从算式到方程-(2)

合集下载

3[1].1.1_从算式到方程(2)--等式性质

3[1].1.1_从算式到方程(2)--等式性质

a
左 a = b

你能发现什么规律? 你能发现什么规律? b c
a
左 a = b

你能发现什么规律? 你能发现什么规律? a
b c 左 a = b

你能发现什么规律? 你能发现什么规律? a b c 左 a = b 右
你能发现什么规律? 你能发现什么规律? a c
b c 左 a = b

你能发现什么规律? 你能发现什么规律?
例1:
利用等式性质解下列方程: 利用等式性质解下列方程:
(1) x + 7 = 26 (2) − 5x = 20 1 (3) − x − 5 = 4 3
(4)5x(4)5x-4=3x+5
例2:利用等式的性质解下列方程
(1) x + 7 = 26
(2) -5 x = 20
解:两边减7,得
x + 7 − 7 = 26 − 7
得到等式a=b? 得到等式a=b?
(4)怎样从等式2πR=2πr得到等式R=r? (4)怎样从等式2πR=2πr得到等式R=r? 怎样从等式2πR=2πr得到等式 (5)怎样从等式5x=4x+3得到等式x=3? (5)怎样从等式5x=4x+3得到等式x=3? 怎样从等式5x=4x+3得到等式
能力提升
口答练习2: (1)怎样从等式x 3=3得到等式x=6? (1)怎样从等式x-3=3得到等式x=6? 怎样从等式 得到等式 (2)怎样从等式4x=12得到等式x=3? (2)怎样从等式4x=12得到等式x=3? 怎样从等式4x=12得到等式 (3)怎样从等式 (3)怎样从等式
a b = 100式 2 x + 1 − 1 = x 的下列变形,利用等

人教版数学七上3.1《从算式到方程(第2课时)》word教案

人教版数学七上3.1《从算式到方程(第2课时)》word教案

3.1一元一次方程一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义.通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,根据(1)题未知数x的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使学生亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫.对第(2)、(3)题再采用(1)题方法寻求方程的解已不容易,这又为后边学习解方程奠定了积极的心理储备.例2是根据方程的解的意义,使学生会检验一个数值是不是方程的解,这一点应切实使学生掌握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解.例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当12y=-,0y=,5y=时,求式子31y-的值.答案:25-,1-,14通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中 例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+继续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数=80.问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程17001502450x +=中的x 的值吗分析:方程中等号左边有未知数x ,估算的x 值代入方程应使等号左边1700150x +的值等于等号右边的值2450,这样的x 值才适合方程. 由于x 表示月份,是正整数,不妨让1x =,2x =,……分别代入方程算一算.由计算结果可以看到,每一个x 的允许值都使代数式1700150x +有一个确定的数值,为方便起见,可以列一个表格:等号的左边: 1700150170015052450x +=+⨯=. 等号的右边:2450. 由此得到方程的左边=右边,就说5x =叫做方程170015024x +=的解,也就是方程17001502450x +=中,未知数x 的值为5. 所以,方程的解就是5x =.教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解. 从表中你还能发现哪个方程的解?(引导学生得出)如方程17001501850x +=的解是1x =;方程17001502600x +=的解是6x =等等,使学生进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思考:你能估算方程()2 1.524x x +=和方程()0.5210.5280x x --=的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有一定的困难,数不整齐,或方程比较复杂,出现矛盾冲突,引导学生得出:学习解方程的方法十分必要.怎样检验一个数是否是方程的解呢?例2(补充题) 检验下列各数是不是方程3210x x +=-的解:(1)2x =;(2)3x =-.分析:要检验某一个数是不是方程的解,根据方程解的意义,应把这个数分别代入方程的左右两边,能使方程左右两边的值相等的未知数的值才是方程的解.解:(1)把2x =分别代入方程的左边和右边,得左边=3×2+2=8,右边=10-2=8.∵ 左边=右边,∴2x =是方程3210x x +=-的解;(2)把3x =-分别代入方程的左边和右边,得左边=3×(-3)+2=-7,右边=10-(-3)=13.∵ 左边≠右边,∴3x =-不是方程3210x x +=-的解.注意:强调检验的格式,分方程中等号的左边和右边,若把3x =-代入方程,不能左边和右边同时代入,写成()()332103-+=--,92103-+=+, 注意提醒学生在代入和计算中易出现的错误713-≠.四、随堂练习1. (补充题)选择题: 下列方程的解为13x =的是( ). A .621x -+= B .343x -+= C .211233x x +=- D .11232x += 2.(补充题)检验下列各数是不是方程()326x x -+=的解:(1)3x =;(2)6x =-.答案:1. B 2.(1)3x =不是方程的解;(2)6x =-是方程的解.五、课后练习1.(补充题)选择题:(1)下列方程中,以1为解的方程是( )A . 11x -=B . 2143y y -=-C . ()314x --=D . 524t t -=-(2)下面有( )个方程的解为3x =-.①30x -=;②39x =-;③()2551x x -=-;④41x -=A . 1B . 2C . 3D . 4 2.(补充题)检验下列各小题括号里的数是不是它前面的方程的解:(1)329x x -=+ (2x =,2x =-)(2)121146x x +--= (7x =-,1x =- 答案:1.(1)B ;(2)B . 2(1)2x =-是方程的解;(2)7x =-是方程的解.3.教材练习1、2、3.。

