PCB技术大全
PCB常见封装形式

PCB常见封装形式PCB(Printed Circuit Board)是现代电子产品中常见的电路板,它承载着各种电子元器件,并通过导线将它们连接起来。
在PCB设计中,封装形式是指将电子元器件封装成一种特定的形式,以便安装在PCB上并与其他电子元器件进行连接和交互。
下面是PCB常见的封装形式的详细介绍。
1. DIP(Dual Inline Package)封装:DIP封装是最早也是最常见的封装形式之一、它由一个典型的矩形外壳和两行并列的引脚组成,适用于手工插入和焊接。
DIP封装在很多电子设备中都得到广泛应用,如计算机主板、控制器和集成电路等。
2. SOP(Small Outline Package)封装:SOP封装是一种较小封装形式,也被称为表面安装封装。
它比DIP封装更紧凑,引脚是通过封装底部来连接到PCB上,通过焊接固定。
SOP封装在电脑、手机、摄像头等小型电子设备中广泛使用,特别适用于需要高密度安装的应用场景。
3. QFP(Quad Flat Package)封装:QFP封装是一种平面封装,引脚以四个面上的直线形式排列。
它具有高密度布局,便利的焊接方式以及良好的散热能力。
QFP封装多用于中型和大型集成电路,如处理器、芯片组、FPGA等。
4. BGA(Ball Grid Array)封装:BGA封装是一种表面安装技术,其中芯片的引脚通过小球连接到底部PCB上。
BGA封装能够提供更高的引脚密度和更好的电子器件封装性能。
它被广泛用于高端处理器、存储器芯片、图形卡等。
5. SOT(Small Outline Transistor)封装:SOT封装是一种具有非常小尺寸的表面类型封装,主要用于半导体器件中的晶体管。
SOT封装是一种可变封装形式,适用于多种尺寸和功耗要求。
它通常在手机、电视、网络设备等小型设备中使用。
6. LCC(Leaded Chip Carrier)封装:LCC封装是一种具有引脚的表面封装型号。
PCB失效十大分析技术

对于PCB失效问题,我们需要用到一些常用的失效分析技术,来使得PCB 在制造的时候质量和可靠性水平得到一定的保证,为此笔者为大家重点总结了十项用于PCB失效分析的技术,包括:1外观检查外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。
外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
备注1:爆板是指无铅再流焊接过程中,发生在HDI积层多层PCB第二次压合的PP层和次层铜箔棕化面之间的分离现象。
有挥发物的形成源死产生爆板的必要条件:(1)PCB板中存在水汽是导致爆板的首要原因。
(2)存储和生产过程中湿气的影响也是导致爆板的重要原因。
备注2:HDI 是高密度互连(High Density Interconnector)的缩写是生产印制板的一种(技术),使用微盲埋孔技术的一种线路分布密度比较高的电路板。
当PCB的密度增加超过八层板后,以HDI来制造,其成本将较传统复杂的压合制程来得低。
可改善射频干扰/电磁波干扰/静电释放(RFI/EMI/ESD)2X射线透视检查对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。
X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。
目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。
pcb镀膜工艺技术

pcb镀膜工艺技术
PCB镀膜工艺技术是指将一层薄膜涂覆在PCB(Printed
Circuit Board,印刷电路板)的表面,用于保护电路板免受环
境污染和氧化腐蚀。
常见的PCB镀膜工艺技术包括喷涂、浸涂、浸镀、喷镀等。
1. 喷涂:直接用喷枪将防腐膜涂覆在PCB表面。
该工艺简单,但效果较差,易产生浮白和脱落现象。
2. 浸涂:将PCB放入含有防腐膜的槽中,通过液力将膜涂覆
在PCB表面。
该工艺需要控制液体的温度和浓度,以保证膜
的均匀性和质量。
3. 浸镀:将PCB放入含有金属材料(如锡、银)的浸涂槽中,通过电化学反应使金属材料镀到PCB表面。
