Asymptotic Waveform Evaluation(AWE) Technique for Frequency Domain Electromagnetic Analysis

合集下载

基于预处理AWE技术的三维导体目标宽带RCS的快速计算

基于预处理AWE技术的三维导体目标宽带RCS的快速计算

基于预处理AWE技术的三维导体目标宽带RCS的快速计算夏灿;赵克明;孙玉发【摘要】摘要应用渐近波形估计技术计算目标宽带雷达散射截面,可有效提高计算效率.然而当目标为电大尺寸时,阻抗矩阵求逆运算将十分耗时,甚至无法计算.本文使用Krylov子空间迭代法取代矩阵逆来求解大型矩阵方程,并应用双门槛不完全LU 分解预处理技术降低迭代求解所需的迭代次数.数值计算表明:本文结果与矩量法逐点求解结果吻合良好,且计算效率大大提高.%The computational efficiency of the radar cross section (RCS) of an arbitrarily shaped three-dimensional perfect electric conductor over a wide frequency band will be improved obviously, when the asymptotic waveform evaluation (AWE) technique is used. However, the calculation of matrix inversion is very expensive when the objects are electrically large. In this paper, Krylov subspace iterative methods are used to solve the matrix equation obtained from electric field integral equation instead of matrix inversion. The dual threshold incomplete LU factorization preconditioner is adopted to improve the convergence behavior of the Krylov subspace iterative methods. The numerical computation shows that the results in this paper are in good agreement with the results obtained by the method of moments at each frequency, and the computational efficiency is improved greatly.【期刊名称】《安徽师范大学学报(自然科学版)》【年(卷),期】2012(035)004【总页数】5页(P340-343,350)【关键词】渐近波形估计;矩量法;不完全LU预处理;雷达散射截面【作者】夏灿;赵克明;孙玉发【作者单位】马鞍山师范高等专科学校,安徽马鞍山 243000;安徽大学电子信息工程学院,安徽合肥 230039;安徽大学电子信息工程学院,安徽合肥 230039【正文语种】中文【中图分类】O441预估目标宽带雷达散射截面(RCS)具有重要的现实意义,如合成孔径雷达成像和反隐身都需要宽带RCS信息.应用传统矩量法[1]求解宽带RCS时需在频带内进行逐点重复计算.渐近波形估计(AWE)[2-3]技术的引入有效地解决了此问题,该技术先通过矩量法计算某一展开频率点上的表面等效电流密度,然后通过Padé逼近近似求出给定频带内任意频率点的表面等效电流密度分布,进而获得宽带RCS,无需进行逐点计算,整个过程只需一次求逆运算,因而极大地提高了计算效率.然而当目标为电大尺寸时,阻抗矩阵的维数十分庞大,此时直接利用高斯消去法求其逆将十分耗时且占用大量内存,计算复杂度为O(N3),N为未知变量数,因此直接求逆已不可取.Krylov子空间迭代法[4],如CG、BICG、BICGSTAB、GMRES、QMR已被广泛应用于大型稀疏矩阵方程的求解.然而矩量法产生的大型矩阵方程大都为病态的,因此需要做预处理,以便降低迭代法求解所需要的迭代次数.一些预处理技术已被不同学者应用于电磁学领域,如SSOR、近场预处理、稀疏近似逆等[5-7].这些预处理方法各有优缺点.本文采用一种高效的双门槛不完全LU(ILUT)[4,8,9]分解预处理技术对理想导体平板、导体立方体以及导体球的宽带RCS进行了计算,并讨论了双门槛不完全LU预处理与BICG、BICGSTAB、CGS三种迭代法结合的效率问题.数值计算结果表明:Krylov子空间迭代法和双门槛不完全LU预处理技术的使用可以大大提高电大目标宽带RCS的计算效率.1 理论1.1 电场积分方程考虑三维理想导体散射情况,在入射场Ei的照射下,理想导体表面S将产生等效电流J,进而产生散射场Es,根据理想导体表面切向电场为零的边界条件,可建立如下方程[Ei(r)+Es(r)]|tan=0, r∈S(1)表面S上的等效电流可用RWG[10]基函数{fn(r)}来展开,采用伽略金法可将方程(1)转化为如下矩阵方程Z(k)I(k)=V(k)(2)式中阻抗矩阵元素Zmn和激励向量元素Vm的计算公式如下▽gfm(r)▽(3)▯Ei(r)ds(4)式中为自由空间波数,为自由空间波阻抗,R为场点与源点之间的距离.当场点与源点重合时会产生奇异,式(3)的计算需做特殊处理[11],场点与源点不重合时式(3)采用高斯积分法计算.1.2 渐近波形估计技术求解式(2)每次只能计算一个频率点上的导体表面等效电流,为了得到给定频带内的导体表面等效电流分布,就必须以一定的频率间隔重复求解式(2).AWE技术是通过将I(k)展开成k0的泰勒级数得到频带内的等效电流分布,即(5)展开系数的计算公式为m0=Z-1(k0)V(k0)(6)(7)式(7)中Z(i)表示Z(k)的i阶导数,V(n)表示V(k)的n阶导数.然而利用泰勒级数展开时,其精度受收敛范围的限制,为了扩大收敛范围,可通过Padé逼近将I(k)展开成有理函数,即(8)对于给定的L+M,当L=M或L=M+1时,(8)式能最好地逼近(5)式,本文取L=4,M=3.展开系数ai,bj的具体计算可参考文献[3],求出后再代回(8)式,便可得到频带内任意频率点导体表面等效电流,整个过程只需一次求逆,因而极大地提高了宽频带RCS的计算效率.1.3 不完全LU分解预处理虽然AWE技术只需一次求逆运算,然而当目标为电大尺寸时,阻抗矩阵Z为大型复矩阵,直接求逆将十分耗时,也会占用大量内存,显然不可取.采用迭代法求解虽然可以降低计算复杂度,但是当矩阵病态严重时,需要大量迭代步数后才能收敛,甚至会出现发散情况,因此构造出一个高效的预处理矩阵P对阻抗矩阵进行预处理显得尤为重要.为了能够使用迭代法求解,可将式(6)和式(7)改写为Z(k0)m0=V(k0)(9)(10)将预处理矩阵P的逆作用于式(9)和式(10)可得P-1Z(k0)m0=P-1V(k0)(11)(12)此时利用Krylov子空间迭代法求解式(11)和式(12)时将会很快收敛.本文预处理矩阵P的构造采用了ILUT算法,由于该算法在实施过程中加入了两个门槛参数τ和p,其中τ用于控制计算量,p用于控制存储量(具体内容可参考文献[8]),因此通过对它们进行合理设置,可高效地对某一矩阵进行不完全分解.