激光原理第四章习题解答
激光原理 复习题答案(考研可参考)电子教案

激光原理复习题第一章 电磁波1. 麦克斯韦方程中0000./.0t t μμερε∂⎧∇⨯=-⎪∂⎪∂⎪∇⨯=+⎨∂⎪∇=⎪⎪∇=⎩B E EB J E B麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表示电场和磁场的散度;(2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋电场),它不是由电荷激发的,而是由随时间变化的磁场激发的;(3)由方程组中的2式可知,在真空中,,J =0,则有 t E ∂∂=∇ 00B *εμ ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。
这种交替的不断变换会导致电磁波的产生。
2, 产生电磁波的典型实验是哪个?基于的基本原理是什么?答:产生电磁波的典型实验是赫兹实验。
基于的基本原理:原子可视为一个偶极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。
简单地说就是利用了振荡电偶极子产生电磁波。
3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。
对于可见光范围的电磁波,它的产生是基于原子辐射方式。
那么由此原理产生的光的特点是什么?答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。
4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。
请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么?答:有三种:自发辐射,受激辐射,受激吸收。
其中受激辐射与激光的产生有关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射方向,相同的偏振态和相同的相位,是相干光。
5光与物质相互作用时,会被介质吸收或放大。
被吸收时,光强会减弱,放大时说明介质对入射光有增益。
周炳琨激光原理第四章习题解答(完整版)

周炳琨激光原理第四章习题解答(完整版)习题1解:根据多普勒效应,有习题2解:为清楚起见,如下图所示光源发出频率为V o 的光,以M 上反射的光为I'它被M1反射并透过M ,由图中 的I 所标记;透过 M 的光记为II '它被M2反射后又为 M 反射,此光记为II ,由 于M 和M1均为固定镜,所以I 光的频率不变,仍为:°,将M2看作光接收器,由于它以速度:运动,故它感受到的光的频率为 :0,依照下式因M2反射II '光,所以它又相当于光发射器,其运动速度为 :时,发出的光的频率为当: = 0.1c 时, ■ 1 : 572 .4 nm 当: = 0.4c 时, ■ 2 : 414 .3nm 当: = 0.8c 时, ■ 3 :'210 .9 nm这样I 光的频率为:° ,11光的频率为■- ° 2v1在屏P 上, I 光和II 光的电场可分c 1相对应的M2镜的空间坐标,且有(Lz -L J^L习题3解:根据光波的相干长度公式(1.1.16)C LCAv由题意可知,忽略自然加宽和碰撞加宽,则主要表现为多普勒加宽7T 1/2_7C T 即:匸 -D 二 7.16 10 ■- 0( )7.16 10( M\ M二 336 MH ZC C则 L C0.89 mAv A%对氦氖激光器,相干长度为因而屏P 上的总光场为E ii = E ° cos |2,: ; o( V 、 fv2血)0t + — 2叱 0t icos 一2皿 0t 1 、、、 c 丿2光强正比于电场振幅的平方,所以P 上光强为I Io它是t 的周期函数,单位时间内的变化次数为u 2°o dLm = - 2: oc c dt由上式可得dt 时间间隔内屏上光强暗变化的次数为mdt 二c因为dt 是镜M2移动dL 长度所花费的时间, 屏上光强的亮暗变化次数,对上式两边积分,所以mdt 也就是镜M2 即可得到镜M2移动L暗变化的次数 S 二t 2t1 mdtL22o dLcL12°°(L 2J )= c式中t1和t2分别为M2镜开始移动的时刻和停止移动的时刻,L1和 移动dL 过程中 时,屏上光强亮 2L ■■"••0L2为与t1和t2E = E | :卜Eu =2E 0cos丿1 +c 0S|2兀 I v2uL C( ),—63.28 mu a习题4解:CO 2气体,T=300K ,考察10.6」m 线,多普勒线宽为35 10 H由- P - D 得:P .1.08kPa 。