该工艺可以提高PCB的导电性和抗氧化能力。
4. 喷镀:类似于喷涂工艺,将金属材料(如锡、银)以液态喷射到PCB表面。
喷镀工艺可以在不使用电流的情况下进行,
适用于一些对电流敏感的电路板。
通过PCB镀膜工艺技术,可以增加PCB的抗氧化能力,减少PCB与环境因素的接触,延长电路板的使用寿命。
不同的镀
膜工艺技术适用于不同的应用场景,制造商需要根据自身需求和要求选择适合的工艺技术。
PCB安规技术大全

PCB安规技术大全介绍PCB(Printed Circuit Board)是电子设备中非常常见的一种组件,用于支持和连接电子设备上的各种电子元件。
PCB在现代电子产品中起着至关重要的作用,因此其设计和制造必须符合一定的安全规范和技术要求。
本文档将提供一些PCB安规技术的详细信息和指导,以帮助您设计和制造符合安全标准的PCB。
PCB安规技术1. 选用合适的材料选择合适的材料是设计和制造安全可靠的PCB的首要任务之一。
以下是一些常见的安全材料选取建议:•基板材料:选取符合UL标准的玻璃纤维增强环氧树脂(FR-4)基板材料,以确保其耐高温性能和电气性能符合要求。
•外层覆盖材料:使用符合UL 94 V-0级阻燃等级的材料,以提高PCB的防火安全性。
•接插件和连接器:选用符合ROHS标准的材料,以减少对环境的污染,并确保连接稳定可靠。
2. 合理的布局设计PCB的布局设计对于其安全性和性能至关重要。
以下是一些布局设计的安全技术要求:•与高压或高温元件的距离:将高压和高温元件与周围元件保持一定的安全距离,确保电路板不会由于元件故障而引起安全问题。
•温度管理:合理安排散热元件和散热通道,确保PCB在运行时能够有效地散热,防止温度过高导致损坏或安全问题。
•电气隔离:根据电路的要求,合理设计电气隔离区域,避免不同电压电路之间的干扰和交叉干扰,确保电路的稳定性和安全性。
3. 路径布线和层间隔离良好的路径布线和层间隔离是保证PCB电路安全的关键要素。
以下是一些路径布线和层间隔离的安全技术要求:•信号路径布线:将高频和低频信号路径分开布线,避免相互干扰和干扰其他电路。
•电源路径布线:保持电源路径短,宽电源线,以降低阻抗和损耗,避免过热和安全问题。
•层间隔离:根据电路要求,合理布局和分配层间电源和信号层,避免层间短路和干扰。
4. 安全测试和验证PCB设计和制造完成后,必须进行安全测试和验证,以确保其符合安全标准和技术要求。
PCB_LAYOUT使用技术大全

PCB LAYOUT技术大全2009-06-08 10:24PCB LAYOUT技术大全2009-03-12 11:48PCB LAYOUT技术大全1.原理图常见错误:(1)ERC报告管脚没有接入信号:a. 创建封装时给管脚定义了I/O属性;b.创建元件或放置元件时修改了不一致的grid属性,管脚与线没有连上;c. 创建元件时pin方向反向,必须非pin name端连线。
(2)元件跑到图纸界外:没有在元件库图表纸中心创建元件。
(3)创建的工程文件网络表只能部分调入pcb:生成netlist时没有选择为global。
(4)当使用自己创建的多部分组成的元件时,千万不要使用annotate.2.PCB中常见错误:(1)网络载入时报告NODE没有找到:a. 原理图中的元件使用了pcb库中没有的封装;b. 原理图中的元件使用了pcb库中名称不一致的封装;c. 原理图中的元件使用了pcb库中pin number不一致的封装。
如三极管:sch中pin number 为e,b,c, 而pcb中为1,2,3。
(2)打印时总是不能打印到一页纸上:a. 创建pcb库时没有在原点;b. 多次移动和旋转了元件,pcb板界外有隐藏的字符。
选择显示所有隐藏的字符,缩小pcb, 然后移动字符到边界内。
(3)DRC报告网络被分成几个部分:表示这个网络没有连通,看报告文件,使用选择CONNECTED COPPER查找。
另外提醒朋友尽量使用WIN2000, 减少蓝屏的机会;多几次导出文件,做成新的DDB文件,减少文件尺寸和PROTEL僵死的机会。
如果作较复杂得设计,尽量不要使用自动布线。
在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。
PCB布线有单面布线、双面布线及多层布线。