本文需不完全LU分解的矩阵为稀疏化处理后的阻抗矩阵,计为Zs,稀疏策略为事先规定一个参数ε,Zs中的元素可根据下式确定(13)其中Rmn表示场点与源点之间的距离,表示波长.获得Zs后,便可根据ILUT算法得出所需要的预处理矩阵P.式(13)是根据阻抗矩阵的谱特性[7]主要由场源之间近相互作用决定这一性质得到的.可以通过控制ε的大小来得到不同稀疏化程度的Zs.为了加快不完全LU分解的速度,Zs以及ILUT均采用了稀疏存储和计算策略.观察式(9)和式(10),系数矩阵均为Z(k0),因此整个过程只需一次不完全LU分解运算,提高了预处理矩阵P的利用率.因此ILUT预处理技术与AWE技术能够很好地结合,极大地提高了电大尺寸目标宽带RCS的计算效率.2 数值计算与结果为了验证本文方法的有效性,首先计算了尺寸为4cm×4cm的理想导体平板的宽带RCS,未知变量数为4720,入射平面波沿θi=90°,φi=0°方向入射,计算带宽为22-38GHz,展开频率点为26GHz、34GHz,计算结果如图1(a)所示,由图可见预处理AWE的计算结果与预处理MOM的计算结果吻合良好.MOM计算频率间隔为1GHz,AWE为0.1GHz,下面算例的频率间隔采用同样方式.图1(b)给出了展开频率为26GHz时的式(9)在未使用预处理以及使用预处理情况下BICGSTAB迭代解的收敛情况.由图可见使用ILUT预处理后迭代次数大大降低.本文所有图示中MOM、AWE、BICGSTAB等前加P表示含有预处理,未加P则无预处理,且MOM和AWE中的矩阵方程均采用迭代法求解.(a)理想导体平板的宽带RCS (b)收敛特性对比图1然后对尺寸为2cm×2cm×2cm理想导体立方体的宽带RCS进行了计算.未知变量数为4050,入射平面波沿θi=0°,φi=0°方向入射,带宽为10-30GHz,展开频率点为20GHz,计算结果如图2 (a)所示,由图可见预处理AWE的计算结果与预处理MOM的计算结果吻合良好.同样对式(9)在无预处理以及预处理条件下的收敛特性进行了比较,如图2(b)所示.(a) 理想导体立方体的宽带RCS (b) 收敛特性对比图2最后考虑半径为0.8cm的理想导体球.未知变量数为3000,入射平面波沿θi=0°,φi=0°方向入射,带宽为10-34GHz,取三个频率展开点分别为13GHz、22GHz、30GHz.计算结果如图3(a)所示,由图可见本文方法得到的结果与MIE解析解吻合良好.本文对不同迭代法与ILUT预处理相结合的计算效率进行了对比,算例3中分别采用BICG、BICGSTAB以及CGS迭代法,预处理后收敛情况如图3(b)所示,由图可见,BICGSTAB效果最好,CGS其次,而BICG则相对较差.导体平板以及导体立方体的情况也与导体球情况类似.(a) 理想导体球宽带RCS (b) 收敛特性对比图3构造预处理矩阵P时,需对三个参数进行合理设置,即Zs的稀疏程度控制参数以及ILUT算法的两个门槛参数τ和p.以上三个算例的具体参数设置如表1所示.不同方法计算算例1宽带RCS所用的CPU时间如表2所示.由表2可见矩阵方程求解方法中使用求逆法非常耗时,然而使用BICGSTAB进行迭代求解时所需时间大大降低.当BICGSTAB与预处理器结合使用时CPU时间将进一步降低,显示出本文方法的高效性.表1 不同算例下的参数组合算例ετp理想导体平板0.20.000140理想导体立方体0.20.000140理想导体球0.140.000150表2 CPU时间比较算法矩阵方程求解方法ILUT预处理CPU时间(s)MOM矩阵求逆BICGSTAB无223436.5无8105.95有1775.56AWE矩阵求逆BICGSSTAB无11387.25无6481.92有1475.353 结论本文将ILUT预处理技术与AWE技术结合,并利用Krylov子空间迭代法对预处理后的大型矩阵方程进行迭代求解,同时利用阻抗矩阵及其各阶导数矩阵的对称性,只对每个矩阵的上三角元素进行计算与存储来降低内存需求.计算结果表明:BICGSTAB迭代法和ILUT预处理技术的使用可以实现电大尺寸理想导体目标宽带RCS的快速计算.参考文献:[1] HARRINGTON R F. Field computation by moment method[M]. New York: Macmillan, 1968.[2] REDDY C J, DESHPANDE M D, COCKRELL C R, BECK F B. Fast RCScomputation over a frequency band using method of moments in conjunction with asymptotic waveform evaluation technique[J]. IEEE Trans Antennas Propagat, 1998,46(8):1229-1233.[3] 孙玉发,徐善驾.应用渐近波形估计技术快速计算宽带雷达散射截面[J].红外与毫米波学报,2002,21(6):469-472.[4] SAAD Y. Iterative methods for sparse linear systems[M]. Boston: PWS Pub Co, 1996.[5] PING X W, CHEN R S, TSANG K F, EDWARD K N Yung. The SSOR-preconditioned inner outer flexible GMRES method for FEM analysis of EM problems[J]. Microwave Optic Technology Letter, 2008,48(9):1708-1712. [6] 牛臻弋,徐金平.求解复杂天线辐射问题的近场预条件技术[J].电波科学学报,2006,21(4):541-547.[7] G Alléon, M Benzi, and L Giraud. Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics[J]. Numerical Algorithm,1997,16(1):1-15.[8] JEONGHWA Lee, JUN Zhang, Cai-Cheng Lu. Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems[J]. Journal of Computational Physics, 2003,185:158-175.[9] 吴建平,王正华,李晓梅.稀疏线性方程组的高效求解与并行计算[M].长沙:湖南科学技术出版社,2004.[10] RAO S M, WILTON D R, GLISSON A W. Electromagnetic scattering by surfaces of arbitrary shape[J]. IEEE Trans Antennas Propagat,1982,30(3):409-418.[11] PASI Yl-Oijala, MATTI Taskinen. Calculation of CFIE impedance matrix elements with RWG and n x RWG functions[J]. IEEE Trans. Antennas Propagat, 2003,51(8):1837-1846.。