北交大激光原理第4章高斯光束部分-final

第四章高斯光束理论一、学习要求与重点难点学习要求1.掌握高斯光束的描述参数以及传输特性;2.理解q 参数的引入,掌握q 参数的ABCD 定律;3.掌握薄透镜对高斯光束的变换;4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;5.理解高斯光束的聚焦和准直条件;6.了解谐振腔的模式匹配方法。
重点1.高斯光束的传输特性;2. q 参数的引入;3. q 参数的ABCD 定律;4.薄透镜对高斯光束的变换;5.高斯光束的聚焦和准直条件;6.谐振腔的模式匹配方法。
难点1. q 参数,及其ABCD 定律;2.薄透镜对高斯光束的变换;3.谐振腔的模式匹配。
1等相位面:以R 为半径的球面,R(z) =z [ 莘 -2点的远场发散角, m = lim 2w(z) _2 --- =e zY : z 二 W oW o(或f )及束腰位置―;将两个参数W(z)和R(Z)统一在一个表达式中,便于研究 z、知识点总结振幅分布:按高斯函数从中心向外平滑降落。
光斑半径 w(z)二w 0.:高斯光束特征参数 光斑半径w(z)和等相位面曲率半径:/% =w(z) 1 +⑷(z)丿 R(z)、 -'I :( z = R(z) 1十卜 j 匚 辽w(z)丿.二 W 2(z) 2咼斯光束基本性质远场发散角: 1 1. 九iq 参数,q (z) R(z)兀 w(z)2 q (z )=if+z =q +z =i 孚1高斯光束通过光学系统的传输规律2傍轴光线L 的变换规律器 士C ; D』傍轴球面波的曲率半径R 的变换规律R AR^B .遵从相同的变换规律 CR +D高斯光束q 参数的变换规律q^Aq^B Cq i +DABCD 公式高斯光束q 参数的变换规律 高斯光束的聚焦:只讨论单透镜 高斯光束的准直:一般为双透镜ABCD 公式云誓T 高斯光束的模式匹配:实质是透镜变换,分两种情况已知w 0,w 0,确定透镜焦距F 及透镜距离I ,I' 已知两腔相对位置固定l^ I I '及W o ,W o 确定,F 如何选择高斯光束的自再现变换 )W’o =W o or I'=I高斯光束的自再现变换和稳定球面腔q(I')=q(O )T 2透镜F J U 1+徳J]-丿」I 球面镜R(I)=I 1+@曲[] . 4丿」二w 0即F E R(I)=稳定球面腔、典型问题的分析思路2高斯光束的q 参数在自由空间中的传输规律 q(z) = i —些亠z = q 0亠z1)高斯光束通过单个透镜的变换。
激光原理第四章答案1

气体的碰撞线宽系数 估算,根据 气体的碰撞线宽与气压p的关系近似为
可知,气体压强为 时的碰撞线宽约等于碰撞线宽系数.
再由 和 ,其中
可估算出其值约为
当 时,其气压为
所以,当气压在 附近时以多普勒加宽为主,当气压比 大很多时,以均匀加宽为主。
5.氦氖激光器有下列三种跃迁,即 的632.8nm, 的 和 的 的跃迁。求400K时它们的多普勒线宽,分别用 、 、 为单位表示。由所得结果你能得到什么启示?
(2)在 时间内自发辐射的光子数为:
所以
(3)量子产额为:
无辐射跃迁导致能级2的寿命偏短,可以由
定义一个新的寿命 ,这样
7.二能级的波数分别为 和 ,相应的量子数分别为 和 ,上能级的自发辐射概率 ,测出自发辐射谱线形状如图4.1所示。求
(1)中心频率发射截面 ;
(2)中心频率吸收截面 。
(能级简并度和相应量子数的关系为 ,可设该工作物质的折射率为1.)
