RC复位电路的原理及高阻态
单片机rc复位电路作用

单片机rc复位电路作用单片机RC复位电路作用一、什么是单片机RC复位电路?在单片机系统中,RC复位电路是指通过一个电阻(R)和一个电容(C)组成的复位电路。
这个电路提供了一种软件和硬件结合的方式来实现单片机的复位功能。
RC复位电路通过控制单片机的复位引脚,将其拉低或拉高来实现复位操作。
二、RC复位电路的作用是什么?RC复位电路在单片机系统中起到了非常重要的作用,主要有以下几个方面:1.软件复位触发机制RC复位电路可以通过软件控制,当单片机系统出现异常或需要复位时,软件可以通过相关操作将复位引脚拉低,从而强制执行复位操作。
这种软件复位触发机制可以让系统在出现故障或错误时快速恢复正常工作状态,提高系统的稳定性和可靠性。
2.硬件复位保护机制RC复位电路可以在单片机系统上电时自动执行复位操作,保证系统在上电后可以正确初始化。
在单片机系统上电瞬间,各个器件可能会出现不稳定的电压和电流情况,而这些不稳定因素有可能导致单片机系统无法正常启动。
RC复位电路可以通过控制复位引脚,确保系统在上电瞬间能够恢复到预定的初始状态,避免不稳定因素对系统正常工作的影响。
3.电源干扰屏蔽单片机系统中往往存在着各种电子器件,这些器件可能会受到电源线路中的电磁干扰影响,导致系统工作不稳定或出现错误。
RC复位电路的存在可以通过复位引脚将这些电磁干扰屏蔽在外,确保系统的稳定性和可靠性。
三、RC复位电路的设计考虑在设计单片机系统的RC复位电路时,需要考虑以下几个方面:1.计算合适的RC时间常数RC时间常数决定了RC复位电路的响应速度,一般需要根据实际需求来计算合适的值。
过小的时间常数会导致系统对干扰过于敏感,容易误触发复位;过大的时间常数则会导致复位响应时间过长,影响系统的反应速度。
因此,在设计RC复位电路时需要仔细选择合适的RC时间常数。
2.选择合适的复位电平和电源电压RC复位电路需要根据单片机的复位引脚输入电平要求和系统的电源电压来选择相应的电阻和电容数值。
RC复位电路的原理图及其复位时间计算的详细过程

低电平有效复位电路如下此复位电路是针对低电平有效复位而言的,其中二极管是起着在断电的情况下能够很快的将电容两端的电压释放掉,为下次上电复位准备。
假设电容两端的初始电压为U0(一般情况下设为0V),T 时刻电容两端电压为。
3.3V 电压设为VCC 。
由流经电容的电流I 和电容两端的电压变化关系式:T U t U d d C I T *=可以得到:两边分别积分可以的得到:;即T U T d C d I **= ∫=tU t d C T I 0**0***U C U C T I T −=(其中U0=0V ),由 可以得到公式:T R U U VCC +=T T U T U C R VCC +=)/*(*1假设对电容充电至0.9*VCC 时完成复位,此时可以得出T=9*RC ,T 就是所需要的复位时间。
一般芯片的复位时间是给出的,R,C 其中可以自己确定一个值,然后再求出另外一个值。
在看看高电平有效复位时的RC 电路的复位时间的计算过程:其对应的原理图如下:假设电容两端的初始电压为U0(一般情况下设为0V),T 时刻电容两端电压为。
电容的充电电流为:同理可以得到在T 时刻的流经电阻的电流值为T U T VCC C I /*1= 电阻两端的电压可定所以又::)/*(*11T U C R U T R =1C R U U VCC +=在T 时刻时电容充电为,若0.9VCC 时,高电平复位有效,则可以有=0.1VCC ,故可有:T U R U ≥T U )/*1.0*(*9.011T VCC C R VCC =,故可以得到:11*91C R T =其中T 就是所需的复位时间,原理图中的电阻电容确定一个值,便可以求出另一个值了。
RC电路用作芯片复位电路原理

