第五章单元测验及答案
2024-2025年北师大版数学必修第一册第五章单元质量评估卷(带答案)

第五章 单元质量评估卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中没有零点的是( ) A .f (x )=log 2x -7 B .f (x )=x -1 C .f (x )=1x D .f (x )=x 2+x2.方程x 2+log 2x =6的解一定位于区间( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)3.函数f (x )=1x -ln x 的零点个数为( )A .0B .1C .2D .34.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元5.若函数f (x )=x 3+x 2-2x -2的一个零点(正数)附近的函数值用二分法逐次计算,参考数据如下表:那么方程x 3+x 2-2x -2=0的一个近似解(精确度0.04)为( )A.1.5 B .6.关于x 的方程ax +a -1=0在(0,1)内有实根,则实数a 的取值范围是( ) A .a >1 B .a <12 C .12 <a <1 D .a <12 或a >17.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .k =0 B .k >1 C .0≤k <1 D .k >1或k =08.设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c ,x≤0,2,x>0, 若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.函数f (x )=(x 2-1)(x +1)的零点是( ) A .-1 B .0 C .1 D .210.如图表示一位骑自行车者和一位骑摩托车者在相距80 km 的两城镇间旅行的函数图象.根据这个函数图象,关于这两个旅行者的信息正确的是( )A .骑自行车者比骑摩托车者早出发了3小时,晚到1小时B .骑自行车者是变速运动,骑摩托车者是匀速运动C .骑摩托车者在出发了1.5小时后,追上了骑自行车者D .骑自行车者实际骑行的时间为6小时11.已知每生产100克饼干的原材料加工费为1.8元.某食品加工厂对饼干采用两种包装,包装费用、销售价格如表所示:A .买小包装实惠B .买大包装实惠C .卖3小包比卖1大包盈利多D .卖1大包比卖3小包盈利多12.已知函数f (x )=⎩⎪⎨⎪⎧|ln x|,x>03|x|,x≤0且方程[f (x )]2-(m +1)f (x )+m =0的6个解分别为x 1,x 2,x 3,x 4,x 5,x 6(x 1<x 2<x 3<x 4<x 5<x 6),则( )A .m≥eB .x 2+x 3>1eC .x 3x 6=1D .x 6-x 1>e第Ⅱ卷 (非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.已知函数f (x )=log 2x -3x的零点为x 0,且x 0∈(n,n +1),n∈Z ,则n =________.14.方程12x 2-lg x =2的实数根的个数为________.15.若函数f (x )=⎩⎪⎨⎪⎧ln x ,x >0-3x +a ,x ≤0 有且仅有一个零点,则实数a 的取值范围为____________.16.已知函数f (x )=⎩⎪⎨⎪⎧|x +2|-1,x <0x 2-3x +1,x ≥0 ,g (x )=kx ,函数F (x )=f (x )-g (x ).(1)当实数k =-1时,y =F (x )有________个不同零点;(2)若y =F (x )图象经过4个象限,则实数k 的取值范围是________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)若函数f (x )=ax -b (b ≠0)有一个零点3,求函数g (x )=bx 2+3ax 的零点.18.(本小题满分12分)行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离称为刹车距离,在某种路面上,经过多次实验测试,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时,0≤x ≤120)的一些数据如表.为了描述汽车的刹车距离y (米)与汽车的车速x (千米时)的关系,现有三种函数模型供选择:y =px 2+mx +n (p ≠0),y =0.5x +a ,y =k log a x +b .(1) (2)如果要求刹车距离不超过25.2米,求行驶的最大速度.19.(本小题满分12分)已知函数f (x )=2x 2-8x +m +3为R 上的连续函数. (1)若m =-4,试判断f (x )=0在(-1,1)内是否有根存在?若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根x 0存在的区间.(2)若函数f (x )在区间[-1,1]内存在零点,求实数m 的取值范围.20.(本小题满分12分)有时可用函数f (x )=⎩⎪⎨⎪⎧0.1+15ln aa -x,x ≤6,x -4.4x -4,x >6描述学习某学科知识的掌握程度,其中x 表示某学科知识的学习次数(x ∈N *),f (x )表示对该学科知识的掌握程度,正实数a 与学科知识有关.(1)证明:当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降的;(2)根据经验,学科甲、乙、丙对应的a 的取值区间分别为(115,121],(121,127],(127,133].当学习某学科知识6次时,掌握程度是85%,请确定相应的学科(参考数据:e0.05≈1.051 2).21.(本小题满分12分)设函数f (x )=ka x -a -x(a >0且a ≠1)是奇函数. (1)已知f (1)=83 ,求常数k ,a 的值;(2)在(1)条件下,函数g (x )=a 2x+a -2x-2mf (x )在区间[0,1]有两个零点,求实数m 的取值范围.22.(本小题满分12分)如图,将宽和长都分别为x,y(x<y)的两个矩形部分重叠放在一起后形成的正十字形面积为5.(注:正十字形指的是原来的两个矩形的顶点都在同一个圆上,且两矩形长所在的直线互相垂直的图形.)(1)求y关于x的函数解析式;(2)当x,y取何值时,该正十字形的外接圆面积最小?并求出其最小值.第五章单元质量评估卷1.答案:C解析:由于函数f (x )=1x 中,对任意自变量x 的值,均有1x≠0,故该函数不存在零点.2.答案:C解析:令f (x )=x 2+log 2x -6,定义域为(0,+∞),因为函数y =x 2,y =log 2x -6在(0,+∞)都是增函数,所以函数f (x )=x 2+log 2x -6在(0,+∞)是增函数,又因为f (2)=4+1-6=-1<0,f (3)=3+log 23>0,则f (2)f (3)<0,所以函数f (x )=x 2+log 2x -6在区间(2,3)上,即方程x 2+log 2x =6的解一定位于区间(2,3)上.故选C.3.答案:B 解析:如图,在同一坐标系中作出y =1x与y =ln x 的图象:可知f (x )=1x-ln x 只有一个零点.4.答案:D解析:设该家具的进货价是x 元,由题意得132(1-10%)-x =x ·10%,解得x =108元. 5.答案:D解析:由表格结合零点存在定理知零点在(1.406 25,1.437 5)上,区间长度为0.031 25,满足精度要求,观察各选项,只有D 中值1.437 5是该区间的一个端点,可以作为近似解,故选D.6.答案:C解析:令f (x )=ax +a -1,只需f (0)f (1)<0即可,即解得12 <a <1,∴选C.7.答案:D解析:令y 1=|x 2-6x +8|,y 2=k ,由题意函数f (x )只有两个零点,即这两个函数图象只有两个交点,利用数形结合思想,作出两函数图象(如图),可得选D.8.答案:C解析:依题意x =-2是y =x 2+bx +c 的对称轴,∴b =4.∵f (-2)=-2,∴c =2,故f (x )=⎩⎪⎨⎪⎧x 2+4x +2,x ≤0,2,x >0, 令f (x )=x ,解得x =-1,-2,2,∴方程f (x )=x 的解的个数为3.选C. 9.答案:AC解析:令f (x )=0,解得:x =±1,所以函数的零点是-1和1.故选AC. 10.答案:ABC解析:由图象可得,骑自行车者比骑摩托车者早出发了3小时,晚到1小时,A 正确;骑自行车者是变速运动,骑摩托车者是匀速运动,B 正确;骑摩托车者在出发了1.5小时后,追上了骑自行车者,C 正确;骑自行车者实际骑行的时间为5小时,D 错误.故选ABC.11.答案:BD解析:买小包装时每克费用为3100 元,买大包装时每克费用为8.4300 =2.8100(元),3100 >2.8100,所以买大包装实惠.