电路原理及电工学常用专业英文词汇

电路原理及电工学常用专业英文词汇

电路原理及电⼯学常⽤专业英⽂词汇电路原理专业词汇表Glossary of “Principles of Electric Circuits”Chapter 1 Elements and Laws of Electrical Circuits 电路electrical circuit电流current电荷electric charge电压voltage电位potential电位差potential difference电动势electromotive force功率power能量energy电阻resistor / resistance电导conductor / conductance电感inductor / inductance电容capacitor / capacitance欧姆定律Ohm’s Law⼴义欧姆定律generalized Ohm’s Law参考⽅向reference direction电压极性voltage polarity正极positive polarity负极negative polarity理想独⽴电压源ideal independent voltage source理想独⽴电流源ideal independent current source理想受控源ideal dependent / controlled source压控电压源voltage controlled voltage source(VCVS)压控电流源voltage controlled current source(VCCS)流控电压源current controlled voltage source(CCVS)流控电流源current controlled current source(CCCS)节点node⽀路branch回路loop基尔霍夫定律Kirchhoff’s Law基尔霍夫电流定律Kirchhoff’s Current Law(KCL)基尔霍夫电压定律Kirchhoff’s Voltage Law(KVL)闭合⾯closed boundary集总参数lumped parameter集总参数电路lumped circuit集总参数元件lumped element分布参数distributed parameter分布参数电路distributed circuit直流direct current(DC)交流alternating current(AC)有源器件active element⽆源器件passive element⽆损电路lossless circuitChapter 2 Analysis methods to simple resistor circuits串联series connection分压voltage division并联parallel connection分流current division等效电阻equivalent resistanceY-Δ变换Wye-Delta transformation⼊端电阻input resistanceChapter 3 Methods of Analysis⽀路电流法method of branch current节点法Nodal Analysis回路电流法loop current method⽹孔电流法mesh current method外⽹孔outer mesh⾃导纳self-admittance互导纳mutual-admittance矩阵matrix⾏row列column参考节点reference node平⾯电路planar circuit⽅程equation消去法elimination technique克莱姆法则Cr amer’s rule代⼊法substitution method运算放⼤器operational amplifier(op amp)同向输⼊端noninverting input反向输⼊端inverting input输出端output等效电路模型equivalent circuit model开环放⼤倍数open-loop gain闭环放⼤倍数closed-loop gain⼊端电阻input resistance输出电阻output resistance线性⼯作区linear region正向饱和区positive saturation反向饱和区negative saturation同向放⼤noninverting amplifier反向放⼤inverting amplifier加法器summing amplifier积分器integrator微分器differentiator⾃激振荡self-sustained oscillation Chapter 4 Circuit Theorems叠加原理superposition principle输⼊/激励input / excitation输出/响应output / response线性电路linear circuit代数和algebraic sum替代定理substitution principle戴维南定理Thevenin’s Theorem诺顿定理Norton’s Theorem⼆端⽹络two-terminal circuit开路电压open-circuit voltage短路电流short-circuit current特勒根定理Tellegen Theorem功率平衡定理Power-balancing Theorem互易定理reciprocal theorem对偶原理principle of duality对偶元件dual element对偶图dual graphChapter 5 Nonlinear Circuit⾮线性电路nonlinear circuit⾮线性元件nonlinear element压控电阻voltage-controlled resistor流控电阻current-controlled resistor静态电阻static resistance动态电阻dynamic resistance⼩信号分析small-signal analysis⼩信号模型small-signal modal分段线性化法piece-wise linear mthod数值解法numerical analysisChapter 6 First-order Circuit⼀阶电路first-order circuit⼀阶微分⽅程first-order differential equation 过渡过程transient process线性时不变电路linear time-invariable circuit 单位阶跃函数unit step function 单位脉冲函数unit pulse function单位斜坡函数unit ramp function起始条件initial condition起始值initial value零输⼊响应zero-input response零状态响应zero-state response稳态响应steady-state response暂态响应transient response时间常数time constant指数函数exponential function阶跃响应step response冲激响应impulse response⾃由响应natural response强迫响应forced response全响应complete response稳态值final value卷积积分convolution integration时域延迟time delay换路switching跳变现象jump phenomenon脉冲持续时间pulse duration脉冲重复周期repeating period of pulseChapter 7 Second-order Circuit⼆阶电路second-order circuit齐次微分⽅程homogeneous differential equation常系数微分⽅程constant coefficients equation特征⽅程characteristic equation特征根characteristic root特征值eigenvalue特征向量eigenvector特解particular solution通解general solution⾃然频率natural frequency衰减系数damping factor谐振⾓频率resonant frequency / undamped natural frequency 过阻尼情况overdamped case ⽋阻尼情况underdamped case临界情况critically damped case固有振荡⾓频率damping frequency / damped natural frequency 衰减振荡damped oscillation ⽆损lossless正弦响应sinusoidal response波形waveform实数real复数complex衰减attenuationChapter 8 Sinusoidal Steady-State Analysis 幅值amplitude / magnitude相位phase相位差phase difference⾓频率angular frequency周期period频率cyclic frequency正弦sinusoidal余弦cosine初相⾓initial phase angle瞬时值instantaneous value最⼤值maximum有效值effective valueroot-mean-square valueu 领先i φu leads i by φu 落后i φu lags i by φ同相in phase反相opposite in phase实部real part虚部imaginary part直⾓坐标形式rectangular form极坐标形式polar form指数形式exponential form相量phasor参考相量reference phasor电压三⾓形voltage triangle瞬时功率instantaneous power平均功率average power阻抗impedance导纳admittance电抗reactance电纳susceptance感性inductive容性capacitive正弦稳态响应sinusoidal steady-state response时域time-domain相量域phasor-domain视在功率apparent power功率因数power factor (pf)复功率complex power功率三⾓形power triangle复共轭complex conjugate有功功率active power⽆功功率reactive power最⼤功率传输定理Maximum Power Transfer Theorem功率守恒定理Theorem of conservation of power阻抗匹配impedance matching共轭匹配conjugate matchingChapter 9 Magnetically Coupled Circuits 耦合couple互感mutual inductance⾃感self-inductance磁通magnetic flux互感电压mutual / induced voltage线圈coil铁⼼线圈coil with iron core匝数turn耦合系数coupling coefficient变压器transformer空⼼变压器air-core transformer原边primary coils / windings副边secondary coils / windings引⼊阻抗reflected impendence理想变压器ideal transformer全耦合变压器unity-coupled transformer 变⽐turns ratio / transformation ratio⾃耦合变压器auto-transformer多绕组变压器multiple-winding transformer 右螺旋定则right-handed screw rule 同名端dotted terminalterminals of same magnetic polarity 漏感leakage inductanceChapter 10 Resonance串联谐振series resonance并联谐振parallel resonance谐振频率resonant frequency特性阻抗characteristic impedance品质因数quality factor频率响应frequency response选择性selectivity选频特性frequency-selection characteristic Chapter 11 Frequency Response复频率complex frequency⽹络函数network function转移函数transfer function多项式polynomial极点pole零点zero波特图Bode plot分贝decibel增益gain对数logarithm半对数semilog转折频率corner / break frequency截⽌频率cut-off frequency带宽bandwidth⽆源滤波器passive filter有源滤波器active filter低通滤波器low-pass filter⾼通滤波器high-pass filter带通滤波器band-pass filter带阻滤波器band-stop / band-reject / notch filter Chapter 12 Three-phase Circuits 对称三相电源balanced three-phase sources 对称三相电路symmetrical three-phase circuit中线neutral line中性点neutral point三相四线制three-phase four-wire system相电压phase voltage线电压line voltage相序phase sequence正序positive / abc sequence负序negative / acb sequence相电流phase current线电流line currentChapter 13 Steady-State Response of Periodic Excitation周期性⾮正弦激励nonsinusoidal periodic excitation三⾓形式的付⾥叶级数trigonometric Fourier series指数形式的付⾥叶级数exponential Fourier series付⾥叶系数Fourier coefficient基波fundamental harmonic基波频率fundamental frequency谐波harmonic wave⾼次谐波higher harmonic频谱frequency spectrum谱线spectrum line线状频谱line spectrum奇次odd偶次even奇对称odd symmetry偶对称even symmetry半波对称half-wave symmetry帕斯⽡尔定理Parseval’s theoremChapter 14 Fourier Transformation and Laplace Transformation付⾥叶变换Fourier transformation拉普拉斯变换Laplace transformation原函数original function象函数transform function积分变换integral transformation频域frequency domain幅度谱amplitude spectrum相位谱phase spectrum矩形脉冲rectangular pulse线性性质linearity时域微分time differentiation时域积分time integration时域平移time shift频域平移frequency shift拉普拉斯反变换inverse Laplace transformation 拉普拉斯变换对Laplace pairs Chapter 15 Two-port Networks端⼝port⼆端⼝⽹络two-port network四端⽹络four-terminal network / quadripole Z参数impedance parametersY参数admittance parametersH参数Hybrid parametersT参数Transmission parameters策动点driving point(⼆端⼝)级联cascade connection传播常数transmission constantChapter 16 Basis of Network Graph Theory 图graph拓扑图topological graph⼦图subgraph连通图connected graph有向图oriented graph树tree树⽀tree branch连⽀link割集cut set降阶关联矩阵reduced incidence matrix增⼴矩阵augmented matrix基本回路矩阵fundamental loop matrix基本割集矩阵fundamental cut set matrix单位阵unit matrix转置阵transposed matrix正定矩阵positive definite matrix⾮奇异矩阵nonsingular matrix逆矩阵inverse matrix⽅阵square matrix零矩阵zero matrix⾏列式determinantChapter 17 State Variables Approach 状态变量state variable状态⽅程state equation状态空间state space列向量column vector特征值characteristic value特征向量characteristic vector特征⽅程characteristic equation相似矩阵similar matrixChapter 18 Nonlinear Dynamic Circuits ⾮线性时变电路nonlinear time-varying circuit⾃治电路⾮⾃治电路前向欧拉法forward Eular’s method后向欧拉法backward Eular’s method相平⾯状态平⾯state planar相轨线中⼼点焦点节点平衡点稳定性stability渐近稳定asymptotic stabilityChapter 19 Distributed Circuits分布参数电路distributed circuit传输线transmission line均匀传输线uniform transmission line 反射reflection透射transmission波长wave length波速wave speed⾏波traveling wave驻波standing wave正向⾏波direct wave反向⾏波returning wave波阻抗wave impedance波前wave front传播常数propagation constant Appendix Magnetic Circuit磁路magnetic circuit铁磁物质ferromagnetic substance磁导率magnetic permeability磁感应强度magnetic induction磁通magnetic flux磁链magnetic linkage磁通势magnetomotive force磁通密度magnetic flux density磁通连续性定理principle of continuity of magnetic flux 磁场强度magnetic flux intensity 磁阻reluctance磁导permeance安培环路定理principle of Ampere loop circuit磁化曲线magnetization curve磁滞回线hysteresis loop磁滞hysteresis涡流eddy current涡流损失eddy current loss集肤效应skin effect漏磁通leakage flux磁饱和magnetic saturation电磁感应定律law of electromagnetic induction励磁电流exciting current《电⼯学上》中英名词对照表⼀阶电路first-order circuitV形曲线V curve三相电路three-phase circuit三相功率three-phase power三相三线制three-phase three-wire system三相四线制three-phase four-wire system三相变压器three-phase transformer三⾓形联接trianular connection三⾓波triangular wave三相异步电动机three-phase induction motor ⽀路branch⽀路电流法branch current method中性点neutral point中性线neutral conductor中央处理器centre processing unit(CPU)互感mutual inductance 介电常数permittivity of the dielectric⽡特Watt功率表powermeter⽆功功率reactive power韦伯Weber反电动势counter emf反相opposite in phase反馈控制feedback control⽅框图block diagram开路open circuit开关switch⽔轮发电机water-wheel generator功work功率power功率因数power factor功率三⾓形power triangle功率⾓power angle电能electric energy 电荷electric charge电场electric field电场强度electric field intensity电位electric potential电位差electric potential difference 电位升potential rise 电位降potential drop电位计potentiometer电压voltage电压三⾓形voltage triangle电动势electromotive force(emf)电源source电压源voltage