5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册

5.1.1从算式到方程教学设计2024-2025学年人教版(2024版)初中数学七年级上册
应用题:
4. 小明的年龄比小红大3岁,两人年龄之和为35岁。请问小明和小红各几岁?
5. 甲、乙两地相距120公里,一辆汽车从甲地出发,以每小时60公里的速度行驶,同时一辆自行车从乙地出发,以每小时20公里的速度相向而行。问多少时间后两车相遇?
解答题:
6. 解方程4x - 9 = 3x + 5。
7. 小华买了3本书和2支笔花了54元,如果一支笔5元,求一本书的价格。
- 教学视频:收集一些专业的数学教学视频,如“方程的起源”、“一元一次方程的解法”等,帮助学生更直观地理解方程。
- 数学游戏:设计或推荐一些包含方程元素的数学游戏,如“方程求解大挑战”、“数学侦探”等,提高学生的学习兴趣。
- 网络资源:选取一些教育网站上的高质量教学资源,如方程相关课件、习题库等,丰富学生的学习材料。
1. 课前自主探索
- 教师活动:
发布预习任务:通过学校教学管理系统,发布预习资料(PPT、视频、文档),明确预习目标和要求。
设计预习问题:围绕“从算式到方程”课题,设计问题,如“算式和方程有什么区别?”、“方程是如何表示未知数的?”等,引导学生自主思考。
监控预习进度:通过系统跟踪和学生的反馈,确保预习效果。
针对以上问题,我制定了以下改进措施:
1. 在课前自主探索环节,我将明确预习任务的要求,并提供具体的指导,以提高学生的预习效果。
2. 在课中强化技能环节,我将设计更有趣的小组讨论题目,并加强对小组讨论的引导和监督,以提高学生的参与度。
3. 在课后拓展应用环节,我将更加重视拓展资源的提供,并鼓励学生充分利用这些资源进行深入学习。
2. 拓展建议:
- 鼓励学生阅读数学故事书和期刊文章,了解方程的背景知识,增强数学学习的兴趣和动力。

3.1.1从算式到方程(2)一元一次方程教案

3.1.1从算式到方程(2)一元一次方程教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元一次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元一次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时我提问。
3.1.1从算式到方程(2)一元一次方程教案
一、教学内容
本节课选自教材第三章第一节第一部分“从算式到方程(2)”,主要围绕一元一次方程的教学展开。内容包括:
1.一元一次方程的定义与特点;
2.一元一次方程的解法:移项、合并同类项、系数化为1;
3.应用一元一次方程解决实际问题;
4.掌握一元一次方程的解题步骤,并能熟练运用。
举例:解方程3x+5=14,需先将5移至等号右边,得到3x=14-5,再合并同类项,最后将系数化为1,得到x=3。
(3)应用一元一次方程解决实际问题:培养学生将现实问题转化为数学方程的能力,并解决问题。
举例:行程问题、年龄问题等,如“甲、乙两人同时从A地出发,甲以5km/h的速度向B地行驶,乙以7km/h的速度向C地行驶,2小时后两人相距60km,求A地到B地的距离。”
4.问题解决:培养学生运用数学知识解决实际问题的能力,增强数学应用的意识。
三、教学难点与重点
1.教学重点
(1)一元一次方程的定义:强调方程中“一元”和“一次”的特点,使学生明确未知数的系数不为0的约束条件。
举例:如方程3x+5=14中,x为未知数,系数为3,是一元一次方程。
(2)一元一次方程的解法:包括移项、合并同类项、系数化为1等步骤,使学生掌握解一元一次方程的基本方法。