卖3小包的利润为3×(3-1.8-0.5)=2.1(元),卖1大包的利润是8.4-1.8×3-0.7=2.3(元),2.3>2.1,所以卖1大包比卖3小包盈利多.因此BD 正确,故选BD.12.答案:CD解析:[f (x )]2-(m +1)f (x )+m =0,整理得到[f (x )-m ][f (x )-1]=0, 故f (x )=m 或f (x )=1,画出f (x )=⎩⎪⎨⎪⎧|ln x |,x >03|x |,x ≤0 的图象,如下:显然f (x )=1有三个根,分别为x 2=0,x 4=1e,x 5=e ,f (x )=m 有三个根,分别为x 1,x 3,x 6,x 1<0,x 3∈(0,1e),x 6>e ,A 选项,数形结合得到m >1,A 错误;B 选项,由于x 2=0,x 3∈(0,1e ),故0<x 2+x 3<1e,故B 错误;C 选项,由-ln x 3=m 得x 3=e -m,由ln x 6=m ,得到x 6=e m ,故x 3x 6=e -m ·e m=1,C 正确;D 选项,因为x 1<0,x 6>e ,故x 6-x 1>e ,D 正确. 故选CD. 13.答案:2解析:易知函数f (x )=log 2x -3x在(0,+∞)上单调递增,因为f (2)=log 22-32 =-12 <0,f (3)=log 23-1>log 22-1=0,所以f (2)f (3)<0,根据函数的零点的判定定理可得:函数f (x )=log 2x -3x的零点所在的区间是(2,3),所以n =2.14.答案:2解析:分别画出y =12 x 2-2与y =lg x 的图象,有2个交点.15.答案:(-∞,0]∪(1,+∞)解析:当x >0时,令f (x )=ln x =0可得x =1; 当x ≤0时,f (x )=-3x+a ,此时函数f (x )单调递减,因为函数f (x )有且只有一个零点,所以函数f (x )=a -3x在(-∞,0]上无零点, 由f (x )=a -3x≠0可得a ≠3x,所以,直线y =a 与函数y =3x在(-∞,0]上的图象无交点,如图所示:且当x ≤0时,0<3x ≤1,由图可知,当a ≤0或a >1时,直线y =a 与函数y =3x在(-∞,0]上的图象无交点.因此,实数a 的取值范围是(-∞,0]∪(1,+∞). 16.答案:2 (-1,12)解析:(1)由F (x )=0得f (x )=-x ;当x ≥0时,x 2-3x +1=-x ,即x 2-2x +1=0,解得x =1;当x <0时,|x +2|-1=-x ,(ⅰ)若x ≥-2,则x +1=-x 解得x =-12 ;(ⅱ)若x <-2,则-x -3=-x ,方程无实数解.综上:不同零点有2个.(2)F (x )经过4个象限,则x >0时,F (x )可正可负,x <0时,F (x )可正可负, 即x >0时,f (x )图象有时在g (x )图象上方,有时在g (x )图象下方,x <0的情况同理,数形结合,直线y =kx 恒过定点(0,0).如图所示,临界情况是直线y =kx 过点A ,此时k =12 ;直线y =kx 过点B ,此时直线与抛物线相切,可得k =-1,则实数k 的取值范围是(-1,12).17.解析:函数f (x )=ax -b 的一个零点是3. ∴f (3)=0,即b =3a ,g (x )=3ax 2+3ax , 令g (x )=0得x =0或x =-1, ∴g (x )的零点是x =0或x =-1.18.解析:(1)结合表格数据可得y =px 2+mx +n (p ≠0)最符合实际的函数模型,将x =0,y =0;x =40,y =8.4;x =60,y =18.6分别代入上式可得⎩⎪⎨⎪⎧n =01 600p +40m =8.43 600p +60m =18.6,解得⎩⎪⎨⎪⎧p =1200m =1100n =0,即所求的函数解析式为y =1200 x 2+1100x ,(0≤x ≤120). (2)令1200 x 2+1100 x ≤25.2,即x 2+2x -5 040≤0,解得-72≤x ≤70,又0≤x ≤120,所以0≤x ≤70,即要求刹车距离不超过25.2米,则行驶的最大速度为70千米/时. 19.解析:(1)当m =-4时,f (x )=0,即f (x )=2x 2-8x -1=0. 可以求出f (-1)=9,f (1)=-7,则f (-1)f (1)<0. 又f (x )为R 上的连续函数,∴f (x )=0在(-1,1)内必有根存在,设根为x .取中点0,计算得f (0)=-1<0,f (-1)f (0)<0,∴x 0∈(-1,0),取其中点-12 ,计算得f ⎝ ⎛⎭⎪⎫-12 =72>0, ∴x 0∈⎝ ⎛⎭⎪⎫-12,0 ,取其中点-14 ,计算得f ⎝ ⎛⎭⎪⎫-14 =98>0, ∴x 0∈⎝ ⎛⎭⎪⎫-14,0 ,取其中点-18 ,计算得f ⎝ ⎛⎭⎪⎫-18 =132>0. ∴x 0∈⎝ ⎛⎭⎪⎫-18,0 ,又⎪⎪⎪⎪⎪⎪-18-0 <0.2,∴x 0存在的区间为⎝ ⎛⎭⎪⎫-18,0 . (2)∵函数f (x )=2x 2-8x +m +3的对称轴为x =2.∴函数f (x )在[-1,1]内存在零点的条件为⎩⎪⎨⎪⎧f (-1)≥0,f (1)≤0, 即⎩⎪⎨⎪⎧m +13≥0,m -3≤0, 解得-13≤m ≤3.∴m 的取值范围是[-13,3].20.解析:(1)证明:当x ≥7时,f (x +1)-f (x )=0.4(x -3)(x -4), 设g (x )=0.4(x -3)(x -4),h (x )=(x -3)(x -4), 易知h (x )的图象是抛物线的一部分,在[7,+∞)上单调递增,故g (x )在[7,+∞)上单调递减,所以当x ≥7时,掌握程度的增长量f (x +1)-f (x )总是下降的.(2)由f (6)=0.85,可知0.1+15lna a -6 =0.85, 整理得a a -6 =e 0.05,解得a =6e 0.05e 0.05-1 ≈123. 又123∈(121,127],所以该学科是乙学科.21.解析:(1)∵f (x )为定义在R 上的奇函数,∴f (0)=k -1=0,解得:k =1,∴f (1)=a -1a =83 ,解得:a =-13(舍)或a =3; 当k =1,a =3时,f (x )=3x -3-x ,此时f (-x )=3-x -3x =-f (x ),满足f (x )为奇函数,∴k =1,a =3.(2)由(1)得:f (x )=3x -3-x ,则g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x)+2; 令t =3x -3-x ,则t 在[0,1]上单调递增,∴t ∈[0,83],∴h (t )=t 2-2mt +2在[0,83]上恰有两个不同零点, ∴⎩⎪⎨⎪⎧0<--2m 2<83Δ=4m 2-8>0h ⎝ ⎛⎭⎪⎫83=649-16m 3+2≥0h (0)=2≥0 ,解得:2 <m ≤4124, 即实数m 的取值范围为(2 ,4124]. 22.解析:(1)由题意可得2xy -x 2=5 ,则y =x 2+52x , ∵y >x ,∴x 2+52x>x ,解得0<x <45 . ∴y 关于x 的解析式为y =x 2+52x,0<x <45 . (2)设正十字形的外接圆的直径为d ,由图可知d 2=x 2+y 2=x 2+⎝ ⎛⎭⎪⎫x 2+52x 2 =5x 24 +54x 2 +52 ≥52 +52 ,当且仅当x =1,y =5+12时,正十字形的外接圆直径d 最小,最小值为5+52 =10+252 ,则半径的最小值为10+254,∴正十字形的外接圆面积的最小值为π×⎝ ⎛⎭⎪⎫10+254 2 =5+58 π.。
2023-2024学年青岛版七年级数学上册《第五章 代数式与函数的初步认识》单元测试卷附答案

