从而解决了实际模
型。

通过以上分析,所给南北两方人口迁移的最终结果是:北方人口不会全部到
南方,北方的最终人口分布为:31的初始北方人口加3
1
的初始南方人口。

相关文档
最新文档