RC电路用作芯片复位电路原理1、电容充电过程当电容器接通电源以后,在电场力的作用下,与电源正极相接电容器极板的自由电子将经过电源移到与电源负极相接的极板下,正极由于失去负电荷而带正电,负极由于获得负电荷而带负电,正、负极板所带电荷大小相等,符号相反。
电荷定向移动形成电流,由于同性电荷的排斥作用,所以开始电流最大,以后逐渐减小,在电荷移动过程中,电容器极板储存的电荷不断增加,电容器两极板间电压 Uc等于电源电压 U时电荷停止移动,电流为0。
Figure1. 电容充电过程--自由电子流过电源的移动如Figure 1所示,当给U一个电压值的一瞬间,电路必须要满足基尔霍夫电压定律,因而电容两端电压发生强迫跳变,其值变为U。
所以,Figure 1的电路充电时间极短,几乎为0。
2、RC电路作为芯片复位电路(1) RC电路充电Figure2. RC电路电容充电过程[1] U = 0时,电路无通路。
nRst点与任何一点都不存在电位差。
[2] 在给U一个电压的瞬间,电容正极板上有电子通过点电源到达负极板从而形成回路,此时电源电压U的值将分配在电阻R和电容C 之上。
nRst点的电压与电容正极板的电压值相等。
[3] 随着自由电子的移动,电容充电完毕,不再有电流即电路中又无通路。
此时V = U,电阻相当于导线。
nRst点与电容负极的电位差为U。
RC电路电容的充电过程也很短,但比纯C电路的过程要长。
这个时间可以通过基尔霍夫定律算出来:R * I(t) + V(T) = UI(t) = C * dV(t) / dt得R * C dV(t) / dt + V(T) = U (1)这是一个一阶线性非齐次(U !=0)微分方程。
首先,先讨论(1)中对应的齐次方程R * C dV(t) / dt + V(T) = 0分离变量得dV(t) / V(t) = - dt / RC对两边积分得lnV(t) = (- 1 / RC) Sdt + lnc得V(t) = e-(t/RC) + lnc= A * e-(t/RC)对方程两边进行微分,得:dV(t) / dt = -(A/RC) * e-(t/RC)然后将上式带入(1)中得V(t) = U + A * e-(t/RC)连抄再请教,终于将这个方程解出来了。
RC复位电路的原理图及其复位时间计算的详细过程-

低电平有效复位电路如下此复位电路是针对低电平有效复位而言的,其中二极管是起着在断电的情况下能够很快的将电容两端的电压释放掉,为下次上电复位准备。
假设电容两端的初始电压为U0(一般情况下设为0V,T 时刻电容两端电压为。
3.3V 电压设为VCC 。
由流经电容的电流I 和电容两端的电压变化关系式:T U t U d d C I T *=可以得到:两边分别积分可以的得到:;即T U T d C d I **= ∫=tU t d C T I 0**0***U C U C T I T −=(其中U0=0V ,由可以得到公式:T R U U VCC +=T T U T U C R VCC +=/*(*1假设对电容充电至0.9*VCC 时完成复位,此时可以得出T=9*RC ,T 就是所需要的复位时间。
一般芯片的复位时间是给出的,R,C 其中可以自己确定一个值,然后再求出另外一个值。
在看看高电平有效复位时的RC 电路的复位时间的计算过程:其对应的原理图如下:假设电容两端的初始电压为U0(一般情况下设为0V,T 时刻电容两端电压为。
电容的充电电流为:同理可以得到在T 时刻的流经电阻的电流值为T U T VCC C I /*1= 电阻两端的电压可定所以又::/*(*11T U C R U T R =1C R U U VCC +=在T 时刻时电容充电为,若0.9VCC 时,高电平复位有效,则可以有=0.1VCC ,故可有:T U R U ≥T U /*1.0*(*9.011T VCC C R VCC =,故可以得到:11*91C R T =其中T 就是所需的复位时间,原理图中的电阻电容确定一个值,便可以求出另一个值了。
RC电路工作原理及其典型应用

