2020届高考二轮物理计算题题型专练(二)
2020高考物理二轮课标通用计算题专项训练

计算题专项训练(时间:80分钟满分:100分)题型专项能力训练第53页1.(14分)如图甲所示,水平传送带AB逆时针匀速转动,一个质量为m0=1.0 kg的小物块以某一初速度由传送带左端滑上,通过速度传感器记录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块滑上传送带时为计时零点)。
已知传送带的速度保持不变,g取10 m/s2。
求:(1)物块与传送带间的动摩擦因数μ;(2)物块在传送带上的运动时间;(3)整个过程中系统产生的热量。
答案:(1)0.2(2)4.5 s(3)18 J解析:(1)由题中v-t图像可得,物块做匀变速运动的加速度a=ΔvΔt =4.02m/s2=2.0 m/s2由牛顿第二定律得F f=m0a得到物块与传送带间的动摩擦因数μ=m0am0g =2.010=0.2。
(2)由题中v-t图像可知,物块初速度大小v=4 m/s、传送带速度大小v'=2 m/s,物块在传送带上滑动t1=3 s后,与传送带相对静止。
前2 s内物块的位移大小x1=v2t1'=4 m,向右后1 s内的位移大小x2=v'2t1″=1 m,向左3 s内位移x=x1-x2=3 m,向右物块再向左运动时间t2=xv'=1.5 s物块在传送带上运动时间t=t1+t2=4.5 s。
(3)物块在传送带上滑动的3 s内,传送带的位移x'=v't1=6 m,向左;物块的位移x=x1-x2=3 m,向右相对位移为Δx'=x'+x=9 m所以转化的热能E Q=F f×Δx'=18 J。
2.(14分)如图所示,两固定的绝缘斜面倾角均为θ,上沿相连。
两细金属棒ab(仅标出a端)和cd(仅标出c端)长度均为L,质量分别为2m和m;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平。
高考物理二轮总复习课后习题 题型专项练 计算题专项练(四) (6)

计算题专项练(四)1.(山东烟台模拟)光纤通信以其通信容量大、抗干扰性高和信号衰减小,而远优于电缆、微波通信,成为世界通信中的主要传输方式。
但光纤光缆在转弯的地方弯曲半径不能太小,否则影响正常通信。
如图所示,模拟光纤通信,将直径为d的圆柱形玻璃棒弯成3圆环,已知玻璃的折射率为√2,光4在真空中的速度为c,要使从A端垂直入射的光线能全部从B端射出。
求:(1)圆环内径R的最小值;(2)在(1)问的情况下,从A端最下方入射的光线,到达B端所用的时间。
2.(云南昭通模拟)如图所示,光滑水平地面上方边界C、D间存在宽度d=4 m、方向竖直向上、电场强度大小E=1×105N/C的匀强电场区域。
质量m1=1 kg、长度l=6 m的水平绝缘长木板静置于该水平面,且长木板最右侧与电场边界D重合。
某时刻质量m2=0.5 kg、电荷量q=+3×10-5C的滑块(可视为质点)以初速度v0=6 m/s从长木板左端水平滑上长木板,一段时间后,滑块离开电场区域。
已知长木板与滑块间的动摩擦因数μ=0.5,重力加速度大小g取10 m/s2,滑块所带的电荷量始终保持不变。
(1)滑块刚进电场时,求长木板的速度大小。
(2)求滑块在电场中的运动时间及全过程因摩擦产生的热量。
(3)若电场等大反向,求滑块进入电场后在长木板上的相对位移。
3.如图所示,半径为l的金属圆环内部等分为两部分,两部分各有垂直于圆环平面、方向相反的匀强磁场,磁感应强度大小均为B0,与圆环接触良好的导体棒绕圆环中心O匀速转动。
圆环中心和圆周用导线分别与两个半径为R的D形金属盒相连,D形盒处于真空环境且内部存在着磁感应强度大小为B的匀强磁场(图中未画出),其方向垂直于纸面向里。
t=0时刻导体棒从如图所示的位置开始运动,同时在D形盒内中心附近的A点,由静止释放一个质量为m、电荷量为-q(q>0)的带电粒子,粒子每次通过狭缝都能得到加速,最后恰好从D形盒边缘出口射出。
2020高考物理二轮复习:计算题综合训练二 Word版含答案