解:实验方框图如下:
实验程序以及计算公式如下:
(1)测量小信号中心频率增益系数:移开红宝石棒,微安表读数为 ,放入红宝石棒,微安表的读数为 ,由此得到小信号增益系数为
减小入射光光强,使小信号增益系数最大。然后维持在此光强,微调单色仪鼓轮以改变入射波长(频率),使小信号增益系数最大,此最大增益系数即为小信号中心频率增益系数 。
式中 和 分别为镜 开始移动的时刻和停止移动的时刻; 和 为与 和 相对应的 镜的空间坐标,并且有 。
得证。
3.在激光出现以前, 低气压放电灯是很好的单色光源。如果忽略自然加宽和碰撞加宽,试估算在77K温度下它的605.7nm谱线的相干长度是多少,并与一个单色性 的氦氖激光器比较。
【激光原理】第四章作业答案

11.有一平凹氦氖激光器,腔长 0.5米 ,凹镜曲率半径为2米 ,现欲用小孔光阑选出基模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的 3.3倍时,可选出基横模。
)解:已知条件R 1=∞, R 2=2 m, L =0.5 m∵等价的对称共焦腔参数L R R L R L Z L R R L R L Z 2221122121-+-=-+--=)(,)( LR R L R R L R L R L f 2212121-+-+--=))()(( ∴z 1=0 m, z 2=L =0.5 m, m .)(8702≈-=L R L f对于基横模 ∵22001⎪⎪⎭⎫ ⎝⎛+=πωλωωz z )(, πλωf =0≈0.418×10-3 m ∴平面镜的光斑半径ωs1=ω0, 凹面镜的光斑半径L R R s -=2202ωω≈0.481×10-3 m ∴光阑紧靠平面镜的小孔直径为d 1=3.3ωs1≈1.379×10-3 m ,而光阑紧靠凹面镜的小孔直径为d 2=3.3ωs2≈1.587×10-3 m2. 激光工作物质是钕玻璃(发光波长为1.06 μm),其荧光线宽 ΔλF =24 nm ,折射率μ=1.5,能用短腔选单纵模吗?解:相邻两个纵模频率差L cμν2=∆短腔法选单纵模的条件是2F v ∆>∆ν2 ∵F F cλλν∆=∆2≈6.4×1012 HzFv c L ∆<μ=0.31×10-4 m 腔长为几十微米的量级,很难实现高功率的激光输出。
因此不能用短腔法选单纵模。
3.解:mm s f 01.02.060300=⨯=='ωω 5.解:∵L 1紧靠腔的输出镜面∴入射在L 1上的光斑半径ω满足:∴31.1125.220012=⨯=='ωωf f M 7.解:当声频改变ν∆时,衍射光偏转的角度为:νμυλφ∆=∆s; 而高斯光束的远场发散角为:0μπωλθ=; 可分辨光斑数为:1571031050103003360=⨯⨯⋅⋅⨯=⋅⋅∆=∆=-.πυωπνθφsn 8. 请解释调Q 激光器的原理,以及脉冲形成分哪几个阶段。
激光原理第四章答案

第四章 电磁场与物质的共振相互作用1 静止氖原子的4223P S →谱线中心波长为632.8nm ,设氖原子分别以0.1c 、0.4c 、0.8c 的速度向着观察者运动,问其表观中心波长分别变为多少?解:根据公式νν=c λν=可得:λλ=代入不同速度,分别得到表观中心波长为: nm C 4.5721.0=λ,0.4414.3C nm λ=,nm C 9.2109.0=λ2.设有一台迈克尔逊干涉仪,其光源波长为λ。
试用多普勒原理证明,当可动反射镜移动距离L 时,接收屏上的干涉光强周期地变化2/L λ次。
证明:如右图所示,光源S 发出频率为ν的光,从M 上反射的光为I ',它被1M 反射并且透过M ,由图中的I 所标记;透过M 的光记为II ',它被2M 反射后又被M 反射,此光记为II 。
由于M 和1M 均为固定镜,所以I 光的频率不变,仍为ν。
将2M 看作光接收器,由于它以速度v 运动,故它感受到的光的频率为:因为2M 反射II '光,所以它又相当于光发射器,其运动速度为v 时,发出的光的频率为这样,I 光的频率为ν,II 光的频率为(12/)v c ν+。
在屏P 上面,I 光和II 光的广场可以分别表示为:S2M (1)vcνν'=+2(1)(1)(12)v v v c c cνννν'''=+=+≈+0cos(2)I E E t v πν=⎡⎤因而光屏P 上的总光场为光强正比于电场振幅的平方,所以P 上面的光强为它是t 的周期函数,单位时间内的变化次数为由上式可得在dt 时间内屏上光强亮暗变化的次数为(2/)mdt c dL ν=因为dt 是镜2M 移动dL 长度所花费的时间,所以mdt 也就是镜2M 移动dL 过程中屏上光强的明暗变化的次数。