source电流源current source电路circuit电路分析circuit analysis电路元件circuit element电路模型circuit model电流current电流密度current density电流互感器current transformer电阻resistance电阻器resistor电阻性电路resistive circuit电阻率resistivity电导conductance电导率conductivity电容capacitance电容器capacitor电容性电路capacitive circuit电感inductance电感器inductor电感性电路inductive circuit电桥bridge电机electric machine电磁转矩electromagnetic torque电⾓度electrical degree电枢armature电枢反应armature reaction电⼯测量electrical measurement电磁式仪表electromagnetic instrument电动式仪表electrodynamic instrument平均值average value平均功率average power正极positive pole正⽅向positive direction正弦量sinusoid正弦电流sinusoidal current结点node结点电压法node voltage method对称三相电路symmetrical three-phase circuit 主磁通main flux外特性external characteristic发送机transmitter他励发电机separately excited generator可编程控制器programmable controller(PLC)安培Ampere电流表currenter安匝ampere-turns伏特V olt电压表valeage伏安特性曲线volt-ampere characteristic有效值effective value有功功率active power交流电路alternating current circuit (a-ccircuit) 交流电机alternating-current machine ⾃感self-inductance⾃感电动势self-induced emf⾃耦变压器autotransformer⾃励发电机self-excited generator⾃整⾓机selsyns ⾃动控制automatic control⾃动调节automatic regulation⾃锁self-locking负极negative pole负载load负载线load line负反馈negative feedback动态电阻dynamic resistance并联parallel connection并联谐振parallel resonance并励发电机shunt d-c generator并励电动机shunt d-c motor并励绕组shunt field vending同步发电机synchronous generator同步电动机synchronous motor同步转速synchronous speed同相in phase机械特性torque-speed characteristic过励overexcitation执⾏元件servo-unit传递函数transfer function传感器transducer闭环控制closed loop control回路loop⽹络network导体conductor导纳admittance阶跃电压step voltage全电流定律law of total current全响应complete response麦克斯韦Maxwell基尔霍失电流定律Kirchhof f’s current law (KCL)基尔霍失电压定律Kirchhof’s voltage law(KVL)库仑Coulomb 亨利Henry⾓频率angular frequency串联series connection串联谐振series resonance串励绕组series field winding阻抗impedance阻抗三⾓形impedance triangle阻转矩counter torque初相位initial phase时间常数time constant时域分析time domain analysis时间继电器time-delay relay励磁电流exciting current励磁机exciter励磁绕组field winding励磁电流exciting current励磁变阻器field rheostat两相异步电动机two-phase induction motor 两功率表法two-powermeter method 伺服电动机servomotor步进电动机stepping motor步距⾓stepangle汽轮发电机turboalternator直流电路direct current circuit (d-c cir-cuit) 直流电机direct-current machine法拉Farad空载no-load空载特性open-circuit characteristic空⽓隙air gap⾮线性电阻nonlinear resistance⾮正弦周期电流nonsinusoidal periodic受控电源controlled source变压器transformer变⽐ration of transformation变阻器rheostat线电压line voltage线电流line current线圈coil线性电阻linear resistance 周期period参考电位reference potential参数parameter视在功率apparent power定⼦stator转⼦rotor转⼦电流rotor current转差率slip转速speed转矩torque组合开关switchgroup制动braking单相异步电动机single-phase induction motor 相phase 相电压phase voltage相电流phase current相位差phase difference相位⾓phase angle相序phase sequence相量phasor相量图phasor diagram响应response星形联接star connection复数complex number阻抗impedance导纳admittance复励发电机compound d-c generator欧姆Ohm欧姆定律Ohm's law等效电路equivalent circuit品质因数quality factor绝缘insulation绝缘体insulator显极转⼦salient poles rotor测速发电机tachometer generator绕组winding绕线式转⼦wound rotor起动starting起动电流starting current起动转矩starting torque起动按钮start button容抗capacitive reactance容纳capacitive susceptance诺顿定理Norton's theorem⾼斯Gauss原动机prime mover原绕组primary winding铁⼼core铁损core loss矩形波rectangular wave特征⽅程characteristic equation积分电路integrating circuit效率efficiency振荡放电oscill tory discharge继电器relay热继电器thermal overload relay(OLR)换向器commutator调节特性regulating characteristic调速speed regulation继电接触器控制relay-contactor control 副绕组secondary winding 铜损copper loss基波fundamental harmonic谐波harmonic谐振频率resonant frequency通频带bandwidth理想电压源ideal voltage source理想电流源ideal current source减幅振荡attenuated oscillation常开触点normally open contact常闭触点normally closed contact停⽌stopping停⽌按钮stop button接收机receiver 接触器contactor控制电动机control motor控制电路control circuit旋转磁场rotating magnetic field隐极转⼦nonsalient poles rotor涡流eddy current涡流损耗eddy-current loss焦⽿Joule奥斯特Oersted短路short circuit锯齿波sawtooth wave幅值amplitude最⼤值maximum value最⼤转矩maximum(breakdown)torque 滞后lag 超前lead傅⾥叶级数Fourier series暂态transient state暂态分量transient component等幅振荡unattenuated oscillation联锁interlocking感抗inductive reactance感纳inductive susceptance感应电动势induced emf楞次定则Lenz's law频率frequency频域分析frequency domain analysis频谱spectrum输⼊input输出output微法microfarad微分电路differentiating circuit叠加原理superposition theorem零状态响应zero-state response零输⼊响应zero-input response罩极式电动机shaded-pole motor滑环slip ring⿏笼式转⼦squirrel-cage rotor截⽌⾓频率cutoff angular frequency 滤波器filters磁场magnetic field磁场强度magnetizing farce磁路magnetic circuit磁通flux磁感应强度flux density磁通势magnetomotive force(mmf)磁阻reluctance磁导率permeability磁化magnetization磁化曲线magnetization curve磁滞hysteresis磁滞回线hysteresis loop磁滞损耗hysteresis loss磁极pol磁电式仪表magnetoelectric instrument 漏磁通leakage flux 漏磁电感leakage inductance漏磁电动势leakage emf赫兹Hertz稳态steady state稳态分量steady state component静态电阻static resistance碳刷carbon brush额定值rated value额定rated voltage额定功率rated power额定转矩tated torque瞬时值instantaneous value戴维宁定理Thevenin's