计算题综合训练二1. 如图所示,两根等高光滑的14圆弧轨道,半径为r、间距为L,轨道电阻不计.在轨道顶端连有一阻值为R的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B.现有一根长度稍大于L、质量为m、电阻不计的金属棒从轨道的顶端ab处由静止开头下滑,到达轨道底端cd时受到轨道的支持力为2mg.整个过程中金属棒与导轨电接触良好.求:(1) 棒到达最低点时的速度大小和通过电阻R的电流.(2) 棒从ab下滑到cd过程中回路中产生的焦耳热和通过R的电荷量.(3) 若棒在拉力作用下,从cd开头以速度v0向右沿轨道做匀速圆周运动,则在到达ab的过程中拉力做的功为多少?2. 如图所示,质量为M的光滑长木板静止在光滑水平地面上,左端固定一劲度系数为k的水平轻质弹簧,右侧用一不行伸长的细绳连接于竖直墙上,细绳所能承受的最大拉力为FT.使一质量为m、初速度为v0的小物体,在木板上无摩擦地向左滑动而后压缩弹簧,细绳被拉断,不计细绳被拉断时的能量损失.弹簧的弹性势能表达式为Ep =12kx2(k为弹簧的劲度系数,x为弹簧的形变量).(1) 要使细绳被拉断,v0应满足怎样的条件?(2) 若小物体最终离开长木板时相对地面速度恰好为零,请在坐标系中定性画出从小物体接触弹簧到与弹簧分别的过程小物体的v t图象.(3) 若长木板在细绳拉断后被加速的过程中,所能获得的最大加速度为aM ,求此时小物体的速度.3. 如图甲所示的装置是由加速器、电场偏转器和磁场偏转器构成.加速器两板a、b间加图乙所示变化电压uab,水平放置的电场偏转器两板间加恒定电压U0,极板长度为l,板间距离为d,磁场偏转器中分布着垂直纸面对里的左右有界、上下无界的匀强磁场B,磁场的宽度为D.很多质量为m、带电荷量为+q的粒子从静止开头,经过加速器加速后从与电场偏转器上板距离为23d的位置水平射入.已知U0=1 000 V,B=36 T,粒子的比荷qm=8×107C/kg,粒子在加速器中运动时间远小于Uab的周期,粒子经电场偏转后沿竖直方向的位移为y,速度方向与水平方向的夹角为θ,y与tanθ的关系图象如图丙所示.不考虑粒子受到的重力.甲乙。
2020届高考二轮物理计算题题型专练(二) Word版含答案

2020届高考查漏补缺之物理计算题题型专练(二)1、一质量为m 的烟花弹获得动能E 后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动。
爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量,求 (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度。
2、如图所示,“L”型滑板,(平面部分足够长),质量为4m,距滑板的A 壁为Ll 距离的B 处放有一质量为m,电量为+q 的大小不计的小物体,小物体与滑板,及滑板与地面的摩擦均不计,整个装置处于场强为E 的匀强电场中,初始时刻,滑板与小物体均静止,试求:1.释放小物体,第一次与滑板A 壁碰前小物体的速度v 1大小;2.若小物体与A 壁碰后相对水平地面的速度大小为碰前的3/5,碰撞时间极短,则碰撞后滑板速度的大小;3.若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多少.3、光滑水平面上放着质量1A m kg =的物块A 与质量2B m kg =的物块B,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能49p E J =。
在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。
放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B 恰能到达最高点C 。
取210/g m s =,求:(1)绳拉断后瞬间B 的速度B v 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W 。