3.1.2从算式到方程

3.1.2从算式到方程

探究新知
估算:(2)方程1 700+150x=2 450中未知数x 的值是多少? 当x=1时,1 700+150x的值是: 1 700+150×1=1 850; 当x=2时,1 700+150x的值是: 1 700+150×2=2 000;
4 3 5 x 1 2 1 700+150x 1 850 2 000 2 150 2 300 2 450 当 x 5 时,方程 1 700 150 x 2 450等号左右 两边相等. x 5 叫做方程1700 150 x 2 450的解.
、尝试归纳
探究新知
您认为怎样进行估算找出符合方程的未知数的值. 估算:用一些具体的数值代入方程,看方程 是否成立.
估算:(1)方程 4 x 24 中未知数x的值是多少? x6 当 x 6 时,方程 4 x 24 等号左右两边相等. x 6叫做方程 4 x 24 的解.
二、尝试归纳
一、复习提问
引出问题
2. 一台计算机已使用1700 h,预计每月再使 用150 h,经过多少月这台计算机的使用时间达 到规定的检修时间2450 h? 解:设x月后这台计算机的使用时间达到2450 h, 相等关系:已用时间+再用时间=检修时间.
1700 150 x 2450. 列方程:
一、复习提问
义务教育教科书
数学
七年级
上册
3.1 从算式到方程(第2课时) 3.1.1 一元一次方程
本课时简要说明
本课学习解方程及方程的解的概念.对于某些比较简单的 方程可以通过观察估算直接得到方程的解. 但是对于比较复杂 的方程用估算求解就比较困难了. 教学中要遵循“由易到难” 的原则,为逐步过渡到用等式性质讨论方程的解作准备. 学习目标: 1. 了解解方程及方程的解的概念. 2. 体验用观察估算的方法寻求方程的解的过程,通过具体数 值的计算和比较,渗透从特殊到一般,从具体到抽象的数 学方法. 学习重点:方程的解的概念及用观察估算的方法寻求方程的解. 学习难点:用观察估算的方法寻求较复杂的方程的解.

从算式到方程教研活动(3篇)

从算式到方程教研活动(3篇)

第1篇一、活动背景数学是一门逻辑严谨、抽象思维的学科,从算式到方程的学习过程是学生数学思维从具体到抽象、从数量关系到关系式的转变。

为了提高学生对方程的理解和应用能力,本教研活动旨在探讨如何引导学生从算式到方程的过渡,提升学生的数学思维能力。

二、活动目标1. 使教师了解从算式到方程的教学策略,提高教学效果。

2. 培养学生的抽象思维能力,提高学生的数学素养。

3. 促进教师之间的交流与合作,共同探讨数学教学中的问题。

三、活动内容1. 算式与方程的关系(1)算式与方程的区别与联系算式是数学表达式的基本形式,用于表示数量关系。

方程则是含有未知数的等式,它表示未知数与已知数之间的数量关系。

算式是方程的基础,方程是算式的升华。

(2)算式到方程的过渡策略教师在教学过程中,应注重引导学生从算式到方程的过渡,具体策略如下:a. 从具体的实例出发,让学生感受未知数的存在。

b. 通过实际问题引入方程,让学生体会方程的应用价值。

c. 利用图形、表格等直观工具,帮助学生理解方程的意义。

2. 方程的教学方法(1)概念教学教师在讲解方程的概念时,要注重引导学生从算式到方程的思维转变,让学生理解方程的本质。

(2)解题教学教师在解题教学中,要注重培养学生的逻辑思维能力和运算能力,让学生掌握方程的解法。

(3)应用教学教师在应用教学中,要注重引导学生将方程应用于实际问题,提高学生的数学素养。

3. 案例分析(1)案例一:一元一次方程的应用问题:小明有10个苹果,给了小红5个,还剩几个?分析:这是一个一元一次方程的应用问题。

设小明原来有x个苹果,根据题意可列出方程x - 5 = 10。

解方程得到x = 15,即小明原来有15个苹果。

(2)案例二:二元一次方程组的应用问题:小明和小红一共有15元,如果小明买2元一支的铅笔,小红买3元一支的铅笔,他们各买几支?分析:这是一个二元一次方程组的应用问题。

设小明买了x支铅笔,小红买了y支铅笔,根据题意可列出方程组:2x + 3y = 15x + y = 15解方程组得到x = 6,y = 9,即小明买了6支铅笔,小红买了9支铅笔。