布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
pcb工艺技术

pcb工艺技术PCB(Printed Circuit Board),即印刷电路板,是一种用于支持电子元件并实现电子元件互连的基础材料。
PCB工艺技术是指制作PCB的各个环节中所采用的技术和方法,下面我将介绍一些主要的PCB工艺技术。
首先是PCB的设计。
PCB设计是PCB制作的第一步,它决定了电路板的布局、元件的互连和电路功能的实现。
设计师需要根据电路原理图进行布局设计,同时考虑线路的长度、宽度、层次等因素,确保电路板的稳定性和可靠性。
其次是PCB的图形制作。
制作PCB图形是为了在电路板上形成导线、焊盘和元件的图案。
常用的图形制作技术主要包括光绘、印版、激光镭射等方法。
这些方法都需要使用相应的设备和材料,如光刻机、感光胶片、镭射雕刻机等。
然后是PCB板材的选择。
PCB板材是PCB制作过程中最基础的材料,其性能直接影响电路板的质量和可靠性。
常见的PCB板材有FR-4(玻璃纤维布覆铜板)、CEM-1、CEM-3等。
选取合适的板材需要根据电路板的用途、工作环境和预算等因素进行综合考虑。
接下来是PCB的印刷。
PCB印刷是将图形制作的导线、焊盘等图案印刷到板材上的过程。
常用的印刷技术有屏蔽印刷、丝网印刷、喷墨印刷等。
印刷技术需要考虑印刷设备的精度和稳定性,以确保图案的准确性和质量。
最后是PCB的组装。
PCB组装是将电子元件安装到PCB上,通过焊接等方法实现元件与导线的连接。
常见的组装技术有SMT(表面贴装技术)和DIP(插装技术)。
组装技术需要注意元件的尺寸、引脚间距、焊接方法等因素,以确保元件的稳定性和安全性。
总的来说,PCB工艺技术是制作PCB的关键环节,它决定了电路板的质量、可靠性和成本。
随着电子技术的发展,PCB 工艺技术也在不断创新和进步,例如引入自动化设备、精密制造技术和新型材料等,以满足更高的电路性能要求和更复杂的电子元件安装需求。
总结起来,PCB工艺技术是PCB制作过程中的重要环节,设计、图形制作、板材选择、印刷和组装等都是PCB工艺技术中需要重点关注的方面。
pcb孔工艺技术

pcb孔工艺技术PCB孔工艺技术PCB(Printed Circuit Board,印刷电路板)是电子设备中不可或缺的一个组成部分,它承载着电子元件,实现了电子元器件之间的连接和通信。
而PCB孔工艺技术就是制作PCB板时用来定位、连接和固定电子元件的重要工艺。
一、PCB孔的类型按照孔的钻孔方式可分为机械孔和激光孔两种。
机械孔包括径向钻孔、挤压钻孔和穿孔钻孔等,激光孔则主要包括激光钻孔和激光穿孔。
机械钻孔适用于单层板和双面板,激光钻孔适用于多层板和高密度PCB。
二、PCB孔的加工流程1. 设计孔的位置和大小:根据电子元件的布局和连接要求,在PCB设计软件中设定好孔的位置和大小。
2. 做电子元件的布局和引脚设计:根据电路的需求,设计电子元件的布局和引脚连接的路径。
3. 准备PCB板材:选择适当的PCB板材,如FR4等,将其切割到合适的尺寸。
4. 钻孔和板材处理:根据设计要求,使用机械钻孔或激光钻孔的方式在PCB板上钻孔,并进行后续的板材处理,如去除残渣等。
5. 填充绝缘胶:根据需要,在孔内填充绝缘胶,增加孔的可靠性和稳定性。
6. 表面处理:根据需求,进行PCB板的表面处理,如喷镀锡、喷镀金等。
7. 完成PCB孔加工:最后对PCB板进行检查和测试,确保孔的质量和可靠性。
三、PCB孔工艺技术的发展趋势随着电子设备的迅速发展,对PCB板的要求也越来越高,PCB孔工艺技术也在不断发展和创新。
以下是一些发展趋势:1. 高密度PCB孔:随着电子元器件尺寸的不断减小和连接的要求不断提高,PCB孔的密度也在不断增加,如微型孔和盲孔等。
2. 光纤激光钻孔技术:光纤激光钻孔技术具有钻孔精度高、孔壁质量好等优点,被广泛应用于高密度PCB的制作。
3. 无铅钻孔技术:为了减少对环境的污染和提高设备的可靠性,无铅钻孔技术已成为一个重要的发展方向。
4. PCB孔质量控制技术:为了确保孔的质量和可靠性,需要对钻孔过程进行严格的控制和检测,以确保孔的直径、深度和位置等符合设计要求。
PCB失效分析技术大全

