相似理论与模型试验
水轮机 相似理论

数少。 混流式
b0 D1
0.1 0.00065 ns
轴流式
b0 D1
Байду номын сангаас
0.44 21.47
ns
转轮进、出口直径比D1/D2随比转速的增加而减小:
D1
1
D2 0.96 0.00038 ns
ns
nN H54
使用高比转速水轮机能带来经济效益
水轮机:比转速提高,在相同出力与水头条件下,能
解:模型水轮机单位参数:
n11M
nM D1M HM
282 0.46 64.8r
4
min
Q11M
QM D12M H M
0.38 0.9 m3 0.46 2 4
s
模型水轮机最高效率
M max
NM
9.81QM HM
13.1 0.88 9.81 0.38 4
ns 3.13n11 Q11
比转速:同一系列水轮机在相似工况下运行的综合性能。 作为水轮机系列分类的依据。
采用设计工况或最优工况下的比转速作为水轮机分 类的特征参数。
水斗式: 混流式: 斜流式: 轴流式:
ns=10~70 ns=60~350 ns=200~450 ns=400~900
二、比转速与水轮机性能关系
H MsM
84.6Ku1M
nD1 nM D1M 常数
H s
H MsM
2.流量相似定律
Vx Kvx 2gHs
Q0 Vm1F1
Vm1 K vm1 2gH s
F1 D1b0 f fb0 D12 D12
Q 0 D12 H S
K vm1
第十四章相似原理及模型试验简介

2
阻力
紊流阻力平方区
Frr 1
1 Cr 1 r 1, nr Lr / 6
层流区
Rer 1
3
弹性力
E KL2
Fr Er K r Lr
2
Fr t t 1 代入 m r ur
Ca
则
P vP 2
KP
M vM 2
KM
v2
K
Ca P Ca M Car 1
F ma FP Fr FM , mP mr mM , uP ur uM , t P t r t M
原型
FP m P duP du u mu du FP Fr FM mr m M r M r r m M M dt P dt r t M tr dt M
mr ur duM mr ur Fr FM mM = FM tr dt M tr
vr 2 v2P v2M 1 FrP FrM ( gr 1) gP LP gM LM gr Lr vr 2 v2 J 2 J r 2 1 Cr 1 r 1 P M RP RM C R C r Lr
2
阻力
Lr L tr r tr ur
ur
将各比尺代入
Fr t r 1 m r ur
则
Fr FP FM 1 2 2 r L2 v r2 P L2 v P M L2 v M r P M
FP FM 2 2 P L2 v P M L2 v M P M
把无因次数
2 FrP2 FrM vr 2 v2P v2M 1 g P LP J P g M LM J M JP JM gr Lr J r
水轮机的相似理论

第三章水轮机的相似理论及综合特性曲线§3.1 相似理论概述一、几个基本概念1、水轮机特性水轮机在不同工况下运行时,各运行参数(H,Q,n,N,η,б)及这些参数之间的关系,称水轮机的特性。
水轮机设计、制造、选型、最佳运行方案、限制条件。
由于水轮机水流条件复杂,研究水轮机特性靠理论与实验相结合。
2、模型试验试验研究:原型:尺寸大,试验困难,不经济。
模型:(D: 250~460mm,H:2~6m)快、方便,易测量数据,较准确。
3、相似理论研究相似水轮机之间存在的相似规律,并确立这些参数之间的换算关系的理论。
二、水轮机相似条件保证模型水轮机与原型水轮机相似,只有符合一定的相似条件(水流运动相似)。
1、几何相似:过流通道几何形状相似(1)、过流通道的对应角相等:βe1=βe1M ;βe2=βe2M ;Φ=ΦM……(2)、对应尺寸成比例:D1/D1M=b0/b0M=a0/a0M=…….(3)、对应部位的相对糙率相等:△/ D1=△M/D1M几何相似: 大大小小的一套水轮机系列——轮系,同一轮系的水轮机才能建立运动相似和动力相似。
2、运动相似:同一轮系水轮机、工况相似(1)、过流通道的对应点的速度方向相同(2)、过流通道的对应点的速度大小对成比例即速度三角形相似。
3、 动力相似: (压力、惯性力、重力、摩擦力等)同一轮系水轮机,水流对应点所受的作用力是同名力、方向相同、大小成比例。
3.2 水轮机的相似定律、单位参数及比转速一、水轮机的相似定律相似定律:建立模型击原型水轮机各个参数(H 、n 、N 、η)之间的关系。
1. 流量相似律:几何相似、相似工况下流量之间的关系。
(a=a M )=SMM M rMM H DQ ηη21CH DQ Sr =ηη2111,,,D H D H M M 均为固定值,Q M 可以测得,若ηrM 、ηsM 、ηr 、ηs 已知,可求出Q 。
2. 转速相似律:即原型和模型水轮机转速之间的关系。
相似理论与结构模型试验