4、如图所示,把质量为3克的带电小球A 用丝线吊起,若将带电量为8410C -⨯的正电小球B 靠近它,当两小球在同一高度相距3cm 时,丝线与竖直夹角为30o ,取210m/s g =,9229.010N m /C k =⨯⋅求:(1)小球A 带正电还是负电?(2)此时小球A 受到的库仑力大小和方向? (3)小球A 带的电量A q ?5、如图所示为一组未知方向的匀强电场的电场线,将带电荷量为61.010C q -=-⨯的点电荷由A 点沿水平线移至B 点,克服静电力做了6210J -⨯的功,已知A 、B 间的距离为2cm 。
计算题02牛顿运动定律的综合应用(解析版)-备战2020高考物理满分卷题型专练

计算题02 牛顿运动定律的综合应用时间:40分钟 满分:100分1.(2020·藤东中学高三月考)如图所示,足够长的木板与水平地面间的夹角θ可以调节,当木板与水平地面间的夹角为37°时,一小物块(可视为质点)恰好能沿着木板匀速下滑.若让该物块以大小v 0=10m/s 的初速度从木板的底端沿木板上滑,随着θ的改变,物块沿木板滑行的距离x 将发生变化.取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求物块与木板间的动摩擦因数μ;(2)当θ满足什么条件时,物块沿木板向上滑行的距离最小,并求出该最小距离. 【答案】(1) 0.75(2) 4m 【解析】 【详解】(1)当θ=37°时,设物块的质量为m ,物块所受木板的支持力大小为F N ,对物块受力分析,有:mg sin37°=μF N F N -mg cos37°=0 解得:μ=0.75(2)设物块的加速度大小为a ,则有:mg sin θ+μmg cos θ=ma 设物块的位移为x ,则有:v 02=2ax解得:()202sin cos v x g θμθ=+ 令tan α=μ,可知当α+θ=90°,即θ=53°时x 最小 最小距离为:x min =4m2.(2020·银川唐徕回民中学高三)如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t =时间内,木板向右减速运动,其向右运动的位移为:01100.52v x t m +=⋅=,方向向右;在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左;在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
2020届高考大二轮刷题首选卷物理精练:考试理科综合能力物理部分押题密卷(二) Word版含解析

2020年普通高等学校招生全国统一考试理科综合能力物理部分押题密卷(二) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分110分,时间60分钟。
第Ⅰ卷一、选择题(本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第1~5题只有一个选项符合题目要求,第6~8题有多项符合题目要求,全部答对的得6分,选对但不全的得3分,有选错的得0分)1.(2019·成都三模)如图为氢原子的能级图。
现有两束光,a光由图中跃迁①发出的光子组成,b光由图中跃迁②发出的光子组成,已知a光照射x金属时刚好能发生光电效应,则下列说法正确的是()A.x金属的逸出功为2.86 eVB.a光的频率大于b光的频率C.氢原子发生跃迁①后,原子的能量将减小3.4 eVD.用b光照射x金属,打出的光电子的最大初动能为10.2 eV答案A解析a光子的能量值:E a=E5-E2=[-0.54-(-3.40)]eV=2.86 eV,a光照射x金属时刚好能发生光电效应,由0=E a-W可知,x金属的逸出功为2.86 eV,故A正确;b光子的能量:E b=E2-E1=[-3.4-(-13.6)] eV=10.2 eV,由ε=hν可知,a光子的能量值小,则a光子的频率小,故B错误;氢原子辐射出a光子后,氢原子的能量减小了E a=2.86 eV,故C错误;用b光照射x金属,打出的光电子的最大初动能为:E km =E b -W =(10.2-2.86) eV =7.34 eV ,故D 错误。