对上式两边积分,即可以得到镜2M 移动L 距离时,屏上面光强周期性变化的次数S式中1t 和2t 分别为镜2M 开始移动的时刻和停止移动的时刻;1L 和2L 为与1t 和2t 相对应的2M 镜的空间坐标,并且有21L L L -=。
激光原理部分课后习题答案

µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e
《激光原理及技术》1-4习题答案

激光原理及技术部分习题解答(陈鹤鸣)第一章4. 为使氦氖激光器的相干长度达到1km, 它的单色性0/λλ∆应当是多少 解:相干长度C cL υ=∆,υ∆是光源频带宽度853*10/3*101C c m s Hz L kmυ∆===225108(/)632.8*3*10 6.328*103*10/c cc c nm Hz c m sλλυυυυλλλυλ-=⇒∆=∆=∆∆⇒=∆== 第二章4. 设一对激光能级为2121,,E E f f =,相应的频率为υ,波长为λ,能级上的粒子数密度分别为21,n n ,求:(1)当3000,300MHz T K υ= =时,21/?n n = (2)当1,300m T K λμ= =时,21/?n n = (3)当211,/0.1m n n λμ= =时,温度T=解: Tk E E b e n 1212n --=其中12**E E ch E c h -=∆=λ νλh ch ==∆*E(1)(2)010*425.12148300*10*38.11010*3*10*63.612236834≈====-------e ee n n Tk ch b λ(3)K n n k c h b 36238341210*26.6)1.0(ln *10*10*8.3110*3*10*63.6ln *T =-=-=---λ9. 解:(1) 由题意传播1mm,吸收1%,所以吸收系数101.0-=mm α(2) 01010*********I .e I e I e I I .z ====-⨯-α 即经过厚度为0.1m 时光能通过%10. 解:m/..ln .G e .e I I G.Gz6550314013122020===⇒=⨯第三章2. CO2激光器的腔长L=100cm, 反射镜直径D=1.5cm, 两镜的光强反射系数120.985,0.8r r = = 求由衍射损耗及输出损耗引起的,,R Q τδ 解:(1)输出损耗由腔镜反射不完全引起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6考虑二能级工作系统,若E2能级的自发辐射寿命为τS,无辐射跃迁寿命为τnr。假设t=0时激光上能级E2的粒子数密度为n2(0),工作物质的体积为V,发射频率为ν,求:
(1)自发辐射功率随时间的变化规律。(2)E2能级的原子在其衰减过程中发出的自发辐射光子数。(3)自发辐射光子数与初始时刻E2能级上的粒子数之比η2。
1静止氖原子的 谱线中心波长为632.8纳米,设氖原子分别以0.1C、O.4C、O.8C的速度向着观察者运动,问其表观中心波长分别变为多少?
解答:
根据公式(激光原理P136)
由以上两个式子联立可得:
代入不同速度,分别得到表观中心波长为:
, ,
解答完毕(验证过)
2设有一台麦克尔逊干涉仪,其光源波长为 ,试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期性的变化 次。
无多普勒效应的光场:
产生多普勒效应光场:
在产生多普勒效应的光路中,光从半透经到动镜产生一次多普勒效应,从动镜回到半透镜又产生一次多普勒效应(是在第一次多普勒效应的基础上)
第一次多普勒效应:
第二次多普勒效应:
在观察者处:
观察者感受到的光强:
显然,光强是以频率 为频率周期变化的。
因此,在移动的范围内,光强变化的次数为:
上式 (P133页公式4.3.9)
又因为 ,把A21和ΔνN的表达式代入1式,得到:
证毕。(验证过)
12已知红宝石的密度为3.98g/cm3,其中Cr2O3所占比例为0.05%(质量比),在波长为694.3nm附近的峰值吸收系数为0.4cm-1,试求其峰值吸收截面(T=300K)。
解:
分析:红宝石激光器的Cr3+是工作物质,因此,所求峰值吸收截面就是求Cr3+的吸收截面。
证明完毕。(验证过)
3在激光出现以前,Kr86低气压放电灯是最好的单色光源。如果忽略自然加宽和碰撞加宽,试估计在77K温度下它的605.7纳米谱线的相干长度是多少?并与一个单色性Δλ/λ=10-8的He-Ne激光器比较。
解:根据相干长度的定义可知, 。其中分母中的是谱线加宽项。从气体物质的加宽类型看,因为忽略自然和碰撞加宽,所以加宽因素只剩下多普勒加宽的影响。
解:根据P138页的公式4.3.26,可分别求出不同跃迁的谱线加宽情况。
3S2-2P4的632.8纳米的多普勒加宽:
2S2-2P4的1.1523微米的多普勒加宽:
3S2-3P4的3.39微米的多普勒加宽:
由以上各个跃迁的多普勒线宽可见,按照结题结果顺序,线宽是顺次减少,由于题中线宽是用频率进行描述,因此频率线宽越大,则单色性越好。
又因为小信号下(粒子数翻转刚刚达到阈值) ,因此 ,且
由此,方程组的第一个式子可以转变为: ,代入1式,得到:
既然对入射光场是透明的,所以上式中激光能级发射和吸收相抵,即激光上能级的粒子数密度变化应该与光场无关,并且小信号时激光上能级的粒子数密度变化率为零,得到
最后得到:
解答完毕。(验证过)
8略
9略
解答:已知红宝石的 , , , ,
分析如下:增益介质对某一频率的光透明,说明介质对外界光场的吸收和增益相等,或者吸收极其微弱,以至于对进入的光场强度不会产生损耗。对于本题中的红宝石激光器,透明的含义应该属于前者。
根据公式:
(激光原理P146-4.4.22)
由上边的第二项和第四项,可以得到:
--------------------------------------1
根据因此,相干长度为:
根据题中给出的氦氖激光器单色性及氦氖激光器的波长632.8纳米,可根据下述公式得到氦氖激光器的相干长度:
可见,即使以前最好的单色光源,与现在的激光光源相比,相干长度相差2个数量级。说明激光的相干性很好。
(验证过)
4估算CO2气体在300K下的多普勒线宽ΔνD,若碰撞线宽系数α=49MHZ/Pa,讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
解:根据P138页的公式4.3.26可知,多普勒加宽:
因为均匀加宽过渡到非均匀加宽,就是 的过程,据此得到:
,得出
结论:气压P为1.08×103Pa时,是非均匀加宽与均匀加宽的过渡阈值,.当气压远远大于1.08×103Pa的情况下,加宽主要表现为均匀加宽。
(验证过)
5氦氖激光器有下列三种跃迁,即3S2-2P4的632.8纳米,2S2-2P4的1.1523微米和3S2-3P4的3.39微米的跃迁。求400K时他们的多普勒线宽,并对结果进行分析。
(2)由上式可知,在t-t+dt时间内,E2能级自发辐射的光子数为:
则在0-∞的时间内,E2能级自发辐射的光子总数为:
(3)自发辐射光子数与初始时刻能级上的粒子数之比为:
此题有待确认
7根据激光原理4.4节所列红宝石的跃迁几率数据,估算抽运几率 等于多少时红宝石对波长694.3纳米的光透是明的(对红宝石,激光上、下能级的统计权重为 ,且计算中可不考虑光的各种损耗)
解:
(1)根据P11相关内容,考虑到E2的能级寿命不仅仅是自发辐射寿命,还包括无辐射跃迁寿命,因此,E2能级的粒子数变化规律修正为:
,其中的τ与τS、τnr的关系为 ,为E2能级的寿命。
在时刻t,E2能级由于自发和无辐射跃迁而到达下能级的总粒子数为:
由于自发辐射跃迁而跃迁到激光下能级的粒子数为 ,因此由于自发辐射而发射的功率随时间的变化规律可以写成如下形式:
证明:
对于迈氏干涉仪的两个臂对应两个光路,其中一个光路上的镜是不变的,因此在这个光路中不存在多普勒效应,另一个光路的镜是以速度 移动,存在多普勒效应。在经过两个光路返回到半透镜后,这两路光分别保持本来频率和多普勒效应后的频率被观察者观察到(从半透境到观察者两个频率都不变),观察者感受的是光强的变化,光强和振幅有关。以上是分析内容,具体解答如下:
10略
11短波长(真空紫外、软X射线)谱线的主要加宽是自然加宽。试证明峰值吸收截面为 。
证明:根据P144页吸收截面公式4.4.14可知,在两个能级的统计权重f1=f2的条件下,在自然加宽的情况下,中心频率ν0处吸收截面可表示为:
- -------------------------------------------------1