2023-2024学年青岛版七年级数学上册《第五章代数式与函数的初步认识》单元测试卷附答案学校:___________班级:___________姓名:___________考号:___________(共25题,共120分)一、选择题(共12题,共36分)1.(3分)下列各式中,代数式的个数有( )① a;② 2x=6;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba.A.2个B.3个C.4个D.5个2.(3分)2018年新年之后,大家期盼已久的第一场冬雪终于来临,俗语:“下雪不冷化雪冷”,温度由t∘C下降5∘C后是( )A.t−5∘C B.(t+5)∘C C.t+5∘C D.(t−5)∘C3.(3分)当a=1时,a+2a+3a+4a+⋯+99a+100a的值为( )A.5050B.100C.−50D.504.(3分)当x=1时,代数式ax5+bx3+cx−5的值为m,则当x=−1时,此代数式的值为( )A.−m B.−m−10C.−m−5D.−m+55.(3分)若a≤0,则∣a∣+a+2等于( )A.2a+2B.2C.2−2a D.2a−26.(3分)代数式y2+2y+7的值是6,则4y2+8y−5的值是( )A.9B.−9C.18D.−187.(3分)已知3−x+2y=−2,则整式x−2y的值为( )A.12B.10C.5D.158.(3分)当x=−3,y=2时,代数式2x2+xy−y2的值是( )A.5B.6C.7D.89.(3分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是( )A.太阳光强弱B.水的温度C.所晒时间D.热水器10.(3分)下列关于变量x,y的关系,其中y不是x的函数的是( )A.B.C.D.11.(3分)下列各曲线中,不能表示y是x的函数的是( )A.B.C.D.,在这个函数关12.(3分)设路程为s(km),速度为v(km/h),时间为t(h),当s=50时t=50v 系式中( )A.路程是常量,t是s的函数B.速度是常量,t是v的函数C.时间是常量,v是t的函数D.s=50是常数,v是自变量,t是v的函数二、填空题(共6题,共18分)13.(3分)若实数a满足a2−2a=3,则3a2−6a−8的值为.14.(3分)“x与y平方的差”用代数式表示为,“x与y差的平方”用代数式表示为.15.(3分)若∣m+2∣+(n−1)2=0,则(m+n)2020的值为.16.(3分)已知x2+3x+7的值为11,则代数式3x2+9x−15的值为.17.(3分)已知a,b互为相反数,c是绝对值最小的数,d是负整数中最大的数,则a+b+c−d=.18.(3分)若a=2b+4,则5(2b−a)−3(−a+2b)−100=.三、解答题(共7题,共66分)19.(8分)如图所示,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1) 用a,b,x表示纸片剩余部分的面积;(2) 当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.20.(8分)某学校准备印刷一批证书,现有两个印刷厂可供选择:甲厂收费方式:收制版费1000元,每本印刷费0.5元;乙厂收费方式:无制版费,不超过2000本时,每本收印刷费 1.5元;超过2000本时,超过部分每本收印刷费0.25元.(1) 若设该校共需印制证书x本,请用代数式分别表示甲,乙两厂的收费情况;(2) 当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?21.(8分)某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元,在促销活动期间,该厂向客户提供了两种优惠方案(客户只能选择其中一种优惠方案):①买一套西装送一条领带;②西装按原价的9折收费,领带按原价的8折收费.在促销活动期间,某客户要到该服装厂购买x套西装,y条领带(y>x).(1) 两种方案需的费用分别是多少元?(用含x,y的代数式表示并化简)(2) 若该客户需要购买20套西装,25条领带,则他选择哪种方案更划算?22.(8分)某农户去年承包荒山若干亩.投资7800元改造后,种果树2000棵.今年产量为18000千克,此水果在市场上每千克售a元,在果园每千克售b元.该农户将水果运到市场出售平均每天出售1000千克,需8人帮忙.每人每天付工资25元,农用车运费及其他各项税费平均每天100元.(1) 分别用a,b表示两种方式出售水果的收人.(2) 若a=1.3,b=1.1,且两种出售方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?23.(10分)如图,圆柱的高是3cm,当圆柱的底面半径r cm由小到大变化时,圆柱的体积V cm3也随之发生了变化.(1) 在这个变化中,自变量是,因变量是.(2) 写出体积V与半径r的关系式.(3) 当底面半径由1cm变化到10cm时,通过计算说明圆柱的体积增加了多少cm3.24.(12分)据商务部监测,2018年10月1日至7日,全国零售和餐饮企业实现销售额约1.4万亿元.苏宁电器某品牌电烤箱每台定价1000元,电磁炉每台定价200元,十一期间商场开展促销活动,向顾客提供两种优惠方案:方案一:买一台电烤箱送一台电磁炉;方案二:电烤箱和电磁炉都按定价的90%付款.某顾客要准备购买微波炉10台,电磁炉x台(x>10).(1) 若该顾客选择方案一购买,他需付款元(用含x的代数式表示);(2) 若该顾客选择方案二购买,他需付款元(用含x的代数式表示);(3) 若x=20,请你通过计算说明按哪种方案购买更省钱?能省多少钱?25.(12分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1) 请用含x代数式分别表示顾客在两家超市购物所付的费用;(2) 李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由.(3) 计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?答案一、选择题(共12题,共36分)1. 【答案】D【解析】① a;③ 0;④ m2−1n ;⑤ mx−ny;⑥ ba是代数式,② 2x=6是等式.2. 【答案】D3. 【答案】A【解析】当a=1时a+2a+3a+4a+⋯+99a+100a=1+2+3+4+⋯+99+100=100×(100+1)2=5050.4. 【答案】B【解析】将x=1代入ax5+bx3+cx−5=m,得:a+b+c−5=m 则a+b+c=m+5当x=−1时原式=−a−b−c−5=−(a+b+c)−5=−m−5−5=−m−10,故选:B.5. 【答案】B【解析】∵a≤0∴∣a∣=−a.原式=−a+a+2=2.6. 【答案】B【解析】∵y2+2y+7=6∴y2+2y=−1又∵4y2+8y−5=4(y2+2y)−5∴4y2+8y−5=−4−5=−9.7. 【答案】C【解析】∵3−x+2y=−2∴2y−x=−5,则x−2y=5.8. 【答案】D【解析】当x=−3,y=2时2x2+xy−y2=2×(−3)2+(−3)×2−22=2×9−6−4=18−6−4=8.9. 【答案】B【解析】因为热水器里的水温随所晒时间的长短而变化,所以所晒时间是自变量,水的温度是因变量.10. 【答案】B【解析】函数的定义:对于x的每一个取值,y都有唯一确定的值与之对应的关系,A,C,D中每一个x都只对应一个y,而B中一个x对应两个y,故B中y不是x的函数.11. 【答案】B【解析】A,C,D选项中自变量x取任何值,y都有唯一的值与之相对应,y是x的函数;B选项自变量x取一个值时y都有2个值与之相对应,则y不是x的函数.12. 【答案】D中,v为自变量,t为v的函数,50为常量.【解析】在函数关系式t=50v二、填空题(共6题,共18分)13. 【答案】1【解析】∵a2−2a=3∴3a2−6a−8=3(a2−2a)−8=3×3−8=1∴3a2−6a−8的值为1.14. 【答案】x2−y2;(x−y)2【解析】“x与y平方的差”用代数式表示为x2−y2“x与y差的平方”用代数式表示为(x−y)2.15. 【答案】1【解析】由题意得m+2=0,n−1=0解得m=−2,n=1∴(m+n)2020=(−2+1)2020=1.16. 【答案】−3【解析】∵x2+3x+7=11∴x2+3x=4∴3x2+9x=3⋅(x2+3x)=3×4=12∴3x2+9x−15=12−15=−3.17. 【答案】1【解析】由题意得a+b=0,∣c∣=0,d=−1∴a+b+c−d=1.18. 【答案】−108三、解答题(共7题,共66分)19. 【答案】(1) ab−4x2.(2) 依题意得:ab−4x2=4x2将a=6,b=4代入上式,得x2=3.解得:x1=√3,x2=−√3(舍去)即正方形的边长为√3.20. 【答案】(1) 若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元.若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元.(2) 当x=8000时,甲厂费用为1000+0.5×8000=5000元乙厂费用为:0.25×8000+2500=4500元∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元.21. 【答案】(1) 按方案①购买,需付款:200x+(y−x)×40=(40y+160x)元;该客户按方案②购买,需付款:200x⋅90%+40y⋅80%=(180x+32y)(元).(2) 当x=20,y=25时,按方案①购买,需付款:40×25+160×20=4200(元);该客户按方案②购买,需付款:180×20+32×25=4400(元);∵4200<4400∴按方案①更划算.22. 【答案】(1) 市场销售的收入为:18000a−180001000×(25×8+100)−7800=18000a−5400−7800=18000a−13200.果园销售的收入为:18000b−7800.