2.(2019·河北高三上学期省级示范高中联考)甲、乙两物体沿同一直线运动,运动过程的位移—时间图象如图所示,下列说法正确的是( )A .0~6 s 内甲物体做匀变速直线运动B .0~6 s 内乙物体的速度逐渐减小C .0~5 s 内两物体的平均速度相等D .0~6 s 内存在某时刻两物体的速度大小相等答案 D解析 x -t 图象为直线表示物体做匀速直线运动,故A 错误;x -t 图象的斜率表示速度,由乙物体的x -t 图象可知,图象的斜率逐渐增大,即乙物体的速度逐渐增大,故B 错误;0~5 s 甲的位移为5 m ,平均速度为v 甲=1 m/s ,乙的位移为-3 m ,平均速度为v 乙=-35 m/s ,故C 错误;x -t 图象的斜率表示速度,由甲、乙两物体的图象可知,在0~6 s 内存在某时刻两图线的斜率的绝对值大小相等,即存在某时刻两物体的速度大小相等,故D 正确。
重庆2020人教高考物理二轮实验和计算题选练及答案

重庆2020人教高考物理二轮实验和计算题选练及答案1、在“验证机械能守恒定律”的实验(1)实验室提供了铁架台、夹子、导线、纸带等器材.为完成此实验,除了所给的器材,从图中还必须选取的实验器材是________.(2)下列方法有助于减小实验误差的是________.A.在重锤的正下方地面铺海绵B.必须从纸带上第一个点开始计算验证机械能是否守恒C.重复多次实验,重物必须从同一位置开始下落D.重物的密度尽量大一些(3)完成实验后,小明用刻度尺测量纸带距离时如图(乙),已知打点计时器每0.02 s打一个点,则B点对应的速度v B=________m/s.若H点对应的速度为v H,重物下落的高度为h BH,重物质量为m,当地重力加速度为g,为得出实验结论完成实验,需要比较mgh BH与________的大小关系(用题中字母表示).【参考答案】(1)电磁打点计时器和学生电源或者是电火花计时器毫米刻度尺(2)D(3)1.35 m/s 12m v2H-12m v2B解析:(1)该实验中可以选用电磁打点计时器和学生电源或者是电火花计时器.在实验中需要刻度尺测量纸带上点与点间的距离从而可知道重锤下降的距离,故需要毫米刻度尺.(2)在重锤的正下方地面铺海绵,目的是保护仪器,A选项错误;该实验是比较重力势能的减少量与动能增加量的关系,不一定要从纸带上第一个点开始计算验证,B 选项错误;重复多次实验时,重物不需要从同一位置开始下落,C 选项错误;选重物的密度尽量大一些,可以减小摩擦阻力和空气阻力的影响,从而减少实验误差,D 选项正确.(3)根据刻度尺的读数规则可知,AC 之间的距离x AC =5.40 cm.根据匀变速直线运动的规律可知,一段时间内的平均速度等于中间时刻的瞬时速度,B 点瞬时速度的大小v B =x AC 2T =1.35 m/s.根据机械能守恒可知,mgh BH =12m v 2H -12m v 2B .2、如图所示,一长为200 m 的列车沿平直的轨道以80 m/s 的速度匀速行驶,当车头行驶到进站口O 点时,列车接到停车指令,立即匀减速停车,因OA 段铁轨不能停车,整个列车只能停在AB 段内,已知OA =1 200 m ,OB =2 000 m ,求:(1)列车减速运动的加速度的取值范围;(2)列车减速运动的最长时间.【参考答案】(1)1.6 m/s 2≤a ≤167 m/s 2 (2)50 s 解析:(1)设列车做匀减速直线运动,运动到A 点速度为0时,加速度为a 1.根据匀减速直线运动规律可知,刹车的距离,x OA +L =v 202a 1,解得a 1=167 m/s 2. 设运动到B 点速度为0时,加速度为a 2.刹车的距离x OB =v 202a 2,解得a 2=1.6 m/s 2. 列车减速运动的加速度取值范围为1.6 m/s 2≤a ≤167 m/s 2.(2)加速度最小时,列车减速的时间最长,t max =v 0a min=50 s. 3、花岗岩、大理石等装修材料都不同程度地含有放射性元素氡222,人长期吸入后会对呼吸系统造成损害.设有一静止的氡核(222 86Rn)发生衰变生成钋(218 84Po),若放出5.6 MeV 的核能全部转化为动能.(1)写出核反应方程;(2)求新核钋218的动能.