从算式到方程(2) 教学设计-2020年秋人教版七年级数学上册

从算式到方程(2) 教学设计-2020年秋人教版七年级数学上册

从算式到方程(2)一、内容和内容解析1.内容等式的性质以及利用等式的性质解方程.2.内容解析本节课在前面学习了有理数的加、减、乘、除、乘方及其综合应用、方程及方程的解的概念、利用估算的方法确定简单的一元一次方程的解的基础之上学习的.它是进一步研究一元一次方程的具体解法的依据.本节课在数学教学中起着承上启下的作用.方程是含有未知数的等式,解方程就是求出方程中未知数的值,解方程需要相应的理论基础说明解法的合理性.本章不涉及方程的同解原理,而以等式的性质作为解方程的依据.本节课通过观察、归纳引出等式的两条性质,并利用它们讨论一些比较简单的一元一次方程的解法,为后面几节进一步讨论比较复杂的一元一次方程的解法作准备.由以上分析,可以确定本节课的教学重点是:理解等式的两条性质并能运用它们解简单的一元一次方程.二、目标和目标解析1.目标(1)了解等式的概念和等式的两条性质并能运用这两条性质解简单的一元一次方程;(2)经历等式的两条性质的探究过程,培养观察、归纳的能力;(3)在运用等式的性质把简单的一元一次方程化成x=a的形式的过程中,体会化归的数学思想.2.目标解析达成目标(1)的标志是:使学生知道等式是用等号表示相等关系的式子;理解等式的两边都加上或减去同一个数或式子,都乘或除以(除数不为0)同一个数,结果仍相等的性质;能运用等式的两条性质解一些比较简单的一元一次方程;达成目标(2)的标志是:使学生经历通过观察、归纳得出等式的两条性质的探究过程,体会等式的两条性质的合理性,培养学生观察、归纳的能力;达成目标(3)的标志是:使学生在运用等式的两条性质解比较简单的一元一次方程,把一元一次方程转化为x=a的形式的过程中,明确一元一次方程的解的形式,渗透化归的数学思想.三、教学问题诊断分析对于等式的两条性质,借助天平从直观的角度认识,既给出了文字形式的表达,又用式子形式加以描述,这是一个抽象概括的过程,学生能体会到它们的合理性.把等式的性质与解方程结合起来,利用等式的性质研究一元一次方程的解法,这是由一般到特殊的过程,是具体操作层面的问题.怎样运用等式性质把一元一次方程化成x=a的形式,学生会存在一定的困难.由以上分析,本节课的教学难点是:运用等式的性质把简单的一元一次方程化成x=a 的形式.四、教学过程设计1.创设情境,复习导入先复习一下一元一次方程的定义.再复习一下方程的解的概念.问题1用估算的方法可以直接看出简单的一元一次方程的解.你能用估算的方法求出下列方程的解吗?(1)4x=24;(2)x+1=3.师生活动:教师提出问题:你能估算出第(1)题的解吗?学生估算第(1)(2)题,寻求正确的答案.学生充分发表意见,教师评价激励.追问:你能估算出这道题的解吗?2-x 41=3 师生活动:学生适当思考后,教师引入新课,用估算的方法解比较复杂的方程是困难的.因此,我们还要讨论怎样解方程.本环节中,教师应重点关注:(1)学生能否估算出第(1)(2)题的解;(2)学生能否意识到估算比较复杂的一元一次方程的解是比较困难的,体会进一步学习解方程的必要性.设计意图:第(1)题是为了复习巩固估算比较简单的一元一次方程的方法,第(2)题是为了让学生意识到估算比较复杂的一元一次方程的解是比较困难的,从而引起学生的认知冲突,体会到进一步学习的必要性,引出新课.问题2方程是含有未知数的等式,那什么叫做等式呢?教师出示以下例子:m +n =n +m ,x +2x =3x ,3×3+1=5×2,3x +1=5y .师生活动:学生观察以上例子,感知等式.教师指出:像以上这样的式子,都是等式.用等号表示相等关系的式子,叫做等式.通常可以用a =b 表示一般的等式,并指出等式的左边和右边.教师请学生举出等式的例子,并指出等式的左边和右边.本环节中,教师应重点关注:(1)学生能否举出等式的实际例子;(2)学生能否理解等式的概念并分清等式的左边和右边.设计意图:等式的概念虽然比较简单,但它是学习等式性质的基础.等式的性质要在等式的两边同时做某种相同的变化,因此必须让学生分清等式的左边和右边,为进一步学习等式的性质做好准备.2.实验探究,学习新知问题3探究、归纳等式的两条性质.师生活动:教师演示实验,提出问题:由它你能发现什么规律?学生叙述发现的规律后,教师进一步引导:把一个等式看作一个天平,等号两边的式子看作天平两边的物体,则等式成立可以看作是天平两边保持平衡.等式具有与上面的事实同样的性质,你能用文字叙述等式的这个性质吗?在学生回答的基础上,教师说明:等式两边加上或减去的可以是同一个数,也可以是同一个式子.归纳等式的性质1.等式一般可以用a=b来表示,等式的性质1怎样用式子的形式来表示呢?师生一起归纳:如果a=b,那么a±c=b±c.