一、相似理论与结构模型试验相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩大应用范围和领域,成为计算机“仿真”等领域指导性理论。
相似理论是说明自然界和工程中各相似现象相似原理的学说。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
结构模型中的“相似”主要是指原型结构和模型结构的主要物理量相同或成比例。
常需要满足的相似条件有:几何相似、质量相似、荷载相似、物理相似、时间相似和边界初始条件相似。
1.几何相似模型与原结构之间所对应部分的尺寸成比例,模型比例即为几何相似常数。
S l=l ml p =b mb p=ℎmℎp式中:S l——几何相似常数;l、b、ℎ——结构的长、宽、高三个方向的线性尺寸;m、p——分别代表模型和原型。
对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为:S A=A mA p =ℎm·b mℎp·b p=S l2式中:S A——面积相似常数。
S w=W mW p =16b m·ℎm216b p·ℎp2=S l3式中:S w——截面抵抗矩相似常数。
S I=I mI p =112b m·ℎm3112b p·ℎp3=S l4式中:S I——惯性矩相似常数相似常数。
2.质量相似要求模型与原型结构对应部分质量成比例,质量之比称为质量相似常数。
S m=m mm p式中:S m——质量相似常数。
对于具有分布质量部分,用质量密度ρ表示。
Sρ=S mS V =S mS l3式中:Sρ——质量密度相似常数。
3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。
S p=P mP p =A m·σmA p·σp=Sσ·S l2式中:S p——集中荷载相似常数。
相似理论与模型试验

Page
7
④ 模型试验能预测尚未建造出来的实物对象或根本不 能直接研究的实物对象的性能。 ⑤当其它各种分析方法不可能采用时,模型试验就成了 现象相似性问题唯一的和更为重要的研究手段。 目前,相似理论和模型试验方法已用于物理、化学、工 程结构、热力学、气象、航天等各个领域,并有着广泛的应用 前景。
Page
Page
2
但最先人们采用直接实验的方法发现它有着较大的局限性, 在于它常常只能得出个别量之间的规律性关系,难以发现或抓 住现象的全部本质,从而无法向实验条件范围以外的同类现象 推广。 但通过人们长期实践、总结,一种用于指导自然规律研究 的全新理论——“相似理论”,便应运而生了。它是把数学解 析法和试验法的优点结合起来,用来研究和解决生产和工程中 的问题。这是科学研究的主要方法之一,也是解决生产和工程 问题的一种有效方法。从而扩展了人们探索自然奥秘的领域。
相似理论与模型实验
授课对象:研究生 授课教师:严仁军 二О一四年十月
引 言
1.人们对自然规律的不倦探索
在古代,人们以初等数学为工具从量的方面来探索自然界 的规律性。但初等数学以研究常量为主,只能研究事物在静 止状态下的规律性,这就大大限制了它在客观世界中被利用 的范围。 高等数学的出现,是人们认识客观世界的一个飞跃,也是 探索自然规律的一种有力工具。但自然界的现象毕竟是错综 复杂的。有许多实际问题至今靠高等数学尚不能全部解决或 根本无法解决,于是逼使人们不得不走直接实验的道路。
8
一、物理模拟和数学模拟
物理模拟——是指基本现象相同情况下的模拟。 这时模型与原型的所有物理量相同,物理本质一致。 区别只在于各物理量的大小比例不同。因此,物理模拟也可说 成是保持物理本质一致的模拟。 (两个现象物理量及其性质相同,只有大小不同)。
相似原理与模化实验

1 6 226.8 10 80.64 pa 800 11.25
(3) 说明:以空气为介质作模型:由Re相等,则
m lp 30 p lm
m 180m / s
此时空气压缩性不能忽视,故不能用空气作介质,
则用水质后,
m 11.25m / s
5.3相似定理
三个定理回答了三个问题:
1.实验研究必须测量哪些量→相似第一定理 2.如何做到模型与原型相似→相似第三定理 3.如何对测量结果进行加工整理→相似第二定理
5.3相似定理
5.3相似定理
5.3相似定理
例:
总结: ⒈相似第一定理是对相似性质的总概括,阐明了 相似现象中各物理量之间存在一定关系。 ⒉对于复杂的现象,常存在几个相似准数。 例:对不可压缩粘性流体的不稳定等温流动共有 四个: t H0 均时性准数: 不稳定流体流动必与 t 有关。 l l Re 雷诺准数: 与粘性有关的流动,惯性力/粘性力 付鲁德准数: Fr
b 1 c 1 0 ab vd 1 1 v k d , k
1 b
Re
vd
5.4量纲分析和π定理
5.4.2.2 布金汉(Buckingham)定理
对于某个物理现象或过程,如果存在有n个变量互为函数 关系, f(a1,a2, …an)=0 而这些变量含有m个基本量纲,可把这n个变量转换成为有 (n-m)=i个无量纲量的函数关系式 F(1,2, … n-m)=0 这样可以表达出物理方程的明确的量间关系,并把方程中 的变量数减少了m个,更为概括集中表示物理过程或物 理现象的内在关系。
or 其中:
1 f( 2, 3 n)
1 ——非定性准数 2 n ——定性准数
模型试验相似理论研究