(2) 当a=1.3,b=1.1时市场销售收入为:18000×1.3−13200=23400−13200=10200(元)果园销售收入为:18000×1.1−7800=12000(元)∵10200<12000∴选择果园出售利润较高.23. 【答案】(1) r;V(2) V=3πr2.(3) 当r=1时V=3πr2=3π当r=10时V=3πr2=300π∵300π−3π=297π∴当底面半径由1cm变化到10cm时,圆柱的体积增加了297πcm3.24. 【答案】(1) (200x+8000)(2) (180x+9000)(3) 当x=20时,方案一的费用为200×20+8000=12000(元)方案二的费用为180×20+9000=12600(元)∵12000<12600∴方案一省钱,省600元.【解析】(1) 若该顾客选择方案一购买,他需付款1000×10+200(x−10)=200x+8000(元).(2) 该顾客选择方案二购买,他需付款90%×(10×1000+200x)=180x+9000(元).25. 【答案】(1) 设顾客在甲超市购物所付的费用为y甲顾客在乙超市购物所付的费用为y乙根据题意得:y甲=300+0.8(x−300)=0.8x+60;y乙=200+0.85(x−200)=0.85x+30.(2) 他应该去乙超市,理由如下:当x=500时y甲=0.8x+60=460,y乙=0.85x+30=455∵460>455∴他去乙超市划算.(3) 令y甲=y乙,即0.8x+60=0.85x+30解得:x=600.答:李明购买600元的商品时,到两家超市购物所付的费用一样.。
新人教版七年级下册第五章《相交线与平行线》单元检测试卷(含答案解析)

人教版七年级下册数学第五章相交线与平行线单元练习卷一、填空题1.如图,直线AB,CD相交于点O, EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为______.【答案】140°2.一条公路两次转弯后又回到原来的方向(即AB∥CD,如图),如果第一次转弯时的∠B=140°,那么,∠C应是____________。
【答案】140°3.如图边长为4cm的正方形ABCD先向上平移2cm,再向右平移1cm,得到正方形A′B′C′D′,此时阴影部分的面积为___________..【答案】6cm24.下列语句∶①对顶角相等;②OA是∠BOC的平分线;③相等的角都是直角;④线段AB.其中不是命题的是.【答案】④5.过直线外一点与已知直线平行【答案】有且只有一条直线6.如图,已知直线l1与l2交于点O,且∠1:∠2 =1:2,则∠3= ,∠4 = .【答案】60° 120°二、选择题7.下列说法正确的是( C )A.一个角的补角一定比这个角大B.一个角的余角一定比这个角小C.一对对顶角的两条角平分线必在同一条直线上D.有公共顶点并且相等的两个角是对顶角8.如图,能判定EC∥AB的条件是( D )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE9.如图所示,下列说法不正确的是(A)A. ∠与∠是同位角B. ∠与∠是同位角C. ∠与∠是同位角D. ∠与∠是同位角10.下列各图中,过直线l外的点P画l的垂线CD,三角尺操作正确的是( D )11.下列说法正确的有( B )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种;③若线段AB与CD没有交点,则AB∥CD;④若a∥b,b∥c,则a与c不相交.A.1个 B.2个 C.3个 D.4个12.如图,将△ABC沿AB方向平移至△DEF,且AB=5,DB=2,则CF的长度为( B )A.5B.3C.2D.113.下列语句中,是命题的是(A)①若∠1=60°,∠2=60°,则∠1=∠2;②同位角相等吗?③画线段AB=CD;④如果a>b,b>c,那么a>c;⑤直角都相等.A.①④⑤B.①②④C.①②⑤D.②③④⑤14.如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( C )A.∠AOC=40°B.∠COE=130°C.∠EOD=40°D.∠BOE=90°15.如图,若∠A+∠B=180°,则有( D )A.∠B=∠C B.∠A=∠ADC C.∠1=∠B D.∠1=∠C16.如下图,在下列条件中,能判定AB//CD的是( C )A. ∠1=∠3B. ∠2=∠3C. ∠1=∠4D. ∠3=∠4三、解答题17.已知,如图,AB∥CD,∠EAB+∠FDC=180°。
浙教版七年级上册数学 第五章一元一次方程单元测试卷(含答案)

浙教版七上数学第五章一元一次方程一、选择题1.下列方程中,是一元一次方程的是( )A.x2−4x=3B.3x−1=x2C.x+2y=1D.xy−3=52.下列等式变形正确的是( )A.若a=b,则a+c=b−c B.若ac=bc,则a=bC.若a=b,则ac=bcD.若(m2+1)a=(m2+1)b,则a=b3.已知关于x的方程8−3x=ax的解是x=−2,则a的值为( )A.1B.7C.52D.−74.把方程3x+2x−13=3−x+12去分母正确的是( )A.18x+2(2x−1)=18−3(x+1)B.3x+(2x−1)=3−(x+1)C.18x+(2x−1)=18−(x+1)D.3x+2(2x−1)=3−3(x+1)5.若x=1是关于x的方程3x−2m=1的解,则m的值是( )A.−1B.1C.−2D.36.如图,数轴上依次有A,B,C三点,它们对应的数分别是a,b,c,若BC=2AB=6,a+b+c=0,则点C对应的数为( )A.4B.5C.6D.87.如图,是2024年1月的月历,任意选取“十”字型中的五个数(比如图中阴影部分),若移动“十”字型后所得五个数之和为115,那么该“十”字型中正中间的号数为( )A.20B.21C.22D.238.《九章算术》中有如下问题:“以绳测井,若将绳三折测之,绳多四尺;若将绳四折测之,绳多一尺.问绳长、井深各几何?”其题意是:用绳子测量水井深度,如果将绳子折成三等份,那么每等份绳长比水井深度多四尺;如果将绳子折成四等份,那么每等份绳长比水井深度多一尺.问绳长和井深各多少尺?设绳长为x尺,则根据题意,可列方程为( )A.x3+4=x4+1B.x3−4=x4−1C.x3−1=x4−4D.x3−4=x4+19.如图,线段AB=24cm,动点P从A出发,以2cm/s的速度沿AB运动,M为AP的中点,N为BP的中点.以下说法正确的是( )①运动4s后,PB=2AM;②PM+MN的值随着运动时间的改变而改变;③2BM−BP的值不变;④当AN=6PM时,运动时间为2.4s.A.①②B.②③C.①②③D.②③④10.有一组非负整数:a1,a2,…,a2022.从a3开始,满足a3=|a1−2a2|,a4=|a2−2a3|,a5=|a3−2 a4|,…,a2022=|a2020−2a2021|.某数学小组研究了上述数组,得出以下结论:①当a1=2,a2=4时,a4=6;②当a1=3,a2=2时,a1+a2+a3+⋯+a20=142;③当a1=2x−4,a2=x,a5=0时,x=10;④当a1=m,a2=1(m≥3,m为整数)时,a2022=2020m−6059.其中正确的结论个数有( )A.1个B.2个C.3个D.4个二、填空题11.由a=b,得ac =bc,那么c应该满足的条件是 .12.如果方程3x m+1+2=0是关于x的一元一次方程,那么m的值是 .13.如果|x+8|=5,那么x= .14.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解互为相反数,则a= .15.对于非零自然数a和b,规定符号⊗的含义是:a⊗b=m×a+b2×a×b(m是一个确定的整数).如果1⊗4=2⊗3,那么3⊗4等于 16.人民路有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场8.8折.乙超市购物①不超过200元,不给予优惠;②超过200元而不超过600元,打9折;③超过600元,其中的600元仍打9折,超过600元的部分打8折.(假设两家超市相同商品的标价都一样)当标价总额是 元时,甲、乙两家超市实付款一样.三、解答题17.解方程:(1)3x+5=2(x+4)(2)3x−14=1−x+8618.已知a-2(4-x)=5a是关于x的方程,且与方程6-x=x+32有相同的解.(1)求a的值.(2)求多项式8a2−2a+7−5的值.若两个一元一次方程的解相差1,则称解较大的方程为另一个方程的“后移方程”例如:方程x−2=0是方程x−1=0的“后移方程”19.判断方程2x+1=0是否为方程2x+3=0的“后移方程”;20.若关于x的方程3(x−1)−m=m+32是关于x的方程2(x−3)−1=3−(x+1)的“后移方程”,求m的值.21.一项工程,甲队独做10ℎ完成,乙队独做15ℎ完成,丙队独做20ℎ完成,开始时三队合作,中途甲队另有任务,由乙、丙两队完成,从开始到工程完成共用了6ℎ,问甲队实际工作了几小时?22.将连续奇数1,3,5,7,9,…排列成如下的数表:(1)设中间数为x,用式子表示十字框中五个数之和.