theorem激励excitation满载full load槽fuse熔断器fuse《电⼯学下》中英名词对照表⼆画PN结PN junctionP型半导体P-type semiconductorJK触发器JK flip-flopD触发器 D flip-flop⼆极管diode⼆进制binary system⼆进制计数器binary counter⼗进制decimal system⼗进制计数器decimal counter⼆—⼗进制binary coded decimal system(BCD)三画RC选频⽹络RC selection frequency networkRS触发器RS flip-flopN型半导体N-type semiconductorN沟道N-channel门电路gate circuit三态逻辑门tri-state logic gate三相整流器three-phase rectifier⼯作点operating point⼲扰interference上升沿rise edge下降沿fall edge四画⽅框图block diagram双稳态触发器bistable flip-flop⽆稳态触发器astable flip-flop⽆输出变压器功率放⼤器output transformerless(OTL)power amplifier ⽆输出电容器功率放⼤器output capacitorless(OCL)power amplifier反向电阻backward resistance反向偏置backward bias反向击穿reverse breakdown反相器inverter反馈feedback反馈系数feedback coefficient互补对称功率放⼤器complementary symmetry power amplifier少数载流⼦minority carrier 分⽴电路discrete circuit分贝decibel(DB)分频frequency division分辨率resolution开启电压threshold voltage开关型直流电源switching mode direct power supply计数器counter与门AND gate与⾮门NAND gate与或⾮门and-or-invert(AOI)gate卡诺图Karnaugh map五画电感滤波器inductance filter电容滤波器capacitor filter电流放⼤系数current amplification coefficient电压放⼤器voltage amplifier电压放⼤倍数voltage gain电压⽐较器voltage comparator主从型触发器master-slave flip-flop失真distortion只读存储器read only memory(ROM)可编程逻辑器件programmable logic device(PLD)可关断晶闸管gate turn-off thyristor (GTO)功率放⼤器power amplifier功率晶体管giant transistor(GTR)正向电阻forward resistance正向偏置forward bias正反馈positive feedback正弦波振荡器sinusoidal oscillator正逻辑positive logic击穿breakdown占空⽐duty ratio加法器adder发射极emitter发光⼆极管light- emitting diode(LED)布尔代数Boolean algebra半波可控整流half -wave controlled rectifier半波整流器half -wave rectifier半加器half-adder半导体semiconductor本征半导体intrinsic semiconductor失调电压offset voltage失调电流offset current平均延迟时间average delay time六画共模信号common-mode signal共模输⼊common-mode input共模抑制⽐common-mode rejection ratio (CMRR)共发射极接法common-emitter configuration共价键covalent bond动态dynamics杂质impurity伏安特性volt-ampere characteristics扩散diffusion全波整流器biphase(full –wave)rectifier 全波可控整流biphase controlled rectifier 全加器full adder 全局布线区global routing pool(GRP)负反馈negative feedback负载电阻load resistance负载线load line负电阻negative resistance负逻辑negative logic夹断电压pinch-off voltage多级放⼤器multistage amplifier多数载流⼦majority carrier多谐振荡器astable multivibrator⾃由电⼦free electron⾃激振荡器self-excited oscillator⾃偏压self-bias导通on导电沟道conductive在系统可编程in system programmable (ISP)异或门exclusive-OR gate异步⼆进制计数器asynchronous binary counter同步⼆进制计数器synchronous binary counter同或门exclusive-NOR gate发光⼆极管light- emitting diode(LED)场效晶体管field-effect transistor(FET)光敏电阻photo-sensitive resistor 光电⼆极管photodiode光电晶体管phototransistor 光电藕合器photocoupler传输门transmission gate(TG)传输特性transfer characteristics七画运算放⼤器operational amplifier低频放⼤器low-frequency amplifier时钟脉冲clock pulse时序逻辑电路sequential logic circuit⾕点valley point译码器decipherer阻容—耦合放⼤器resistance-capacitance coupled amplifier阻断interception阻挡层barrier采样保持sample and hold串联型稳压电源series voltage rgulator⼋画空⽳hole空间电荷区space-charge layer固定偏置fixed-bias直接耦合放⼤器direct- coupled amplifier 单稳态触发器monostable flip-flop单结晶体管unijuction transistor(UJT)⾦属—氧化物—半导体metal-oxide-semiconductor(MOS)⾮门NOT gate⾮线性失真nonlinear diatortion或门OR gate或⾮门NOR gate饱和saturation转移特性transfer characteristic定时器timer参数parameter参考电压reference voltage组合逻辑电路combinational logic circuit九画穿透电流penetration current复合recombination复合晶体管Darlington复位reset差放放⼤器differential amplifier差模信号differential-mode signal差模输⼈differential-mode input绝缘栅双极型晶体管insulated gate bipolar transistor(IGBT)绝缘栅场效晶体管isolated-gatefield-effect transistor(IGFET)栅极gate,grid恒流源constant current source通⽤逻辑块generic logic block(GLB)通⽤阵列逻辑generic array logic(GAL)脉冲pulse 脉冲宽度pulse width脉冲幅度pulse amplitude脉冲周期pulse period脉冲前沿pulse leading edge脉冲后沿pulse trailing edge⼗画桥式整流器bridge rectifier旁路电容bypass capacitor射极输出器emitter follower振荡器oscillator振荡频率oscillation frequency耗尽层depletion layer耗尽型MOS场效晶体管depletion mode MOSFET载流⼦carrier硅silicon硅稳压⼆极管Zener diode峰点peak point热敏电阻thermistor⼗⼀画逻辑门1ogic gates逻辑电路1ogic circuit基极base控制极control grid偏流current bias偏置电路biasing circuit接地ground,grounding;earth,earthing 虚地imaginary ground 维持电流holding current基本RS触发器basic RS flip-flop随机存取存储器random access memory (RAM)寄存器register移位寄存器shift register清零clear掺杂半导体doped semiconductor⼗⼆画晶体crstal晶体管transistor晶体管—晶体管逻辑电路transistor- transistor logic (TTL)circuit 编码coding晶闸管thyristor集成电路integrated circuit(IC)集电极collector幅频特性amplitude frequency-response characteristic编码器encoder最⼩项miniterm⼗三画源极sourse滤波器filter数字电路digital circuit数字集成电路digital integrated circuit数码显⽰digital display数—模转换器digital-analog converter (DAC)数据选择器multiplexer数据分配器demultiplexer锗germanium输⼊输出单元input output cell(IOC)输⼊电阻input resistance 输出电阻output resistance输出布线区output routing pool(ORP)输出逻辑宏单元output logic macro cell (OLMC)零点漂移zero drift跨导transconductance触发器flip-flop⼗四画截⽌cut-off漂移drift静态statics静态⼯作点quiescent point漏极drain模—数转换器analog - digital converter (ADC)模拟电路analog circuit稳压⼆极管Zener diode⼗五画整流电路rectifier circuit增强型MOS场效晶体管enhancement mode MOSFET。