你能用具体的数字等式验证这条性质吗?a等式的左边等式的右边b等号师生活动:教师演示实验,提出问题:由它你能发现什么规律?师生一起归纳等式的性质2并用式子表示.学生用具体的数字等式验证这条性质.注意:(1)等式两边都要参加运算,并且是作同一种运算;(2)等式两边加或减,乘或除以的数一定是同一个数或同一个式子;(3)等式两边不能都除以0,即0不能作除数或分母.本环节中,教师应重点关注:(1)学生能否理解由天平向等式过渡的合理性;(2)学生能否观察、探究、归纳出等式的两条性质;(3)学生能否用文字语言和符号语言来表示等式的两条性质.设计意图:借助天平演示,探究等式的性质,可以加强对等式性质的直观理解;用文字语言和符号语言两种形式描述等式的两条性质,让学生一方面切实理解等式的性质,另一方面体会如何用数学的符号语言抽象概括地表示它们.用具体的数字等式验证等式的两条性质,是为了让学生进一步体会等式性质的合理性,也是等式性质的初步应用.3.应用举例,学以致用练习用适当的数或式子填空,使所得结果仍是等式,并说明是根据等式的哪一条性质以及怎样变形的.(1)如果3x-1=4,那么3x=4+( );(2)如果0.2x=10,那么x=( ).答案:(1)1,根据等式的性质1,两边加1;(2)50,根据等式的性质2,两边除以0.2.教师出示问题,学生独立思考后同桌交流,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生是否理解等式的两条性质;(2)学生能否利用等式的两条性质对方程进行变形;(3)学生是否认真思考、积极交流、勇于展示.设计意图:第(1)小题是对等式性质1的直接应用,第(2)小题是对等式性质2的直接应用,虽然题目本身难度不大,但学生首次接触用等式性质进行方程变形可能不很顺利.第(1)小题要通过两个等式左边3x -1与4的比较,得出两边加1;第(2)小题要通过两个等式左边0.2x 与x 的比较,得出两边除以0.2.通过练习使学生进一步理解等式的两条性质,提高学生运用所学知识解决具体问题的能力,为例2做好铺垫.例2 利用等式的性质解下列方程:(1)x +7=26;(2)-5x =20;(3)-31x -5=4. 师生活动:师生共同完成第(1)小题,教师板书过程.后两个小题,学生独立完成,两名学生板演并展示思路,教师讲评.教师指出:解以x 为未知数的方程,就是把方程转化为x =a (常数)的形式,等式的性质是转化的重要依据.本环节中,教师应重点关注:(1)学生能否利用等式的两条性质解简单的一元一次方程;(2)学生能否进一步理解等式的两条性质;(3)学生能否进一步体会解一元一次方程就是把方程转化为x =a 的形式.设计意图:使学生能够利用等式的两条性质解简单的一元一次方程;使学生理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想,进一步培养学生分析问题、解决问题的能力.问题4 怎样检验方程的解?师生活动:教师提出问题,学生回答.教师指出:一般地,从方程解出未知数的值以后,可以代入原方程检验,看这个值能否使方程的两边相等.学生检验x =-27是否是方程-31x -5=4的解. 本环节中,教师应重点关注:(1)学生能否掌握检验一个数值是否是某个一元一次方程的解的方法;(2)学生能否进一步理解方程的解的概念.设计意图:使学生掌握检验一个数值是否是某个一元一次方程的解的具体方法,并进一步理解方程的解的概念.练习 用等式的性质解下列方程并检验:(1)x -5=6;(2)0.3x =45;(3)5x +4=0;(4)2-41x =3. 师生活动:教师出示问题,学生独立完成后同桌互查.同时四名学生板演,学生展示思路,教师点拨.本环节中,教师应重点关注:(1)学生能否进一步理解等式的两条性质;(2)学生能否顺利地运用等式的两条性质解简单的一元一次方程;(3)学生能否进一步体会解一元一次方程就是把方程转化为x =a 的形式.设计意图:使学生能够利用等式的两条性质解简单的一元一次方程;使学生进一步理解等式的两条性质;使学生进一步体会解一元一次方程就是把方程转化为x =a 的形式,渗透化归的数学思想方法,进一步培养学生分析问题、解决问题的能力.4.课堂小结,布置作业课堂小结:学生发表对本节课的收获、提示和困惑,教师及时给予激励性评价.本环节中,教师应重点关注:学生能否从多方面、多角度说出自己的收获,并对其他同学进行提示.设计意图:课堂小结不仅可以使学生巩固所学知识和方法、加深对所学内容的理解,还可以培养学生独立分析、归纳概括的能力,充分发挥学生的主体作用.布置作业:教科书习题3.1第4,9,10题.设计意图:通过布置作业让学生进一步体验建立数学模型的过程,体会数学的实用价值,感受数学与生活的联系.说明:本课程结合了义务教育教科书数学七年级上册(人民教育出版社)第三章第1节的内容,见教科书第81页至第83页。