(结果保留1位有效数字)【参考答案】(1)22286Rn→218 84Po+42He(2)2×10-14 J解析:(1)根据质量数和核电荷数守恒可知,核反应方程式为:22286Rn→218 84Po+42He.(2)以α离子的速度方向为正方向,核反应过程,系统动量守恒.m v0+M v=0.解得,v=-m v0M,负号表示方向与α离子速度方向相反.核能全部转化为动能,ΔE=12m v2+12M v2.联立解得,新核钋218的动能E k≈2×10-14 J.4、某大雾天气,一小汽车和一大客车在平直公路的同一车道上同向行驶,小汽车在后,其速度大小v1=30 m/s;大客车在前,其速度大小v2=10 m/s.在小汽车和大客车相距x0=25 m时两司机同时发现险情,此时小汽车司机马上以大小a1=8 m/s2的加速度刹车,而大客车立即以大小a2=2 m/s2的加速度加速前进.请通过计算判断两车是否相撞.【参考答案】两车不会相撞.解析:小汽车刹车做匀减速运动,当速度减至与大客车相等时,恰好追上大客车,此时两车恰好不会相撞.速度关系,v1-a1t=v2+a2t,代入数据解得,t=2 s.小汽车运动位移x1=v1t-12a1t2=44 m.大客车运动位移x2=v2t+12a2t2=24 m.由于x2+x0>x1,两车不会相撞.5、我们知道,根据光的粒子性,光的能量是不连续的,而是一份一份的,每一份叫一个光子,光子具有动量(hν/c)和能量(hν),当光子撞击到光滑的平面上时,可以像从墙上反弹回来的乒乓球一样改变运动方向,并给撞击物体以相应的作用力.光对被照射物体单位面积上所施加的压力叫光压.联想到人类很早就会制造并广泛使用的风帆,能否做出利用太阳光光压的“太阳帆”进行宇宙航行呢?1924年,俄国航天事业的先驱齐奥尔科夫斯基和其同事灿德尔明确提出“用照射到很薄的巨大反射镜上的太阳光所产生的推力获得宇宙速度”,首次提出了太阳帆的设想.但太阳光压很小,太阳光在地球附近的光压大约为10-6 N/m 2,但在微重力的太空,通过增大太阳帆面积,长达数月的持续加速,使得太阳帆可以达到甚至超过宇宙速度.IKAROS 是世界第一个成功在行星际空间运行的太阳帆.2010年5月21日发射,2010年12月8日,IKAROS 在距离金星80,800公里处飞行掠过,并进入延伸任务阶段.设太阳单位时间内向各个方向辐射的总能量为E ,太空中某太阳帆面积为S ,某时刻距太阳距离为r(r 很大,故太阳光可视为平行光,太阳帆位置的变化可以忽略),且帆面和太阳光传播方向垂直,太阳光频率为ν,真空中光速为c ,普朗克常量为h.(1)当一个太阳光子被帆面完全反射时,求光子动量的变化Δp ,判断光子对太阳帆面作用力的方向.(2)计算单位时间内到达该航天器太阳帆面的光子数.(3)事实上,到达太阳帆表面的光子一部分被反射,其余部分被吸收.被反射的光子数与入射光子总数的比,称为反射系数.若太阳帆的反射系数为ρ,求该时刻太阳光对太阳帆的作用力.【参考答案】(1)-2hνtc 与入射光子速度方向相反(2)ES 4πhνr 2 (3)(1+ρ)ES 4πcr 2解析:(1)以光子运动的初速度方向为正方向,光子动量的变化Δp =-p -p =-2hνc .根据动量定理可知,Ft =Δp ,解得F =-2hνtc. 光子对太阳帆面作用力的方向与入射光子速度方向相反.(2)每个光子能量E 0=hν.单位时间内到达太阳帆光能量E 总=E 4πr 2·S.单位时间内到达该航天器太阳帆面的光子数N=E总E0=ES4πhνr2.(3)反射光子和吸收光子均会对太阳帆产生作用力.在时间Δt,根据动量定理可知,Ft=Δp反+Δp吸其中Δp反=2ρNΔp·Δt=2ρES4πcr2·ΔtΔp吸=(1-ρ)NΔp·Δt=(1-ρ)ES4πcr2·Δt.联立解得,F=(1+ρ)ES 4πcr2.。
2020届高考大二轮专题复习冲刺物理(创新版)文档:计算题专练(二)版含解析

计算题专练(二)共2小题,共32分。
要求写出必要的文字说明和方程式,只写最后结果不给分。
1.(2019·昆明市模拟)(12分)2018年10月23日,港珠澳大桥开通,这是建筑史上里程最长、投资最多、施工难度最大的跨海大桥。
如图所示的水平路段由一段半径为48 m 的圆弧形弯道和直道组成。