PCB失效分析技术大全作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。
但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。
对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。
1.外观检查外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB的失效模式。
外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。
另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。
2.X射线透视检查对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。
X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。
该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。
目前的工业X 光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。
3.切片分析切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。
通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。
但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏;同时该方法制样要求高,制样耗时也较长,需要训练有素的技术人员来完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB技术大全PCB布线技术---一个布线工程师谈PCB设计的经验!一般PCB基本设计流程如下:前期准备->PCB结构设计->PCB布局->布线->布线优化和丝印->网络和DRC检查和结构检查->制版。
第一:前期准备这包括准备元件库和原理图。
“工欲善其事,必先利其器”,要做出一块好的板子,除了要设计好原理之外,还要画得好。
在进行PCB设计之前,首先要准备好原理图SCH的元件库和PCB的元件库。
元件库可以用protel 自带的库,但一般情况下很难找到合适的,最好是自己根据所选器件的标准尺寸资料自己做元件库。
原则上先做PCB的元件库,再做SCH 的元件库。
PCB的元件库要求较高,它直接影响板子的安装;SCH的元件库要求相对比较松,只要注意定义好管脚属性和与PCB元件的对应关系就行。
PS:注意标准库中的隐藏管脚。
之后就是原理图的设计,做好后就准备开始做PCB设计。
第二:PCB结构设计这一步根据已经确定的电路板尺寸和各项机械定位,在PCB 设计环境下绘制PCB板面,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。
并充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。
第三:PCB布局布局说白了就是在板子上放器件。
这时如果前面讲到的准备工作都做好的话,就可以在原理图上生成网络表(Design-> Create Netlist),之后在PCB图上导入网络表(Design->Load Nets)。
就看见器件哗啦啦的全堆上去了,各管脚之间还有飞线提示连接。
然后就可以对器件布局了。
一般布局按如下原则进行:①.按电气性能合理分区,一般分为:数字电路区(即怕干扰、又产生干扰)、模拟电路区(怕干扰)、功率驱动区(干扰源);②.完成同一功能的电路,应尽量靠近放置,并调整各元器件以保证连线最为简洁;同时,调整各功能块间的相对位置使功能块间的连线最简洁;③.对于质量大的元器件应考虑安装位置和安装强度;发热元件应与温度敏感元件分开放置,必要时还应考虑热对流措施;④.I/O驱动器件尽量靠近印刷板的边,靠近引出接插件;⑤.时钟产生器(如:晶振或钟振)要尽量靠近用到该时钟的器件;⑥.在每个集成电路的电源输入脚和地之间,需加一个去耦电容(一般采用高频性能好的独石电容);电路板空间较密时,也可在几个集成电路周围加一个钽电容。