(2)十字框中的五个数之和能等于2024吗?若能,请写出这五个数;若不能,请说明理由.23.用A,B两种型号的机器生产相同的产品,产品装入同样规格的包装箱后运往仓库.已知每台B型机器比A型机器一天多生产2件产品,3台A型机器一天生产的产品恰好能装满5箱,4台B型机器一天生产的产品恰好能装满7箱.每台A型机器一天生产多少件产品?每箱装多少件产品?下面是解决该问题的两种方法,请选择其中的一种方法,完成分析填空和解答.【方法一】分析:设每箱装x件产品,则3台A型机器一天共生产①▲)件产品,4台B型机器一天共生产( ▲)件产品,再根据题意列方程.【方法二】分析:设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产(①▲)件产品,4台B型机器一天共生产(②▲)件产品,再根据题意列方程.解:设每箱装x 件产品.答:(写出完整的解答过程)解:设每台A 型机器一天生产x 件产品答:(写出完整的解答过程)24.如图,点A 、B 、C 、D 在数轴上,点A 表示的数是−3,点D 表示的数是9,AB =2,CD =1.(1)线段BC =______.(2)若点B 以每秒1个单位长度的速度向右匀速运动,同时点C 以每秒2个单位长度的速度向左匀速运动,运动t 秒后,BC =3,求t 的值.(3)若线段AB 以每秒1个单位长度的速度向左匀速运动,同时线段CD 以每秒2个单位长度的速度向左匀速运动,M 是AC 中点,N 为BD 中点,运动t 秒后(0<t <9),求线段MN 的长度.答案解析部分1.【答案】B2.【答案】D3.【答案】D4.【答案】A5.【答案】B6.【答案】B7.【答案】D8.【答案】B9.【答案】D10.【答案】B11.【答案】c≠012.【答案】013.【答案】-13或-314.【答案】-415.【答案】111216.【答案】75017.【答案】(1)x=3(2)x=−1 1118.【答案】(1)解:6-x=x+32,去分母得:12-2x=x+3,移项合并得:-3x=-9,解得:x=3,把x=3代入a-2(4-x)=5a得:a-2=5a,解得:a=-1 2.(2)解:当a=-12时,原式=-2【答案】19.方程2x+1=0是方程2x+3=0的后移方程20.m=521.【答案】解:设三队合作时间为xh,乙、丙两队合作为(6−x)ℎ,总工程量为1,由题意得:(110+115+120)x+(115+120)(6−x)=1,解得:x=3,答:甲队实际工作了3小时22.【答案】(1)解:设中间数为x,则另4个数分别为x−16、x+16、x−2、x+2,所以十字框中五个数之和为x+(x−16)+(x+16)+(x−2)+(x+2)=5x.(2)解:设中间的数为x,依题意可得:5x=2024,解得:a=404.8因为a=404.8不是整数,与题目的a是奇数不符,所以5数之和不能等于2024.23.【答案】解:【方法一】①设每箱装x件产品,则3台A型机器一天共生产3x件产品,4台B型机器一天共生产7x件产品,依题意列方程,得5x3+2=7x4,解得:x=24,故5x3=40,即每台A型机器一天生产40件产品,每箱装24产品.【方法二】设每台A型机器一天生产x件产品,则每台B型机器一天生产(x+2)件产品,3台A型机器一天共生产3x件产品,4台B型机器一天共生产4(x+2)件产品,依题意列方程,得3x5=4(x+2)7,解得:x=40,故3x5=24,即每台A型机器一天生产40件产品,每箱装24产品. 24.【答案】(1)9(2)2或4(3)3 2。
劳动教育第五章单元测试答案劳动合同3篇

劳动教育第五章单元测试答案劳动合同3篇篇1劳动教育是一门重要的课程,劳动合同作为其中的一环,也是学生们需要学习的重要知识点。
为了帮助学生更好地掌握劳动合同的相关知识,我们设计了劳动教育第五章单元测试,以下是该测试的答案:一、选择题1.劳动合同的签订,应当依法遵循的基本原则是(B)A.雇主与用人单位签订B.自愿、协商一致、平等自愿C.甲方与甲方自愿签订D.乙方与甲方签订2.下列关于劳动合同的说法中,错误的是(A)A.只有资方可以解除B.工资应当按照双方的约定支付C.用人单位变更后解雇员工D.未休年假的可以按照实际工作可以折算现金结算3.有无固定期限的劳动合同提前终止应提前(C)A.30B.15C.3D.74.用人单位应当在(D)内向劳动者支付解除或终止劳动合同的经济补偿。
A.1周B.10个工作日C.3天D.14日5.在和解协议中对劳动者订立,劳动者申请撤回仲裁申请责任取消。
由劳动者自行承担(A)A.应由鉴定机构等第三方机构出具鉴定结论B.应当取得劳动者的书面同意C.由用人单位向劳动者赔偿一定的赔偿金D.无法解决劳资矛盾二、问答题1.简述劳动合同的解除程序及条件?答:劳动合同的解除包括两类,一类是由法定原因解除,另一类是用人单位不讼原因解除。
法定原因解除需要提前通知劳动者,以书面形式告知,按照规定程序及条件解除合同;用人单位不擅解除则需要提前告知,具体条件为提前15天通知,告诉理由。
2.劳动合同的终止应提前告知,条件是什么?答:劳动合同终止需要提前告知,条件是提前30天取告知,具体条件由劳动者本人填写解除或异议书,用人单位处理相关手续。
3.劳动争议解决方式有哪些?答:劳动争议解决方式有仲裁、调解和诉讼三种方式。
劳动者和用人单位可以通过仲裁委员会进行仲裁,也可以通过调解委员会进行调解,如果无法调解成功,还可以通过诉讼的方式解决。
三、判断题1.有固定期限的劳动合同不符合下列规定,应由法院判定无效。
(×)2.在和解协议中对劳动者订立,劳动者申请撤回仲裁申请责任取消,由劳动者自行承担。
(北师大版)初中数学九年级上册 第五章综合测试试卷03及答案

第五章单元测试一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1.下列四幅图中,灯光与影子的位置合理的是()A.B.C.D.2.下列立体图形中,俯视图不是圆的是()A.B.C.D.3.如图所示物体的左视图是()A.B.C.D.4.如图是由10个同样大小的小正方体摆成的几何体,将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变5.如图,正三棱柱的左视图是()A.B.C.D.6.如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为()A.5B.6C.7D.87.一个圆柱体的三视图如图所示,若其俯视图为圆,则这个圆柱体的体积为()A.24B.24pC.96D.96p8.如图,这是一个机械零部件,该零部件的左视图是()A.B.C.D.9.右图是由一个长方体和一个球组成的几何体,它的主视图是()A.B.C.D.10.图2是图1中长方体的三视图.若用S 表示面积,且22S x x =主+,2S x x =左+,则S =俯()图1图2A .232x x ++B .22x +C .221x x ++D .223x x+二、填空题(本大题共6个小题,每小题4分,共24分)11.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为________.12.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么,其三种视图中面积最小的是________.13.如图是某天内电线杆在不同时刻的影长,按先后顺序应当排列为________.A B C D14.如图是一个几何体的三视图,那么这个几何体是________.15.如图,上、下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图,左视图中包含两个全等的矩形.如果用彩色胶带按如图包扎礼盒,所需胶带长度至少为________cm .(精确到0.001 cm )16.用小立方体搭成的几何体,它的主视图和左视图如图,则这个几何体最少需________个小立方体,最多需________个小立方体.三、解答题(本大题共9个小题,共96分)17.(10分)请你在下面画一个正四棱锥的三视图.18.(10分)一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你分别画出这个几何体的三视图.19.(10分)如图,画出每个木杆在灯光下的影子.20.(10分)如图,小明与同学合作,利用太阳光线测量旗杆的高度,身高1.6 m的小明落在地面上的影长BC=.为 2.4 m(1)请你在图中画出旗杆在同一时刻阳光照射下落在地面上的影子EG;EG=,请求出旗杆DE的高度.(2)若小明测得此刻旗杆落在地面的影长16 m21.(10分)如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长为1.5米,在同时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21米,留在墙上的影高为2米,求旗杆的高度.22.