现有一总质量为2.0×103 kg 、额定功率为90 kW 的测试汽车通过该路段,汽车可视为质点,取重力加速度g =10 m/s 2。
(1)若汽车通过弯道时做匀速圆周运动,路面对轮胎的径向最大静摩擦力是车重的1.2倍,求该汽车安全通过此弯道的最大速度;(2)若汽车由静止开始沿直道做加速度大小为 3 m/s 2的匀加速运动,在该路段行驶时受到的阻力为车重的0.15倍,求该汽车匀加速运动的时间及 3 s 末的瞬时功率。
答案(1)24 m/s (2)3.3 s 81 kW解析(1)径向最大静摩擦力提供向心力时,汽车通过此弯道的速度最大,设最大速度为v m ,则有:f 径向=m v 2mr根据题意f 径向=1.2mg代入数据解得:v m =24 m/s 。
(2)汽车在匀加速过程中:F -f =ma当功率达到额定功率时,P 0=Fv 1v 1=at 1代入数据解得:t 1=3.3 st =3 s<t 1=3.3 s则汽车在该过程中始终做匀加速运动,有:v =atP =Fv则3 s末发动机功率为:P=81 kW。
2.(2019·成都市三诊)(20分)如图,竖直面内固定的绝缘轨道abc,由半径R =3 m的光滑圆弧段bc与长L=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过c点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d=1.6 m 的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向垂直纸面向里的匀强磁场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届高考查漏补缺之物理计算题题型专练(二)1、一质量为m 的烟花弹获得动能E 后,从地面竖直升空,当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E ,且均沿竖直方向运动。
爆炸时间极短,重力加速度大小为g ,不计空气阻力和火药的质量,求 (1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间; (2)爆炸后烟花弹向上运动的部分距地面的最大高度。
2、如图所示,“L”型滑板,(平面部分足够长),质量为4m,距滑板的A 壁为Ll 距离的B 处放有一质量为m,电量为+q 的大小不计的小物体,小物体与滑板,及滑板与地面的摩擦均不计,整个装置处于场强为E 的匀强电场中,初始时刻,滑板与小物体均静止,试求:1.释放小物体,第一次与滑板A 壁碰前小物体的速度v 1大小;2.若小物体与A 壁碰后相对水平地面的速度大小为碰前的3/5,碰撞时间极短,则碰撞后滑板速度的大小;3.若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多少.3、光滑水平面上放着质量1A m kg =的物块A 与质量2B m kg =的物块B,A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能49p E J =。
在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。
放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R=0.5m,B 恰能到达最高点C 。
取210/g m s =,求:(1)绳拉断后瞬间B 的速度B v 的大小; (2)绳拉断过程绳对B 的冲量I 的大小; (3)绳拉断过程绳对A 所做的功W 。
4、如图所示,把质量为3克的带电小球A 用丝线吊起,若将带电量为8410C -⨯的正电小球B 靠近它,当两小球在同一高度相距3cm 时,丝线与竖直夹角为30o ,取210m/s g =,9229.010N m /C k =⨯⋅求:(1)小球A 带正电还是负电?(2)此时小球A 受到的库仑力大小和方向? (3)小球A 带的电量A q ?5、如图所示为一组未知方向的匀强电场的电场线,将带电荷量为61.010C q -=-⨯的点电荷由A 点沿水平线移至B 点,克服静电力做了6210J -⨯的功,已知A 、B 间的距离为2cm 。