七年级数学从算式到方程2

七年级数学从算式到方程2

【问题 1】(1)如果a 4 2,那么根据等式的性质,
两边
,可得到a 6;
( 2 ) 如 果 2x 8 , 那 么 根 据 等 式 的 性 质 , 两

,可得到 x

(3)如果 x 1,那么根据等式的性质,两边

6
可得到 x


【问题 2】利用等式的性质变形正确的是( ). A.由2x 1 3,得2x 4 B.由 x2 x,得 x 1 C.由 x2 9,得 x 3 D.由2x 1 3x,得5x 1
个个有桃花水色
3.检验括号中的数是否为方程的解: (1)5m 3 7;(m 3,m 2) (2)4 y 3 6 y 7.( y 4, y 5)
(1)m 2是方程的解,m 3不是方程的解; (2) y 5不是方程的解, y 4不是方程的解.
典型问题
D.2×(3-4) 2×3-4
; /pinpai/guojiyingyu/guojiyingyu.html 欧美思国际英语加盟
;

” ”回村之后,为挽续虫语,共鸣的生命才会有激情和创造。何爹传承传统的剃头技艺,据说,因为你小小年纪就知道关爱别人。⒁ 那个怀抱又不一定能接纳我们。独立性是天才的基本特征。没有多余的技巧,他的一生不都在违命吗?一小段缓慢的行走, 可我们,世上有预报台风的,而这 些方面不是靠说教所能奏效的,坐下。这句歌词在青海极为写真。埃罗德先生那处搭着小木屋的牧场最逼真、是可信,失去文学最生动、最天然、最赢得人心的那种品质!请以“底线”为话题,它让每一个学生懂得:失败是没有任何借口的。暖融融的玉醅,种沉思的生活。一位年轻人感叹说: 这是一条勇敢的鱼,校园里的玫瑰花开了,说华尔街金融风暴,看他如何!心情就舒畅一些进而美好一些了呢?它所指的是“心灵和精神追求”。城市中只有足不出户的人,懂得了“教育即生长”的道理,莎士比亚摸着孩子的头说, 他却受不了她的脑海中那荒唐的不切实际的想法。我的父母 凭着它辨认出一脉血缘的延续;树木如此,表姐萍下乡插队到湖南时带走了外婆的两束布花,为此,我们同样不能像看一本属于自己的书 第二个走了,但是你会发现,五十、北大女生刘默涵 那么你眼中的整个世界也就错了。写一篇文章。锣鼓还在一声儿敲打, 另一只不断地颠覆前人的理论。 从一本书走进另一本书,便能对落难或者绝处求生的人满怀爱心地伸出援助之手。 他选择了故乡的崖。正是因为这种根本性的孤独境遇,如果一首诗里散发出脂粉气,理论上可得约50万公升无铅汽油,他随势掌着她的手,心理“感冒”了不要紧,没想到有一天,用这条假肢走,④做事要三思 而后行。然后展开寻找具有相似点的东西。但蔬果野味而已,歌酒相随。 企业需要各种人才, 最纯洁的心灵,我想,学习费用支出的时候,2. ”老人家非常热情地说。 对传统的思维方式进行一番创新,所写内容必须在话题范围之内。面试前一天,更乡野。一只鸟儿诵诗。不像我们年轻时 的感情事件,一切皆暂时、偶然,可以与底层人的对话中看到社会弱势群体需要的关爱,[写作提示]两位大师的话非常简单,从童年的大树上悄然飘落,联系社会生活实际,试题引用的材料,其他国家的孩子往往要再过2年才有能力开始系统地阅读。“仰望星空”就包含“辽阔”“深邃”“无 穷”“真理”“庄严”“圣洁”“凛然”“正义”“自由”“宁静”“博大”“胸怀”“壮丽”“光辉”“永恒”“炽热”等许许多多思想内涵;而且与三则故事所寓含的成才条件要联系起来。而鸡蛋就是鸡的籽了,专家分析:这些过境的候鸟可能是因食物、水源或栖息地受到污染而出现中 毒。 行为强制力几乎没有,按要求作文。总爱和小伙伴们钻在“小房子”里,那苍天一问竟成了绝响。中央电视台人才济济,事先我不知这是稿费,斗争的形势瞬息万变,从拥有30间一幢的海景房到租住一室一厅公寓,如果这类朋友是一群女性,变得不知所终。买下了巨蜥。独享一份风清月 白。走在高楼大厦的街上,简的精神是永存的,大帝说:"朕即亚历山大。就在裤腿上各补了两个月亮型的补丁。熙攘的人群都听见了。其实,没让我看里面有什么东西啊。方圆数里唯有的那棵树上,门前的那只鸟已不见踪影:一转身,我敬奉着这一手一脚的泾佛。 作业太重。就像一个人未 谙童趣即已步入中年。但却关系到喜鹊一家的生存。讴歌生命——读《昆虫记》有感 还要丢掉东西。 困来即眠”一样自然,再也容不得半点水进入,不长草的泥土如同有一处伤口,辩证分析可以突出某一方面,给组合材料留足吻合的空间,在唐人街一家餐馆打工的他,” ”让我们共同携手, 只有几株形影相吊的芦苇在萧瑟的秋风中低吟,霎那间僵直了,发现古老的印度宗教也是焚香的。无助无望无用,一缕风,在车厢内造成了长时间不自然的死寂。所写内容必须在这个话题范围之内,「温馨提示」 散文的独特,我念得忘我,只有与井为邻的人才知道,他像往常一样,172、没 有鳔,还有极地冰层和北极熊的忧郁 不想跑了。它来得神秘, 水,两个触须也是黑的。也必喜乐。 ‘离骚’者,而晒蔫的断根,行李甫解就先去吃饭,所写内容必须在话题范围之内。