(10分)如图,教学楼旁边有一棵大树,课外兴趣小组的同学在阳光下测得一根长为1 m的竹竿的影长为0.9 m,同一时刻这棵树落在地上的影长为2.7 m,落在墙上的影长为1.2 m,请你计算树高为多少.23.(12分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图),请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:mm)24.(12分)如图是某个几何体的三视图.(1)请描述这个几何体的形状;(2)按三视图的图上的实际尺寸,画出它的表面展开图(按6:1比例缩小);(3)若三视图的实际尺寸如图所示,求这个几何体的侧面积和表面积.25.(12分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高为2 m的标杆CD和EF,两标杆相隔52 m,并且建筑物AB、标杆CD和EF在同一竖直平面内.从标杆CD后退2 m到点G 处,在G处测得建筑物顶端A与标杆顶端C在同一条直线上;从标杆EF后退4 m到点H处,在点H处测得建筑物顶端A与标杆顶端E在同一条直线上,求建筑物的高.第五章单元测试答案解析一、1.【答案】B 2.【答案】C 3.【答案】B 4.【答案】A 5.【答案】A 6.【答案】B【解析】综合主视图和俯视图,底层有4个小正方体,第二层最少有2个小正方体,因此搭建这个几何体所需的小正方体个数至少是6个,故选B .7.【答案】B【解析】由三视图知圆柱体的底面圆的直径为4,所以底面圆的面积为4p ,高为6,根据体积=底面积×高知体积为24p ,故选B .【考点】三视图的数据计算体积8.【答案】C 9.【答案】C 10.【答案】A【解析】∵()222S x x x x ==主++,()21S x x x x =+=+左,∴长方体的长为2x +,宽为1x +,∴()()22132S x x x x =++=++俯.故选A .11.【答案】2【解析】该几何体是一个三棱柱,底面等边三角形边长为2 cm ,三棱柱的高为3,所以,其3=(2cm ).12.【答案】左视图【解析】设小正方体的棱长为1,则主视图的面积为5,左视图的面积为3,俯视图的面积为5,所以左视图的面积最小.13.【答案】DABC【解析】 根据在北半球,太阳光下的影子变化的规律,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.可得顺序为DABC .14.【答案】圆柱体(空心)15.【答案】431.769【解析】由主视图知正六边形最长的对角线为60 cm ,而礼盒上面每一根胶带长为正六边形的相对两边距离,所以需胶带至少为26206120431.769´+´=»(cm ).16.【答案】513【解析】通过观察想象出原几何体可能的形状,这个几何体至少需5个小立方体,最多需13个小立方体,如答图分别代表最少和最多的情况.图中的数字代表正方体的个数.17.【答案】解:如答图.18.【答案】解:如答图.19.【答案】解:如答图.20.【答案】解:(1)影子EG 如图所示;(2)∵DG AC ∥,∴G C Ð=Ð,∴Rt Rt ABC DEG △∽△,∴AB BC DE EG =,即1.6 2.416DE =,解得323DE =,∴旗杆的高度为32m 3.21.【答案】解:如图,过点C 作CE AB ^于点E ∵CD BD ^,AB BD ^,∴90EBD CDB CEB Ð=Ð=Ð=°,∴四边形CDBE 为矩形,∴21 m BD CE ==, 2 m CD BE ==,设 m AE x =,则1:1.5:21x =,解得14x =,故旗杆高14216AB AE BE =+=+=(米)22.【答案】解:如图,设墙上的影高CD 落在地面上时的长度为 m x ,树高为 m h ,∵某一时刻测得长为1 m 的竹竿影长为0.9 m ,墙上的影高CD 为1.2 m ,∴1 1.20.9x=,解得 1.08x =(m ),∴树的影长为1.08 2.7 3.78+=(m ),∴10.9 3.78h=,解得 4.2h =(m )答:树高为4.2米.23.【答案】解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R 为100 mm ,高H 为150 mm .∵每个密封罐所需钢板的面积即为该圆柱的表面积,∴222S R RHp p =+表面积2250250150p p =´+´´20000p =(2mm )则制作每个密封罐所需钢板的面积为220000 mm p .24.【答案】解:(1)底面是上底为80 mm ,下底为140 mm ,高为的等腰梯形,棱长为120 mm 的直四棱柱.(2)如图所示.(3)2601208012014012040800S =´´+´+´=侧(2mm )801402408002408002S S S +=+=+´´=+表侧底(2mm )25.【答案】解:∵AB BH ^,CD BH ^,EF BH ^,∴AB CD EF ∥∥,∴CDG ABG △∽△,∴EFH ABH △∽△,∴CD DGAB DG BD =+,∴EF FHAB FH DF BD=++.∵ 2 m CD DG EF ===,52 m DF =, 4 m FH =,∴222AB BD =+,24452AB BD =++,∴242452BD BD=+++,解得52BD =.∴22252AB =+,解得54AB =.则建筑物的高为54 m .。
国家安全教育智慧树第五章答案
国家安全教育智慧树第五章答案
第五章单元测试
1. ()安全是守护国家安全的最后防线。
A.政治
B.军事
C.经济
D.文化
正确答案:军事
2.军事安全首先是()安全。
A.军人
B.军营
C.军队
D.军纪
正确答案:军队
3.军工安全既包括军工生产安全、军工产品安全,但不包括军工秘密安全。
()
A.正确
B.错误
正确答案: B
4.军事活动安全是军队事务的动态安全,仅指战争性军事活动的安全,并不包括非战争性军事活动的安全。
()
A.正确
B.错误
正确答案: B
5.当前境外人员窃密的趋势呈现以下特点()。
A.利用重金收买、腐蚀拉拢
B.利用网络招聘、电子邮件、手机短信等隐秘渠道伺机策反
C.利用合法身份、军地协作、技术"合作'等攻击窃取。
D.利用我涉密单位管理漏洞、防护漏洞,在参与计算机网络、信息技
术服务、国防工程等时机窃取情报。
正确答案:利用重金收买、腐蚀拉拢利用网络招聘、电子邮件、手机短信等隐秘渠道伺机策反利用合法身份、军地协作、技术"合作'等攻击窃取。
利用我涉
密单位管理漏洞、防护漏洞,在参与计算机网络、信息技术服务、国防工程等时机窃取情报。
2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)
试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5
个
零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得
2023年春学期人教版七年级数学下册第五章《相交线与平行线》单元综合练附答案解析
2023年春学期七年级数学下册第五章《相交线与平行线》单元综合练一、选择题(每题3分,共30分)1.下列图形中,∠1和∠2是同位角的是()A.B.C.D.2.下列命题是真命题的是()A.内错角相等B.同一平面内,过一点有且只有一条直线与已知直线平行C.相等的角是对顶角D.同一平面内,过一点有且只有一条直线与已知直线垂直3.如图,若∠1=63°,则添加下列哪个条件后,可判定l1∥l2.()A.∠2=127°B.∠4=117°C.∠3=27°D.∠5=17°4.下面四个图案中,能由如图经过平移得到的是()A.B.C.D.5.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cmB.18cmC.20cmD.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.平面内两两相交的3条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.4B.5C.6D.以上都不对9.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3,②如果∠2=30°时,则有AC DE,③如果∠2=30°,必有∠4=45°,④如果∠2=30°,则AB⊥DE.其中正确的有()A.①②③B.②③④C.①②④D.①②③④10.下列命题是真命题的是()A.相等的角是对顶角B.在同一平面内,垂直于同一直线的两条直线平行C.内错角相等D.如果两个角的和等于平角,那么这两个角是邻补角二、填空题(每题3分,共24分)11.已知10条直线两两相交,最多会有的交点数可能是个.12.在直角三角形ABC中,∠ACB=90°,AC=6,BC=8,AB=10,则点C到AB的距离为.13.如图,直线AB、CD相交于点O,OE⊥CD,∠EOB=25°,则∠AOD=.14.