1.试求A 、B 两点间的电势差AB U ;2.若A 点的电势为1V A ϕ=,试求B 点的电势B ϕ;3.试求该匀强电场的大小E 并判断其方向。
6、平面直角坐标系xOy 中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ现象存在沿y 轴负方向的匀强电场,如图所示。
一带负电的粒子从电场中的Q 点以速度0v 沿x 轴正方向开始运动, Q 点到y 轴的距离为到x 轴距离的2倍。
粒子从坐标原点O 离开电场进入磁场,最终从x 轴上的P 点射出磁场, P 点到y 轴距离与Q 点到y 轴距离相等。
不计粒子重力,为:1.粒子到达O 点时速度的大小和方向;2.电场强度和磁感应强度的大小之比。
7、如图所示,AMB 是一条长L=10m 的绝缘水平轨道,固定在离水平地面高h=1.25m 处,A 、B 为端点,M 为中点,轨道MB 处在方向竖直向上,大小E=5×105N/C 的匀强电场中,一质量m=0.1kg,电荷量q=+1.3×10-4C 的可视为质点的滑块以初速度v 0=6m/s 在轨道上自A 点开始向右运动,经M 点进入电场,从B 点离开电场,已知滑块与轨道间动摩擦因数μ=0.2,求滑块1.到达M 点时的速度大小2.从M 点运动到B 点所用的时间3.落地点距B 点的水平距离8、如图所示,真空中四个相同的矩形匀强磁场区域,高为4d ,宽为d ,中间两个磁场区域间隔为2d ,中轴线与磁场区域两侧相交于'O O 、点,各区域磁感应强度大小相等.某粒子质量为m 、电荷量为q +,从O 沿轴线射入磁场.当入射速度为0v 时,粒子从O 上方2d处射出磁场.取sin530.8︒=,cos530.6︒=.(1)求磁感应强度大小B ;(2)入射速度为05v 时,求粒子从O 运动到'O 的时间t ;(3)入射速度仍为05v ,通过沿轴线'OO 平移中间两个磁场(磁场不重叠),可使粒子从O 运动到'O 的时间增加t ∆,求t ∆的最大值.9、间距为l 的两平行金属导轨由水平部分和倾斜部分平滑连接而成,如图所示,倾角为θ的导轨处于大小为1B ,方向垂直导轨平面向上的匀强磁场区间Ⅰ中,水平导轨上的无磁场区间静止放置一质量为3m 的“联动双杆”(有两根长为l 的金属杆cd 和ef,用长度为L 的刚性绝缘杆连接构成),在“联动双杆”右侧存在大小为2B ,方向垂直导轨平面向上的匀强磁场区间Ⅱ,其长度大小于L ,质量为m 、长为l 的金属杆ab 从倾斜导轨上端释放,达到匀速后进入水平导轨(无能量损失),杆ab 与“联动双杆”发生碰撞,碰后杆ab 和cd 合在一起形成“联动三杆”。
“联动三杆”继续沿水平导轨进入磁场区间Ⅱ并从中滑出。
运动过程中,杆ab 、cd 和ef 与导轨始终接触良好,且保持与导轨垂直。
已知杆ab 、cd 和ef 电阻均为0.1kg m =,0.5m l =,0.3m L =,30θ=o ,10.1T B =,20.2T B =,不计摩擦阻力和导轨电阻,忽略磁场边界效应。
求:1.杆ab 在倾斜导轨上匀速运动时的速度大小0v ;2.“联动三杆”进入磁场区域Ⅱ前的速度大小为v ;3.“联动三杆”滑过磁场区域Ⅱ产生的焦耳热Q 。
10、如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度打下1B 随时间t 的变化关系为1B kt =,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为0B ,方向也垂直于纸面向里。
某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在0t 时刻恰好以速度0v 越过MN ,此后向右做匀速运动。
金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计。
求:1.在0t =到0t t =时间间隔内,流过电阻的电荷量的绝对值;2.在时刻()0t t t >穿过回路的总磁通量和金属棒所受外加水平恒力的大小。