⑦.继电器线圈处要加放电二极管(1N4148即可);⑧.布局要求要均衡,疏密有序,不能头重脚轻或一头沉——需要特别注意,在放置元器件时,一定要考虑元器件的实际尺寸大小(所占面积和高度)、元器件之间的相对位置,以保证电路板的电气性能和生产安装的可行性和便利性同时,应该在保证上面原则能够体现的前提下,适当修改器件的摆放,使之整齐美观,如同样的器件要摆放整齐、方向一致,不能摆得“错落有致”。
这个步骤关系到板子整体形象和下一步布线的难易程度,所以一点要花大力气去考虑。
布局时,对不太肯定的地方可以先作初步布线,充分考虑。
第四:布线布线是整个PCB设计中最重要的工序。
这将直接影响着PCB板的性能好坏。
在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求。
如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门。
其次是电器性能的满足。
这是衡量一块印刷电路板是否合格的标准。
这是在布通之后,认真调整布线,使其能达到最佳的电器性能。
接着是美观。
假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块。
这样给测试和维修带来极大的不便。
布线要整齐划一,不能纵横交错毫无章法。
这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了。
布线时主要按以下原则进行:①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能。
在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最细宽度可达0.05~0.07mm,电源线一般为1.2~2.5mm。
对数字电路的PCB可用宽的地导线组成一个回路,即构成一个地网来使用(模拟电路的地则不能这样使用) 。
②.预先对要求比较严格的线(如高频线)进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。
必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。
③.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是。
时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;④.尽可能采用45º的折线布线,不可使用90º折线,以减小高频信号的辐射;(要求高的线还要用双弧线)⑤.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;⑥.关键的线尽量短而粗,并在两边加上保护地。
⑦.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出。
⑧.关键信号应预留测试点,以方便生产和维修检测用⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。
或是做成多层板,电源,地线各占用一层。
——PCB布线工艺要求①.线一般情况下,信号线宽为0.3mm(12mil),电源线宽为0.77mm(30mil)或1.27mm(50mil);线与线之间和线与焊盘之间的距离大于等于0.33mm(13mil),实际应用中,条件允许时应考虑加大距离;布线密度较高时,可考虑(但不建议)采用IC脚间走两根线,线的宽度为0.254mm(10mil),线间距不小于0.254mm(10mil)。
特殊情况下,当器件管脚较密,宽度较窄时,可按适当减小线宽和线间距。
②.焊盘(PAD)焊盘(PAD)与过渡孔(VIA)的基本要求是:盘的直径比孔的直径要大于0.6mm;例如,通用插脚式电阻、电容和集成电路等,采用盘/孔尺寸1.6mm/0.8mm(63mil/32mil),插座、插针和二极管1N4007等,采用1.8mm/1.0mm(71mil/39mil)。