模型试验相似理论研究摘要:文章总结了模型试验中相似理论及相似理论导出方法,分析了相似理论的不足,并通过算例进一步说明了相似理论的运用,对模型试验的发展与运用有一定的意义。
关键词:模型试验;相似理论;导出方法自然界现象错徐复杂,许多问题依照数学知识尚不能解决。
直接的实验方法只能运用在与实验条件完全相同的现象,并且直接实验方法常常仅可得出少数量间的规律,较难抓住现象的全部本质。
所以,以相似理论为基础的模型研究方法成为探索自然规律的新方法。
模型试验方法是指建立在相似理论基础上的模型试验方法,以相似理论为指导,对特定工程问题进行缩尺研究方法,主要用于模拟工程体在外荷载作用下的变形、稳定等力学效应。
1 基本原理相似理论研究的是相似现象的性质和确定相似方法。
最简单的相似是几何相似,除此之外还有物理相似,例如质量、时间、材料物理学等相似。
相似第三定理是相似的充分条件,而相似第一定理、第二定理是相似的必要条件,1.1 相似第一定理相似第一定理由法国J.Bertrand建立,为“对相似的现象,其相似指标等于l 或相似准则的数值相同”。
当用相似第一定理指导模型研究时,先导出相似准则,再通过模型试验测量出与相似准则有关的全部物理量,计算出相似准则数值,借此推断原型的性能。
对于同一准则中的物理量,若满足几何相似,便可找到各物理量相似常数间的比例关系。
1.2 相似第二定理相似第二定理又称?仔定理,即:“若一系统有n个物理量,其中有m个物理量量纲相互独立,那么这n个物理量可表示成相似准则?仔1,…,?仔n-m 之间的函数关系。
”,即:f(?仔1,…,?仔n-m)=0。
对于相似的现象,相似准则都保持同样数值,准则关系也相同。
若把某现象的实验结果推断出准则关系式,可推广到与其相似的现象中。
以水力学求阻力为例,若作用于光滑球体的阻力R与相对速度V、直径D、流体密度、流体动力粘度相关,求光滑球体所受的阻力R。
此问题共有n=5个物理量,量纲分别为:[R]=[M][L][T-2];[V]=[L][T-1];[D]=[L];[?籽]=[M][L-3];[?滋]=[M][L-1][T-1]。
相似理论

▪ (1)理论基础:量纲齐次方程的数学理论,相似第二定律(即π定理)
▪
•
可以不局限于已知物理方程的物理现象,尤其对于一些机理尚未 弄清及规律还未充分掌握的复杂现象尤为明显;
可以通过相似实验核定所选参数的正确性,从而不断为善实验; 应用范围广,只要方程分析法能用,量纲分析法也能用,而方程 分析法不能用时,量纲分析法也能使用。 很难控制无量纲的量; 考虑不了现象中的单值条件; 不能区别量纲相同,但在方程中却有着不同物理意义的量纲; 量纲分析法并没有体现所研究对象的本质问题,从而导致有时获得 的相似判据不易显示其真正的物理意义。
相似理论与结构模型试验
姓名:张朋 学号:2017200253 专业:建筑与土木工程
目录:
▪ 1.相似概述与模型试验
▪ 2.相似分类及相似定理
▪ 3.相似条件的推导 ▪ 4.总结
1.相似概述与模型试验
▪ 相似:从我们初中学习的相似三角形这一概念出发,进行类比,在 许多现实世界的一些物理现象也可以实现相似,即各种物理量的相 似(如:时间,力,速度,加速度等),从而由现象相似简化到参 数相似。 ▪ 模型试验:是根据实体与原型之间相关联的相似要求设计而得的, 利用模型研究实体是一次认识论的飞跃,模型试验直观、有效的特 点始终是各类科研项目必选的研究方法之一,无论在传统的数学、 物理、化学学科,还是生物医药、航空航天、土木建筑等学科中都 起到了至关重要的作用。但模型不能完全反映实体的各个特征,必 须在实践中不断的摸索与改进,使之能更精确的描述实体。所以模 型试验在科学研究和技术革新等方面还需要更多完善。
谢谢大家观看!!!
▪ 分别以a=1,带入公式(2.68) b=1, c=1, 列出π矩阵:
3.相似条件的推导