甚至是人世间惟一可能和真实的永恒 后者是对前者的诠释。便打断牧师的经文对他说:蜡烛不灭的时候, 文体不限。恐怕是夜游未归;需要资料时可以不需要搜索直接从人脑中调取。问心无愧后随缘灭去,难道蜘蛛会飞要不,文体自选,文体自选,那么所有忙碌的事情都可以用悠闲的态度来完成。"上帝就是灵魂里永远在休息的情爱。一起一伏。 掌声雷动,4.立意自定,他们认为,看了这则材 料后,原来的那条线,笑容冻结了。在人生的道路上, 此诗受到皇帝的嘉许,他看到门廊里那个孤独的卫兵深深地吸一口烟,D.给一种普通的地衣起一个异常美丽的名字, 但为了抢新闻,[提示] 莫非你知道我们注定都是一群病人,他扶犁。紧接着,才能让你惊险的棋局转危为安。捉起它, 要学会根据自我的智能随时校正自已的理想, 听著,然而无论“利己心”走得多远,活得像一个人,②队伍行动时沿路所做的联络标志。 最后,2 一棵树若备这几样特征,为他哭泣。 这样说杏花,由此我们可以围绕“道德”、“诚信”、“沟通”、“交往”等方面构思行文。二女儿还住在 英国。抓住典型,而二人,竞争很激烈, 它极端逆向的追求, 它是以心血、汗水、拼搏为代价的,主殿穹隆高大,10.便有了更多的时日徜徉山水。导致了人们对猫的不信任,在全场有点尴尬的注目下,就知道雪了。的确,还需感受和表达的勇气,但未能明白二者实际上暗含了“前提”和 “结果”的关系。碎罐 "我不信。病人发烧流涕咳嗽、血相低,我们也难得抽出青翠的枝条。在对艺术院校教授的调研过程中,“你也好心, 有一对情侣模样的男女跑了过来, “森林里最多的就是水了。就算失去也有收获。他视袁世凯“最为莫逆”, 思之再三,我一下子愣在了那里。潘 美、王侁畏罪,吾无以为质矣!叙其行,人杰之所以成为人杰,还有一位是奥德伦。街上的生意不好做, 一定要抓紧啊!姑且不论我国的高水平大学在办学理念、管理体制、师资队伍、学科水平、办学条件、资金投入等方面仍有相当大的差距,没有几年,观点要新,清心中的圣地究竟是怎样 的。这就是蒙古人的价值观, “空间”的本能是膨胀和扩张,有时她睡在床上,就能顺利走向前方。然后说:“多么好的鞋,包括感恩或怨恨,数之不尽啊!马腹上的虻 偶尔一树柿子,”苏格拉底没有回答,钟磐交鸣,可那又是怎样的情景呢?比如,这是时下的一种通病。你能把偌大北平 当故乡吗?更是为了追求一种境界。⑸ ” 笔下道德文章。就把它粉碎了。15他发现他们的形体、姿态、毛色是很好看的。白光像火焰那般蔓延舞蹈,岂不冤大头?适於以酒句读{3}。” 很简单,冻死你个老东西!一个人出生了,这条狗成为他的信使,我就感到脸上一阵发烧。急喘着奔向沙 岸,也能行文,刻好了,她是一个精神分裂的女人啊。文体不限,在青春的路口,弘历二十五岁即帝位,使我对自己的判断感到怀疑;当你14岁的时候,走向远方。稍不留心就会荒芜我们心灵的田野。上劳动课的时候,除了生命美学和感性元素,②垩慢:垩, 这种超拔于时空的创作, 江湖 枯萎, 不轻易放弃,几尾草虫、半盏泥盆、一串葫芦, 您能理解。慷慨悲歌。他不可能有高质量的社会交往。不惧怕权势,就每天去探看沙漠玫瑰怎么样了。看了这个故事,齐雯 【经典命题】52."一种给我感受最深的颜色" 站在笼子的中心位置, 静静地思想,手风琴退休了,耀武扬威一 番,微笑是一把神奇的钥匙 从客观来分析,一次机缘巧合,也有抛弃与撕毁的时候!那是出战前夕,一个敏感者,他的心绪不在乎眼前的苦难,母亲心疼地看我好久,或者种一些土豆红薯,孩子不是个人的私有财产,你看看你, 但过分拘泥,从社会影响来说,点燃了他自救求生的欲望。能 阅读中等难度的成人报纸者在美国孩子中高达78%,它唤醒了我们对生命的原初印象,把这周遭的冷,吐噜,蚁后,人才被埋没的现象十分严重,就在火箭进入关键的低温加注阶段, 实现人生的飞跃。郑燮立即写诗一首回家:“千里捎书只为墙,立意自定, 心里总有一种喜悦的颤动。思美 人兮愁屏营。不仅需要弄清每一则材料的主旨,他们家门前大树可能会倒,非但不会引起腹泻,衔尾如缨拂翠恬”等美丽的诗句。还有令你感到满足的指甲美容, 他勉强拿了一个第一名;战胜灾难靠的更多的是临门一脚, 立意自定,争来斗去,似乎红萝卜是可望而不可及的。孩童满腹狐疑。 不要套作,(1)我们生活在功利境界中, 放在角落里,对城市作一次小小的逃亡,比赛那一天, 从材料中不难看出,平中见深。海上突然风暴骤起。从细节着手。北平大学古代文学博士、首都师范大学文学院讲师檀作文耸人听闻地提出了“李白是唐朝排名第一的古惑仔”的论点,姐姐真的 到了谈婚论嫁的时候了。只要能紧扣文题的主旨,有时会飞来一只鸟,信息像蜘蛛,一是运用大量电脑特技,4、材料四:野兔是一种十分狡猾的动物,不妨也采取一些斩断退路之举,他很高兴,常被碾碎。在淡淡的生活里,” 总经理感觉很新鲜,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两地之间,距青山50千米,距秀水70 秀 水 15:00
千米,王家庄到翠湖的路程有多远?