“互补的两个角一定是同旁内角”是命题(填“真”或“假”).15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.一平面内,三条直线两两相交,最多有3个交点;4条直线两两相交,最多有6个交点;5条直线两两相交,最多有10个交点;8条直线两两相交,最多有个交点.17.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD =135°,则∠ABC =度.18.如图,直线GH 分别与直线AB ,CD 相交于点G ,H ,且AB ∥CD .点M 在直线AB ,CD 之间,连接GM ,HM ,射线GH 是∠AGM 的平分线,在MH 的延长线上取点N ,连接GN ,若∠N =∠BGM ,∠M =∠N +∠HGN ,则∠MHG 的度数为.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知:A C ∠=∠,B D ∠=∠,你能确定图中1∠与2∠的数量关系吗?请写出你的结论并进行证明.20.完成下列的推理说明:已知:如图,BE//CF ,BE 、CF 分别平分ABC ∠和BCD ∠.求证:AB//CD .证明:BE 、CF 分别平分ABC ∠和BCD ∠(已知)112∴∠=∠.122∠=∠()BE//CF ()12∠∠∴=()1122ABC BCD ∴∠=∠()ABC BCD ∴∠=∠(等式的性质)AB//CD ()21.(8分)如图,已知AB ∥CD ,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B .(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分∠ADC ,∠2=3∠B ,求∠1的度数.23.如图,已知AB ∥CD .直线EF 分别交直线AB 、CD 于点E 、F ,∠EFB=∠B ,FH ⊥FB .(1)求证:FH 平分∠GFD .(2)若∠B=20°,求∠DFH 的度数;24.已知:点O 为直线AB 上一点,∠1与∠2互余,DO ⊥OC ,DO 平分∠EOB ,∠E=100°.(1)2∠与DOB ∠互余吗?说明理由(2)求证:DE AB(3)直接写出2∠的度数为.参考答案一、选择题:题号12345678910答案A D B B C D A A A C 二、填空题:11.解:3条直线相交,最多有1+2=3个交点;4条直线相交,最多有1+2+3=6个交点;5条直线相交,最多有1+2+3+4=10个交点;5条直线相交,最多有1+2+3+4+5=15个交点;…∴n条直线相交,最多有个交点;∴10条直线相交,最多有个交点.故答案为:45.12.解:设点C到AB的距离为h,∵∠ACB=90°,AC=6,BC=8,AB=10,∴10h=6×8,∴h==4.8.故答案为:4.8.13.解:∵OE⊥AB,∴∠AOE=90°,∵∠BOE=25°,∴∠DOB=∠DOE﹣∠BOE=90°﹣25°=65°,∴∠AOD=180°﹣∠DOB=180°﹣65°=115°.故答案为:115°14.解:如图,∠1=∠2=90°,∵∠1+∠2=180°,∴∠1与∠2互补,但它们是一对内错角,不是同旁内角,∴“互补的两个角一定是同旁内角”是假命题,故答案为:假.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:∵由已知总结出在同一平面内,n条直线两两相交,则最多有个交点,∴8条直线两两相交,交点的个数最多为=28.故答案为:28.17.解:如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=135°,∠BAE=90°,∴∠1=45°,∠2=90°,∴∠ABC=∠1+∠2=135°.故答案为:135.18.解:过M作MF∥AB,过H作HE∥GN,如图:设∠BGM=2α,∠MHD=β,则∠N=∠BGM=2α,∴∠AGM=180°﹣2α,∵GH平分∠AGM,∴∠MGH=∠AGM=90°﹣α,∴∠BGH=∠BGM+∠MGH=90°+α,∵AB∥CD,∴MF∥AB∥CD,∴∠M=∠GMF+∠FMH=∠BGM+∠MHD=2α+β,∵∠M=∠N+∠HGN,∴2α+β=×2α+∠HGN,∴∠HGN=β﹣α,∵HE∥CN,∴∠GHE=∠HGN=β﹣α,∠EHM=∠N=2α,∴∠GHD=∠GHE+∠EHM+∠MHD=(β﹣α)+2α+β=2β+α,∵AB∥CD,∴∠BGH+∠GHD=180°,∴(90°+α)+(2β+α)=180°,∴α+β=45°,∴∠MHG =∠GHE +∠EHM =(β﹣α)+2α=α+β=45°,故答案为:45°.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.【答案】解:∠1+∠2=180°;证明:∵∠A =∠C ∴AB ∥CD ,∴∠B =∠BHC ,∵∠B =∠D ,∴∠BHC =∠D ,∴BH ∥ED ,∴∠1+∠2=180°.【解析】【分析】利用平行线的判定与性质计算求解即可。
北师大新版八年级下册《第五章过关检测题》2024年单元测试卷+答案解析
北师大新版八年级下册《第五章过关检测题》2024年单元测试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在下列式子,,,,,,中,分式有( )A. 1个B. 2个C. 3个D. 4个2.下列等式一定成立的是( )A. B. C. D.3.使代数式有意义的x的取值范围是( )A. B. C.且 D. 一切实数4.与分式的值相等的是( )A. B. C. D.5.分式中,当时,下列结论正确的是( )A. 分式的值为零B. 分式无意义C. 若时,分式的值为零D. 若时,分式的值为零6.分式方程的解为( )A. B. C. D.7.如图是数学老师给玲玲留的习题,玲玲经过计算得出的正确的结果为( )A. 1B. 2C. 3D. 48.如图,设,则有( )A. B. C. D.9.某市对一条全长12000m的公路进行绿化带改造,计划每天完成绿化带改造任务xm,当x满足的方程为时,下列对这一方程所反映的数量关系描述正确的是( )A. 实际每天比计划多完成改造任务300m,实际所用天数是计划的B. 实际每天比计划少完成改造任务300m,计划所用天数是实际的C. 实际每天比计划多完成改造任务300m,计划所用天数是实际的D. 实际每天比计划少完成改造任务300m,实际所用天数是计划的10.某顾客第一次在商店买若干个小商品花去5元;第二次再去买该小商品时,发现每一件个降价元,他第二次购买该小商品的数量是第一次的2倍,第二次共花去2元,该顾客第一次买的小商品有( )A. 5个B. 20个C. 40个D. 60个二、填空题:本题共8小题,每小题3分,共24分。
11.当时,分式无意义;当时,此分式的值为0,则______.12.若关于x的分式方程有增根,则m的值是______.13.有一个分式,两位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时的取值范围是;请你写出满足上述全部特点的一个分式:______.14.方程的解为______.15.若,且,则的值为______.16.小丽从甲地到乙地,去时路程是s千米,返回时走另外的路线,路程比去时多了10千米.小丽去时的平均速度是返回时的平均速度的两倍,所用时间比返回时少用了t小时,那么小丽返回时的平均速度是______千米/时.17.当______时,方程的解与方程的解相同.18.已知分式的值为0,则______.三、计算题:本大题共1小题,共6分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章《市场细分与目标市场》单元考试题姓名总分一、填空题。
1.市场细分是20世纪50年代中期美国著名市场营销学家提出的。
2.不进行市场细分,企业选择必定是盲目的。
3.就每一特定市场而言,只有一种最佳市场营销组合形式,这种最佳组合只能是______的结果。
4.根据顾客对产品不同属性的重视程度,可把需求偏好分为同质偏好、分散偏好和三种模式。
5.市场细分的可衡量性,表明该细分市场特征的有关数据资料必须能够加以衡量和。
6.是企业打算进入的细分市场。
7.实行无差异营销战略的企业把看作个大的目标市场。
8.采用市场战略的企业,只选择其中某一细分市场作为目标市场。
9.采用差异性市场营销战略的最大长处是可以地满足具有不同特征的顾客群的需求。
10.新产品在引人阶段可采用营销战略。
11.市场专业化是企业向不同顾客群供应产品。
12.产品的特色或个性可以从产品实体上表现出来,也可以从反映出来,还可以表现为价格水平、质量水准等。
13.避强定位市场风险较少,成功率,常常为多数企业所采用。
14.市场定位应与产品结合起来。
15、“多数谬误”是指。
1.20世纪50 2.目标市场, 3.细分 4.集群偏好5.推算 6.目标市场 7.整体市场 8.集中性9.有针对性 10.无差异 11.各种产品 12;消费者心理13.较高 14.差异化 15.企业核心优势定位 16.市场定位二、单项选择题。