模电研讨(董季贾)

模电研讨(董季贾)

模拟集成电路基础研究性学习报告董耀聪 11211003季震涛 11211084贾世尊11211008专题研讨一题目:电子技术的发展与应用综述董耀聪季震涛贾世尊思源1106摘要:本文针对电子技术的基本概念,发展及在自动化专业中的典型应用、工艺、功能电路实现手段及未来发展前景等进行了综述。

其中,着重介绍了电子技术自动化、温度控制系统等当前电子技术应用较为广泛的领域。

同时,文章以微电子领域为主阐述了电子技术未来发展的方向。

关键词:电子技术;EDA;自动控制;变革中图分类号:文献标志码:ADevelopment and application of electronic technology Dong yaocong Ji zhentao Jia shizunSi Yuan 1106Abstract: In this paper, the basic concept for the development of electronic technology, in automation, the process, functional circuit realization and future development prospects are reviewed. Among them, emphatically introduces the field of the wide application of electronic technology, electronic technology, automatic temperature control system. At the same time, the field of microelectronics primarily discusses the future development direction of electronic technologyKey words:EDA; automatic control; reform;Electronic technology引言人类历经过以火、陶瓷及金属农具生产为代表的年代;人类也走过以英国瓦特蒸汽机发明为代表的产业革命、以德国李比希为代表的化工技术革命以美国爱迪生发明为代表的电力革命;如今跨入了以高新科技综合创新为代表的信息革命时代。

cfd中的asymptotic theory -回复

cfd中的asymptotic theory -回复

cfd中的asymptotic theory -回复[cfd中的asymptotic theory]Asymptotic theory plays a vital role in Computational Fluid Dynamics (CFD) as it provides a mathematical framework to understand the behavior of fluid flow in various situations. In this article, we will explore the fundamentals of asymptotic theory in CFD and its applications.What is asymptotic theory?Asymptotic theory is a branch of mathematics that deals with the behavior of functions as a variable approaches a particular value. It provides a systematic way to approximate complex functions and simplify their analysis. In CFD, asymptotic theory is used to solve fluid flow problems by approximating complex equations and simplifying their solutions.The foundation of asymptotic theory in CFD lies in the concept of a small parameter. A small parameter is a dimensionless quantity that represents the scale of a physical phenomenon relative to other quantities in the problem. It allows us to analyze thebehavior of the fluid flow as the small parameter tends to zero or infinity.The key idea behind asymptotic theory is that we can approximate the solution to a problem by expanding it as a series in powers of the small parameter. The resulting series is then truncated at an appropriate order to obtain an approximate solution. This approach is particularly useful when the problem involves a wide range of scales, such as in turbulent flows or flows with thin boundary layers.Applications of asymptotic theory in CFD1. Boundary layer theory: Boundary layers are thin layers of fluid that form near solid boundaries in a fluid flow. They play a crucial role in many engineering applications, such as aerodynamics and heat transfer. Asymptotic theory allows us to derive simplified equations for the boundary layer and study its behavior.By assuming the small parameter to be the ratio of the boundary layer thickness to the characteristic length scale of the problem, we can derive the famous Prandtl's boundary layer equations.These equations provide a simplified description of the flow near the boundary and have been widely used to analyze various flow problems.2. Perturbation methods: Perturbation methods involve solving a problem by treating the small parameter as a small perturbation to an already known solution. This approach is particularly useful when the small parameter is not related to a physical scale but appears in the governing equations due to simplifications or assumptions.For example, in the study of unsteady flows, the small parameter can be the ratio of the unsteadiness time scale to a characteristic time scale of the problem. By assuming a known steady solution and perturbing it in terms of the small parameter, we can develop a systematic procedure to obtain the unsteady solution.3. Homogenization theory: Homogenization theory is concerned with problems where the governing equations have oscillatory coefficients or rapidly varying parameters. These problems arise in various fields, such as porous media flow and composite materials.Asymptotic theory provides a powerful tool to derive effective (homogenized) equations that capture the behavior of the system on a macroscopic scale. By assuming the small parameter as the ratio of the periodicity length to the characteristic length scale of the problem, we can develop an asymptotic expansion to obtain the macroscopic equations.ConclusionAsymptotic theory is an essential tool in CFD for studying complex fluid flow problems. It allows us to approximate the solution to a problem by expanding it as a series in powers of a small parameter and truncating the series at an appropriate order. This approach provides simplified equations that capture the essential behavior of the flow and enable efficient computational analysis. Through examples such as boundary layer theory, perturbation methods, and homogenization theory, we have seen how asymptotic theory finds applications in various areas of CFD. By using asymptotic theory, researchers can gain valuable insights into the behavior of fluid flow and develop efficient numericalmethods for practical engineering applications.。

互连延迟的分析方法

互连延迟的分析方法

互连延迟的分析方法刘 昆 [1] 郑 赟[2] 黄道君[3] 候劲松[4][2][4]北京中电华大电子设计有限责任公司,[1][3]西安电子科技大学机电工程学院 摘要:随着工艺技术到达深亚微米领域,互连线的延迟影响越来越大,已经超过门延迟,成为电路延迟的主要部分。