RC电路工作原理及其典型应用作者:孟令晗来源:《电子技术与软件工程》2017年第01期RC电路在模拟电路和数字电路中随处可见,不同的电路形式和电容特有的频率特性以及对于阶跃电压的充放电特性使得RC电路可以在电子电路中实现多种不同的功能。
【关键词】RC电路积分电路微分电路滤波电路1 引言RC电路指的是在模拟电路与数字电路中,常见的有电阻R和电容C构成的电路。
在不同的电路中,由于电阻R和电容C的取值不同、输入和输出端口不同,相应的RC电路可以实现不同的功能。
本文将就RC电路的基本应用加以讨论,介绍RC微分电路、RC积分电路和一节RC无源滤波电路的原理与效果。
2 RC微分电路如图1所示,将电阻R与电容C串联后,在R、C两端输入方波信号Vi,从电阻R一端输出信号Vo,当满足RC在t=t1的时刻,输入的方波Vi从0变到Vmax,由于电容两端的电压不能突变,所以此时出入电压Vi全在电阻两端,Vo=Vmax。
随后在,电容C的电压因为充电,随指数规律上升,电阻R上的输出电压则按照指数规律下降。
在经过3RC时间后,电容C端充电充满,电阻端输出电压降为0。
所以RC乘积越小,充电过程越快。
t2时刻开始,输入的方波Vi从Vmax变到0,同样的道理,由于电容两端的电压不能突变,所以此时出入电压Vi全在电容两端,Vo=-Vmax。
随后在,电容C的电压因为放电,随指数规律下降,电阻R上的输出电压则按照指数规律上升。
在经过3RC时间后,电容C端放电完毕,电阻端输出电压变为0。
所以RC乘积越小,放电过程也越快。
显然如果t1和t2之间间隔过于短,即Tw过短,那么电容在没有充满的情况下就会放电,或者在没有放完的情况下就进行了充电,输出波形Vo就不是理想的尖脉冲。
为了满足Tw足够大这一条件,一般要求Tw>5RC,这是微分电路的必要条件。
因为输出电压,输出电压Vo与输入电压Vi的微分成正比,所以被称为RC微分电路。
3 RC积分电路如图3所示,将电阻R与电容C串联后,在R、C两端输入方波信号Vi,从电容C一端输出信号Vo,当满足RC>>Tw,其中Tw是方波的宽度,这种形式的电路称为积分电路。
rc复位电路复位端的波形,

rc复位电路复位端的波形,摘要:1.了解rc复位电路的基本原理2.分析rc复位电路复位端的波形特征3.阐述rc复位电路在实际应用中的优势和局限性4.探讨优化rc复位电路的方法和途径正文:RC复位电路是一种常见的电子电路,广泛应用于计算机、通信等领域。
其基本原理是通过电阻和电容的充放电过程,实现对电路复位端的控制。
为了更好地理解和应用RC复位电路,下面分析其波形特征,并探讨在实际应用中的优势和局限性。
一、RC复位电路的基本原理RC复位电路的核心元件是电阻R和电容C。
当复位信号到来时,电阻R 和电容C组成一个充电回路。
充电过程中,电容C上的电压逐渐上升,当电压达到一定值时,电容C充电完毕,复位信号消失。
随后,电容C开始放电,电阻R上的电压也逐渐下降,直至复位电路恢复正常状态。
二、RC复位电路复位端的波形特征1.上升沿:当复位信号到来时,电容C开始充电,其电压呈指数上升。
充电过程中,电阻R上的电压也逐渐上升,形成一个上升沿。
2.下降沿:随着电容C充电完毕,复位信号消失。
电容C开始放电,电阻R上的电压逐渐下降。
此时,复位电路进入恢复阶段,电压下降沿呈现出较快的速度。
3.稳态:当电容C放电至一定程度,电阻R上的电压稳定在一个值附近,复位电路进入稳态。
此时,电阻R和电容C共同决定了复位端的电压水平。
三、RC复位电路的优势和局限性1.优势(1)响应速度快:RC复位电路的响应速度较快,能够实现对复位信号的迅速响应。
(2)可靠性高:电阻R和电容C的稳定性较好,有助于提高复位电路的可靠性。
(3)电路简单:RC复位电路元件较少,电路结构简单,便于设计和调试。
2.局限性(1)精度受限:由于电阻R和电容C的非理想特性,RC复位电路的电压精度受到一定限制。
(2)频率响应受限:RC复位电路的频率响应较低,可能导致在高频信号下的性能下降。
四、优化RC复位电路的方法和途径1.选用高品质元件:选用性能更好的电阻和电容,以提高RC复位电路的性能。
rc低电平复位电路