实际应用中,应根据实际元件的尺寸来定,有条件时,可适当加大焊盘尺寸;PCB板上设计的元件安装孔径应比元件管脚的实际尺寸大0.2~0.4mm左右。
③.过孔(VIA)一般为1.27mm/0.7mm(50mil/28mil);当布线密度较高时,过孔尺寸可适当减小,但不宜过小,可考虑采用1.0mm/0.6mm(40mil/24mil)。
④.焊盘、线、过孔的间距要求PAD and VIA :≥ 0.3mm(12mil)PAD and PAD :≥ 0.3mm(12mil)PAD and TRACK :≥ 0.3mm(12mil)TRACK and TRACK :≥ 0.3mm(12mil)密度较高时:PAD and VIA :≥ 0.54mm(10mil)PAD and PAD :≥ 0.54mm(10mil)PAD and TRACK :≥ 0.4mm(10mil)TRACK and TRACK :≥ 0.54mm(10mil)第五:布线优化和丝印“有最好的,只有更好的”!不管你怎么挖空心思的去设计,等你画完之后,再去看一看,还是会觉得很多地方可以修改的。
一般设计的经验是:优化布线的时间是初次布线的时间的两倍。
感觉没什么地方需要修改之后,就可以铺铜了(Place->polygon Plane)。
铺铜一般铺地线(注意模拟地和数字地的分离),多层板时还可能需要铺电源。
对于丝印,要注意不能被器件挡住或被过孔和焊盘去掉。
同时,设计时正视元件面,底层的字应做镜像处理,以免混淆层面。
第六:网络和DRC检查和结构检查首先,在确定电路原理图设计无误的前提下,将所生成的PCB网络文件与原理图网络文件进行物理连接关系的网络检查(NETCHECK),并根据输出文件结果及时对设计进行修正,以保证布线连接关系的正确性;网络检查正确通过后,对PCB设计进行DRC检查,并根据输出文件结果及时对设计进行修正,以保证PCB布线的电气性能。
最后需进一步对PCB 的机械安装结构进行检查和确认。
第七:制版在此之前,最好还要有一个审核的过程。
PCB设计是一个考心思的工作,谁的心思密,经验高,设计出来的板子就好。
所以设计时要极其细心,充分考虑各方面的因数(比如说便于维修和检查这一项很多人就不去考虑),精益求精,就一定能设计出一个好板子。
印制线路板设计经验点滴对于电子产品来说,印制线路板设计是其从电原理图变成一个具体产品必经的一道设计工序,其设计的合理性与产品生产及产品质量紧密相关,而对于许多刚从事电子设计的人员来说,在这方面经验较少,虽然已学会了印制线路板设计软件,但设计出的印制线路板常有这样那样的问题,而许多电子刊物上少有这方面文章介绍,笔者曾多年从事印制线路板设计的工作,在此将印制线路板设计的点滴经验与大家分享,希望能起到抛砖引玉的作用。
笔者的印制线路板设计软件早几年是TANGO,现在则使用PROTEL2.7 F OR WINDOWS。
板的布局:印制线路板上的元器件放置的通常顺序:放置与结构有紧密配合的固定位置的元器件,如电源插座、指示灯、开关、连接件之类,这些器件放置好后用软件的LOCK功能将其锁定,使之以后不会被误移动;放置线路上的特殊元件和大的元器件,如发热元件、变压器、IC等;放置小器件。
元器件离板边缘的距离:可能的话所有的元器件均放置在离板的边缘3mm以内或至少大于板厚,这是由于在大批量生产的流水线插件和进行波峰焊时,要提供给导轨槽使用,同时也为了防止由于外形加工引起边缘部分的缺损,如果印制线路板上元器件过多,不得已要超出3mm范围时,可以在板的边缘加上3mm的辅边,辅边开V形槽,在生产时用手掰断即可。
高低压之间的隔离:在许多印制线路板上同时有高压电路和低压电路,高压电路部分的元器件与低压部分要分隔开放置,隔离距离与要承受的耐压有关,通常情况下在2000kV时板上要距离2mm,在此之上以比例算还要加大,例如若要承受3000V的耐压测试,则高低压线路之间的距离应在3.5mm以上,许多情况下为避免爬电,还在印制线路板上的高低压之间开槽。
印制线路板的走线:印制导线的布设应尽可能的短,在高频回路中更应如此;印制导线的拐弯应成圆角,而直角或尖角在高频电路和布线密度高的情况下会影响电气性能;当两面板布线时,两面的导线宜相互垂直、斜交、或弯曲走线,避免相互平行,以减小寄生耦合;作为电路的输入及输出用的印制导线应尽量避免相邻平行,以免发生回授,在这些导线之间最好加接地线。