答案以及解析1答案及解析:答案:(1)设烟花弹上升的初速度为0v ,由题给条件有 212E mv =① 设烟花弹从地面开始上升到火药爆炸所用的时间为t ,由运动学公式有00v gt -=-②联立①②式得12Et g m=(2)设爆炸时烟花弹距地面的高度为1h ,由机械能守恒定律有1E mgh =④火药爆炸后,烟花弹上、下两部分均沿竖直方向运动,设炸后瞬间其速度分别为1v 和2v 。
由题给条件和动量守恒定律有22121144mv mv E +=⑤ 1211022mv mv +=⑥ 由⑥式知,烟花弹两部分的速度方向相反,向上运动部分做竖直上抛运动。
设爆炸后烟花弹上部分继续上升的高度为2h ,由机械能守恒定律有2121142mv mgh =⑦ 联立④⑤⑥⑦式得,烟花弹上部分距地面的最大高度为122Eh h h mg=+=⑧ 解析:2答案及解析:答案: 1.对物体,根据动能定理,有211 1/2qEL mv =得 112qEL v m=2.物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v 1′;滑板的速度为v,则11 4Mv mv mv ='+若 '11 3/5v v =则11/10v v = 因为1 v v '= ,则不符合实际, 故应取'113/5v v =- 1122255qEL v v m==3.在物体第一次与A 壁碰后到第二次与A 壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴21()/2v v t vt -= 即12127755qEL v v m==对整个过程运用动能定理得;电场力做功22'2121111113()2225W mv mv mv qEL =+-=解析:3答案及解析:答案:(1)设B 在绳被拉断后瞬时的速率为B v ,到达C 点的速率为C v ,根据B 恰能到达最高点C 有:2B CB m v F m g R==向①对绳断后到B 运动到最高点C 这一过程应用动能定理: 2211222B B c B B m gR m v m v -=-② 由①②解得:5/B v m s =;(2)设弹簧恢复到自然长度时B 的速率为1v ,取向右为正方向,弹簧的弹性势能转化给B 的动能:2112B Ep m v =③ 根据动量定理有:1B B B I m v m v =-④由③④解得:4I N s =-•,其大小为4N s •;(3)设绳断后A 的速率为A v ,取向右为正方向,根据动量守恒定律有: 1B B B A A m v m v m v =+⑤根据动能定理有: 212A A W m v =⑥ 由⑤⑥解得:W=8J 。
解析:4答案及解析:答案:(1)对A 受力分析如下图所示因B 带正电,则A 带负电;(2)根据共点力平衡条件,结合几何关系得到sin 30T mg ︒=, cos30T F ︒=解得:3333tan 301010110N F mg --=︒=⨯=⨯;由A 到B (3)根据库仑定律,有:2QqF q r=故:2329981.0100.0391042.510C 10A B Fr kQ q ---⨯⨯===⨯⨯⨯⨯ 解析:5答案及解析:答案: (1)由题意可知,静电力做负功,有:6210AB W J =⨯﹣﹣根据66210 2110AB ABW U V q ---⨯===-⨯ (2)由AB A B U ϕϕ=﹣,可得121B A AB U V V V ϕϕ===﹣﹣﹣ (3)沿着电场方向的位移为2221060110d cos m m =⨯︒=⨯﹣﹣ 22200/10AB d E U V m -=== 沿着电场线方向电势降低,所以电场线的方向:沿电场线斜向下 解析:6答案及解析:答案:1.在电场中,粒子做类平抛运动,设Q 点到x 轴的距离为L,到y 轴的距离为2L,粒子的加速度为a,运动时间为t,有 02L v t =①21at 2L =②设粒子到达O 点时沿y 轴方向的分速度为y v y v at =③设粒子到达O 点时速度方向与x 轴方向的夹角为α,有 0tan y v v α=④联立①②③④式得45α=︒ ⑤即粒子到达O 点时速度方向与x 轴正方向的夹角为45°角斜向上。