rc低电平复位电路标题:RC低电平复位电路简介:RC低电平复位电路是一种常见的电路设计,用于在电源电压降低至一定程度时,自动将电路复位。
本文将介绍RC低电平复位电路的工作原理、设计要点以及应用场景。
一、工作原理RC低电平复位电路主要基于RC延迟电路和比较器的工作原理。
当电源电压下降时,RC延迟电路中的电容开始充电,通过延迟时间来判断电源电压是否低于预定的阈值。
当电源电压低于阈值时,比较器输出低电平,触发复位电路将系统复位。
二、设计要点1. 选择合适的阈值:阈值的选择应根据具体应用场景来确定,一般根据所使用的芯片的工作电压范围来设定。
过低的阈值会导致误复位,而过高的阈值则会导致系统在低电压下不复位。
2. 确定RC延迟时间:RC延迟时间应根据系统的响应速度和电源电压下降的速率来确定。
延迟时间过短,可能导致系统误复位;延迟时间过长,可能会影响系统的响应速度。
3. 选择合适的比较器:比较器的输出电平应能够满足系统的复位要求。
一般可选择具有开漏输出或双向输出的比较器,以便与系统中的其他元件相连接。
4. 添加滤波电路:为了提高电路的稳定性和抗干扰能力,可以在比较器的输入端添加滤波电路,滤除电源线上的噪声干扰。
三、应用场景RC低电平复位电路在许多电子系统中都有广泛应用,特别是对于对系统可靠性要求较高的场景。
以下是几个常见的应用场景:1. 单片机系统:在单片机系统中,RC低电平复位电路可用于在电源电压下降时对单片机进行复位,以确保系统的稳定性和可靠性。
2. 电源管理:在电源管理领域,RC低电平复位电路可用于监测电源电压,并在电压低于设定阈值时触发复位,以保护电子设备免受电压不稳定的影响。
3. 通信设备:在无线通信设备中,RC低电平复位电路可用于监测电源电压,以实现设备的自动复位和保护,确保通信的稳定性和可靠性。
四、总结RC低电平复位电路是一种常见的电路设计,通过RC延迟电路和比较器的组合实现对电源电压的监测和系统的复位。
RC电路工作原理及其典型应用

RC乘 积 越 小 , 放 电 过 程 也 越 快 。
图2 :R C微 分 电路 V i 、V c .V o
R
显然如果 t l和 t 2之 间 间 隔 过 于 短 。 即 T w过短 ,那么 电容在没 有充满 的情况 下就会 放电 , 或者在没有放完的情况下就进行 了充 电, 输 出波 形 V 0就不是 理想 的尖脉冲 。为 了满足 T w足够 大这 一条 件 ,一般 要求 T 1 ) l r > 5 R C,这
同的功能。
O
【 关 键 词 】R C电路 积 分 电路 微 分 电路 滤 波
电路
图 1 :R C微 分 电路
1 引 言
RC电路 指 的 是 在模 拟 电路 与数 字 电路
中,常 见 的有 电阻 R和 电容 c构 成 的电路 。
V
在不 同的 电路 中, 由于 电阻 R和 电容 C的取 值 不 同、输入和输 出端 口不同,相应 的 R C电 路可 以实现 不同的功能 。本文将就 R C 电路 的 基本 应用 加 以讨 论 ,介绍 RC微 分 电路 、RC
C
V
+
Vm ax
o
t
图4 :R C积 分 电路 V i 、V r 、V 0
图6 :一阶 R c无源高通滤波 电路 角度 分为有源滤波和无源滤波 电路 ,从功能角 度 分为 高通、低通、带通 、带 阻等等 。这 里指 讨 论最简单一 阶无源 R C滤 波 电路 。虽然 一阶 无源 R C滤波 电路滤波 效果不是最为 理想,但 是它结构简单,便于搭建具有代表性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RC复位电路的原理
下面图片里的电路,请问哪一个为高电平有效,为什么?
高电平复位低电平复位
最佳答案
看高电平有效还是低电平有效很简单啦。
你看按键按下去之后RST是高还是低。
左图按下去是高就是高有效,右边按下去是低就是低有效。
顺带说下原理(左图为例):
先不管按键,看上电复位的情况:通电瞬间电容可以当短路(别问我为什么)所以RST脚为高电平。
随着时间的飞逝(电容充电),稳定后VCC的电压实际上是加在电容上的。
电容下极板也就是RST脚最终为0V。
这样RST持续一段时间高电平后最终稳定在低电平,高电平持续时间由RC时间常数决定。
这就是上电高电平复位
在说按键。
按键按下去就相当于上电那一瞬,让电容短路。
后面的事都一样了。
再顺便说下,大电容旁边那个小电容一般是稳定电源电压滤波用的
高阻态是一个数字电路里常见的术语,指的是电路的一种输出状态,既不是高电平也不是低电平,如果高阻态再输入下一级电路的话,对下级电路无任何影响,和没接一样,如果用万用表测的话有可能是高电平也有可能是低电平,随它后面接的东西定。
高阻态的实质:
电路分析时高阻态可做开路理解。
你可以把它看作输出(输入)电阻非常大。
他的极限可以认为悬空。
也就是说理论上高阻态不是悬空,它是对地或对电源电阻极大的状态。
而实际应用上与引脚的悬空几乎是一样的。
高阻态的意义:
当门电路的输出上拉管导通而下拉管截止时,输出为高电平;反之就是低电平;如上拉管和下拉管都截止时,输出端就相当于浮空(没有电流流动),其电平随外部电平高低而定,即该门电路放弃对输出端电路的控制。