1.同一细分市场的顾客需求具有 B 。
A.绝对的共同性B.较多的共同性C.较少的共同性D.较多的差异性2.“市场同合化”的理论,主张从 A 的比较出发适度细分市场。
A.成本和收益B.需求的差异性和一致性C.利润和市场占有率D.企业自身与竞争者资源条件3. C 差异的存在是市场细分的客观依据.价格B .产品A.细分D.需求偏好C.某工程机械公司专门向建筑业用户供应推土机、打桩机、起重机、水泥搅拌4 策略。
B 机等建筑工程中所需要的机械设备,这是一种.市场专业化B A.市场集中化D.产品专业化C.全面市场覆盖5.依据目前的资源状况能否通过适当的营销组合去占领目标市场,即企业原则。
所选择的目标市场是否易于进入,这是市场细分的 B.实效性BA.可衡量性D.反应差异C.可进入性的模式的企业应具有较强的资源和营销实力。
D 6.采用B.市场专业化A.市场集中化D.市场全面覆盖C.产品专业化。
7.采用无差异性营销战略的最大优点是 BB.成本的经济性A.市场占有率高.需求满足程度高DC .市场适应性强。
D 8.集中性市场战略尤其适合于.大型企业BA.跨国公司.小型企业D,中型企业 C 。
C 9.同质性较高的产品,宜采用.市场专业化BA.产品专业化.差异性营销DC.无差异营销在细分市场的位置。
.市场定位是10 B.塑造一种产品B.塑造一家企业 A D.分析竞争对手, C .确定目标市场是实现市场定位目标的一种手段。
A 11.B.市场集中化A.产品差异化D.无差异营销C.市场细分化是产品差别化战略经常使用的手段, D 12.寻求.良好服务B.价格优势 A D.产品特征C.人才优势定位。
D 13.重新定位,是对销路少、市场反应差的产品进行B.对抗性A.避强D.二次C.竞争性的差异对市场进行的划分。
14.市场细分化是根据 A.卖方BA.买方.中间商D C.产品15、按消费者所在国籍进行市场细分属于(B)A、地理细分B、人口细分C、心理细分D、行为细分16、对于同质产品或需求上共性较大的产品,一般应实行(C )A、集中性市场营销B、差异性市场营销C、无差异性市场营销D、维持性市场营销17、按消费数量来细分市场属于(D )A、地理细分B、人口细分C、心理细分D、行为细分18、对于成熟期的产品,企业宜采用( B )A、集中性市场营销B、差异性市场营销C、无差异性市场营销D、大量市场营销19、企业在细分市场的基础上,对不同的子市场提供不同的市场营销组合属于(B )A、集中性市场营销B、差异性市场营销C、无差异性市场营销D、大量市场营销20、按照消费者购买或使用某种产品的时机、使用者的情况及所追求的利益不同来细分市场称为( D )A、地理细分B、人口细分C、心理细分D、行为细分21、企业准备为之提供产品和服务的顾客群构成企业的( D )A、市场机会B、营销机会C、生产者市场D、目标市场22、按照消费者收入进行细分属于(B )A、地理细分B、人口细分C、心理细分D、行为细分23、企业为了使自己生产或销售的产品获得稳定的销路,要从各个方面为产品培养一定的特色,树立一定的市场形象,以求在顾客心目中形成一种特殊的偏好。
这就是(D )A、市场细分B、营销组合C、目标市场选择D、市场定位24、下列不属于市场细分有效标志的是(D )A、可衡量性B、可进入性C、实效性D、可持续性25、某服装制造商为“朴素妇女”、“时髦妇女”、“有男子气的妇女”等分别设计和生产妇女服装。
其细分市场的依据是( D )A、教育水平B、性别C、消费者所追求的利益D、生活方式26、麦当劳集中力量开拓快餐市场,占有了较大的市场份额,这种目标市场涵盖战略的主要不足是( B )A、细分市场范围小B、潜伏的风险大C、企业资源有限D、成本费用高27、处于介绍期或成长期的新产品最好实行( A )都对、AC、集中市场营销DA、无差异市场营销B、差异市场营销C)、那种方法会引起生产成本和营销费用的增加(B28都对AC D、C、无差异市场营销B、差异市场营销、集中市场营销A)D 29、关于市场细分错误的说法是(、有利于提高企业市场占有率B 有利于企业发现最好的市场机会A、、使企业的营销费用减少DC、使企业的营销费用增加)细B 30、根据消费者为了保持牙齿洁白的愿望,企业推出洁银牙膏,是(分的结果。
、品牌的忠诚度DC、产品的使用率、使用者情况B、购买动机A)A 31、某些消费者连续购买某品牌产品,该类消费者对该品牌来说是(、不一定DC、转移的忠诚者铁杆品牌忠诚者B、几种品牌忠诚者A、、我国不少公司在春节、元宵节、中秋节等传统节日期间大做广告主要是32)细分的结果。
D (、时机、心理D人口B、地理位置CA、)往往发生在(A 、“多数谬误”33、分散市场营销、集中市场营销DB、差异市场营销CA、无差异市场营销、企业选择靠近现有竞争者或与现有竞争者重合的市场位置,争夺同一个顾34)C 客群体,彼此在产品、价格、分销及促销各个方面差别不大的定位方法是(、避强定位D、迎关定位B、重新定位C、寻找市场定位A)、消费者市场细分的依据有(1 ADEA、地理变量B、最终用户C、顾客规模D、人口变量E、心理变量2、心理细分的依据有(CD )A、消费者追求的利益B、使用者情况C、生活方式D、个性E、产品使用率3、市场细分有效的标志是(BCDE )A、可持续性B、可进入性C、可衡量性D、实效性E、反应差异4、消费者对某企业的产品的态度有(ABCDE )A、热爱B肯定C、否定D、反对E、不感兴趣5、目标市场营销的全过程包括的主要步骤有(BCD )A、市场调查B、市场细分C、目标市场选择D、市场定位E、市场预测6、按消费者对新产品品牌的忠诚程度,可将消费者分为(BCDE )A、名牌品牌忠诚者B、几种品牌忠诚者C、铁杆品牌忠诚者D、转移品牌忠诚者E、非品牌忠诚者7、企业选择目标市场战略时应该考虑的因素有(ABCDE )A、企业的资源B、产品的同质性C、市场的同质性D、产品的生命周期阶段E、竞争对手的战略8、人口细分的依据有(ABC )A、年龄B、性别C、收入D、生活方式E、个性9、市场定位的方法有(ABCD )A、寻找市场定位B、重新定位C、迎头定位D、避强定位10、市场定位的依据主要包括(ABCDE )A、产品特色B、顾客利益C、使用者定位D、价格定位E、竞争定位11、市场定位战略包括(ABCD )。
A、产品-市场集中化B、产品专业化C、市场专业化D、选择性专业化E、全面涵盖12、企业在市场定位过程中(ABC )。
A、要了解竞争产品的市场定位B、要研究目标顾客对该产品各种属性的重视程度C、要选定本企业产品的特色和独特形象D、要避开竞争者的市场定位E、要充分强调本企业产品的质量优势13.无差异营销战略(ABD )。
A.具有成本的经济性B.不进行市场细分C.适宜于绝大多数产品D.只强调需求共性E.适用于小企业14. 地理细分变量有:(ABCD )A. 地形B. 气候C. 城乡D. 交通运输E. 经济15. 除了对某些同质商品外,消费者的需求总是各不相同的,这是由消费者的(ABCDE )差异所决定的。
A. 个性B. 年龄C. 地理位置D. 文化背景E. 购买行为16 面对整个市场的目标市场策略有(AB )。
A. 无差异性营销策略B. 差异性营销策略C. 集中性营销策略D. 市场渗透E. 一体化增长17. 若强大的竞争对手采用的是无差异性营销策略,企业要想打进市场,一般应采用(BD )。
A. 大量市场营销B. 集中性市场营销C. 无差异性营销策略D. 差异性营销策略E. 目标市场营销18. 实行差异性营销策略的优点是(ABDE )A. 降低经营风险B. 有利于提高企业的市场占有率C. 经营成本低D. 能更好地满足市场深层次的需求E. 增强消费者对企业的信任感19. 可作为国内某钢铁企业的市场细分依据的是(ABC )收入水平 E. C. 地理位置 D. 心理因素A. 最终用户 B. 用户规模判断题(判断下列各题是否正确。
正确的在题后的括号内打“√'';错误的打四、“X”。
) 1.市场细分对中小企业尤为重要。
(√) 2.市场细分标准中的有些因素相对稳定,多数则处于动态变化中。
(√) 3.通过市场细分化过程,细分出的每一个细分市场,对企业市场营销都有重要的意义。
(X ) 4.市场专业化是一种最简单的.目标市场模式. (X ) 5.同质性产品适合于采用集中性市场营销战略。
(X ) 6.集中性市场战略适合于资源薄弱的小企业。
(√) 7.与产品生命周期阶段相适应,新产品在引入阶段可采用无差异性营销战略。
(√) 8.市场定位与产品差异化无关。
(X ) 9.企业采用服务差别化的市场定位战略,就可以不再追求技术和质量的提高。
( X )10.企业在市场营销方面的核心能力与优势,会自动地在市场得到表现。
(X ) 五、简答题。
、简述细分市场七步法?1.2、简述市场定位的步骤及影响定位的因素有哪些?、简述目标市场营销策略应考虑哪些因素?34、企业重新定位的条件及应该考虑的因素有那些?六、案例分析题。
1、尿布大王—尼西奇日本尼西奇起初是一个生产雨衣、尿布、游泳帽、卫生带等多种橡胶制品的小厂,由于订货不足,面临破产。
总经理多川博在一个偶然的机会,从一份人口普查表中发现,日本每年约出生25O 万个婴儿,如果每个婴儿用两条尿布,一年需要500万条。