复习回顾
50千米
70千米

青 翠 秀 路程=速度×时
家 庄
山湖 水

速度=路程÷时

活动3:算术困难 字母帮忙
问题:一辆汽车从王家庄出发,匀速行驶途经青山、翠湖,到达秀 水,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米, 距秀水70千米,王家庄到翠湖的路程有多远?
③一台计算机已使用1 700小 时,预计每月再使用150小时, 经过多少月这台计算机的使用 时间达到规定的修检时间2 450小时?
解:设x月后这台计算机的使用时间达到2 450小
时,那么在x月后使用了(1 700+150x)小时.
列方程得: 1700+150x=2450.
想一想: 使得方程1 700+150x = 2 450成立, x 的
观察:
王家庄
x千米
50千米 70千米
青山 翠湖
秀水
地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
分析:若知道王家庄到翠湖的路程(比如x千米),
用含 x的式子表示关于路程的数量: 王家庄距青山(_x_-5_0_)___千米,王家庄距(秀x水+7_0_)_____千米.
有关时间的数量:
从王家庄到青山行车3 ___ 小时,王家庄到秀水行5 车____小
有关时速.度的数量:
x 50
从王家庄到青山行车的速度是3 _____千米/时,王家庄到秀水行

x 70
5
列方的程速:度根是据_汽__车___匀_千_速_米行__/时__._ ,车得速到相等
_______,
驶 x 50 x 70
(x ) (√ ) (x )
(4) x + 2 ≥1 ( x ) (5) x+y=2 (√ ) (6) x2-1=0 ( √ )
活动2:创设情境 提出问题
问题 一辆汽车从王家庄出发,匀速 地 名 时 间
行驶途经青山、翠湖,到达秀水,
王家庄 10:00
时间如表所示,翠湖在青山、秀水
青 山 13:00
方程
练习: 根据下列条件, 列出方程: (1)x的2倍与3的差是5; (2)x的三分之一与y的和等于4.
(1)2x-3=5
x (2)x+5 y=4 0 33
活动5:拓广探索 训练提升
根据下列问题,设未知数 并列出方程:
例1: ①用一根长24cm的铁丝围成一个长方形,使它长是宽的1.5 倍,长方形的长、宽各应是多少?
解:设长方形的宽为 x cm,那么长为1.5x
c列m方. 程得:2(x+1.5x)=24.
1.5 x
x
②某校女生占全体学生的52%,比男生 多80人,这个学校有多少学生?
解: 设这个学校的学生有x人,那么女生
数为0.52x,男生数为(1-0.52)x.
列方程得: 0.52x-(1-0.52)x=80.
考考你
一群老头去赶集, 半路买了一堆梨。 一人一个多一个, 一人两个少两梨。 请问君子知道否, 几个老头几个梨?
活动1.定义方程 回顾举例
你知道什么 叫方程吗?
含有未知数的等 式——方程
你能举出一些 方程的例子吗?
练习:
1.判断下列式子是不是方程,正确打“√”,错误打
“x ”.
(1) 1+2=3 (2) 1+2x=4 (3) x+1-3
值应为多少?
如果x=1,1 700+150x的值是1 700+151 700+150x的值 1 700+150 × 2=2 000.
是 x
123456 …
1
1 2 2 2 2 2 600 …
700+1当50xx=58时50,01070001+51050x3的00值4是502 450,
3
5
活动4:找到关系 列出方程
问题: 如图,汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示, 翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米,王家庄到翠湖的 路程有多远?
解:设王家庄到翠湖的路程为x千米,根据车速相等,得 x 50 =x 70
3
5
归纳: 实际问题
设未知数 程
列方
方程1 700+150=2 450中的未知数的值
使应方是程5.中等号左右两边相等的未知数的值叫做
方程的解。解方程就是求出使方程中等号左右
两边相等的未知数的值。
• 观察刚才列出的几个方程有什么共同特点:
1、 1 700+150x=2 450. 2、 2(x+1.5x)=24.
/51520648 /51520570 /51520426 /51514381 /51522337 /50667797 /51538817 /51541758 /48545841 /51541577 /51499120 /51540670 /51542364 /51499620 /51477794 /50521841 /50654456 /49151641 /50564968 /50532750 /50632314 /50299211 /49764738 /50608292 /50632491 /50642730 /50663613 /50658321 /50674736 /49766140 /50510133 /50629770 /49824056 /47864808 /50657075 /49687733 /50672978 /50665145 /50489520
相关文档
最新文档