因此,互连线的延迟已成为集成电路设计中必须解决的问题。

目前人们已展开了全面、深入地研究,提出了许多方法。

本文将介绍各类互连延迟的评估分析方法,分析它们的原理,比较它们的优缺点,指出它们的适用范围。

1 介绍随着芯片加工工艺技术向深亚微米领域发展,互连线的延迟影响越来越大,已超过门延迟,成为电路延迟的主要部分。

高速互连线的影响,如环绕、反射、串扰和扭曲等,已严重退化系统的性能。

因此互连线的延迟分析已成为集成电路设计中必须解决的问题。

Spice 和AS/X 电路模拟器是非常好的延迟分析工具[1-2]。

它们能非常准确地计算互连延迟,但是计算效率非常低下,特别是对于线性电路。

而互连线就是线性电路,因此一类降阶模型技术[3-5],如AWE[3],已用来计算互连延迟。

它们与模拟方法有相同的精度,却有更高的效率。

但是它们有稳定性和保守性的问题,并且在设计早期使用它们来计算延迟还是很昂贵。

因此既有效率又容易实现的延迟度量已成为许多研究者研究的热点,只要它们的精度和可信度比较合理。

Elmore[6]于1948年提出了一个计算瞬态阶跃响应(step response )到达它最终值的50%时的时间计算表达式。

它的原理是用冲激响应(impulse response )的平均值(也就是一阶瞬态)来近似单调阶跃响应波形到达它最终值的50%时的时间。

Elmore 延迟是冲激响应的一阶瞬态1m 。

它有时相当不准确,因为它忽略了顺流电容的漏电阻(resistive shielding )。

为了取得更高的精确性,需要利用高阶瞬态2m ,Λ,m 3 。

Kahng 和Muddu[7]提出了三个延迟度量(metric ),所有的延迟度量都是采用前三个电路瞬态1m ,2m ,3m 。

半导体专业名词解释

半导体专业名词解释
CCW counterclockwise
Cd cadmium
AWS advanced wet station
Manufacturing and Science
Sb antimony
===B===
B billion; boron
Ba barium
BARC bottom antireflective coating
BASE Boston Area Semiconductor Education (Council)
ACF anisotropic conductive film
ACI after-clean inspection
ACP anisotropic conductive paste
ACT alternative control techniques; actual cycle time
Al aluminum
ALD atomic layer deposition
ALE atomic layer epitaxy; application logic element
ALS advanced light source; advanced low-power Schottky
===A===
A/D analog to digital
AA atomic absorption
AAS atomic absorption spectroscopy
ABC activity-based costing
ABM activity-based management
AC alternating current; activated carbon

自动控制原理 附录B 控制理论术语中英文对照表

附录B 控制理论术语中英文对照表AAbsolute error 绝对误差Absolute value 绝对值Accuracy 精确度Activate 启动,触发Active electric network 有源网络Actuating signal 作用信号,启动信号Actuator 执行机构,调节器,激励器Adjust 调整Adaptive control 自适应控制Algebraic operations 代数运算Amplifier 放大器Amplitude 振幅,幅值Analog computer 模拟计算机Analog signal 模拟信号Angle condition 相角条件Angle of arrival 入射角Angle of departure 出射角Angular acceleration 角加速度Argument 幅角Armature 电枢Asymptote 渐近线Asymptotic stable 渐近稳定的Automatic control 自动控制Attenuation 衰减Auxiliary equation 辅助方程BBacklash 间隙,回差Bandwidth 带宽Bang-bang control 砰-砰控制,继电控制Be proportional to 与……成比例自动控制原理·326· ·326·Biocybernetics 生物控制论Block diangram 方框图,方块图,结构图 Bode plot 波特图 Branch分支,支路 Breakaway points 分离点 Bump 撞击,扰动 By-pass旁路CCACSD(Computer-Aided Control System Design) 控制系统计算机辅助设计 CACSE(Computer-Aided Control System Engineering) 控制系统计算机辅助工程 CAD(computer aided design) 计算机辅助设计 Cascade compensation 串联补偿校正 Cascade control 串级控制 Channel通道 Characteristic equation 特征方程 Characteristic gain locus 特征增益轨迹 Circuit电路Classical control theory 古典控制理论 Closed loop control system 闭环控制系统 Closed loop frequency response 闭环频率响应 Closed loop pole 闭环极点 Closed loop zero闭环零点 Combinational control system 复合控制系统 Comparator 比较器Comparing element 比较元件,比较环节 Compound control 复合控制 Compensation 补偿,校正 Complex plane 复平面 Conditional stability 条件隐定Configuration 结构,配置,方案,组态 Constant M loci 等M 圆 Continuous system 连续系统 Controlled variable 被控变量 Controlling machine 控制机 Control system 控制系统 Control valve 调节阀 Controllability 可控性,能控性附录B控制理论术语中英文对照表·327·Conveyor 传送器,传送带,传送装置Corner frequency 转折频率,交接频率Correcting unit 执行器Correction 校正Coupling 耦合Criterion 判据,准则Critical damping 临界阻尼Cut off rate 剪切率Cut off frequency 剪切频率Cybernetics 控制论DDamped natural frequency 有阻尼自然频率Dampe r 阻尼器Damping factor 阻尼系数Damping ratio 阻尼比Dead band 死区Dead time 纯延迟,延迟时间Decay 衰减,衰变Decomposition 分解Delay 滞后Delay element 滞后环节Denominator 分母Derivation action 微分作用Derivative control 微分控制Desired value 预期值,期望值Determinant 行列式Deviation 偏差Differencing junction 比较点Differential equations 微分方程Digital computer 数字计算机Discrete-data system 离散数据系统Disturbance 扰动,干扰Disturbance rejection property 抗干扰特性Dominate 主导Duality 对偶性Dynamic equation 动态方程Dynamic error 动态误差·327·自动控制原理·328··328·Dynamic process动态过程EEquilibrium state 平衡状态 Eigenvalue 特征值 Eigenvector 特征向量 Element 元件,环节 Error误差 Error coefficient 误差系数 Error signal 误差信号 Even symmetry 偶对称Exponential 指数,指数的,幂的 External description 外部描述 Extremum极值FFeasibility 可行性,可能性,现实性 Feedback 反馈 Feedback control 反馈控制 Feedback element 反馈环节 Feedback path 反馈通道 Feedforward前馈 Final controlling element 执行器 Final value 终值 First-order system 一阶系统 Focus焦点 Following device 随动装置 Forward path 前向通道 Fraction 分数 Frequency 频率 Frequency domain 频域 Frequency response频率响应 Frequency response characteristic 频率响应特性 Function 函数 Fuzzy control模糊控制附录B控制理论术语中英文对照表·329·GGain 增益Gain margin 增益裕度,幅值裕度Gear backlash 齿轮间隙General solution 通解Graphical method 图解法Guidance system 制导系统Gravitation area 引力域Gyro 陀螺HHarmonic 谐波,谐波量,谐振荡Harmonic response 谐波响应Holder 保持器Homogeneous equation 齐次方程Hurwitz determinant 赫尔维茨行列式Hydraulic system 液压系统Hysteresis error 回差Hysteresis loop 磁滞回环IIdealized system 理想化系统Identification 辨识Impulse response 脉冲响应Industrial robot 工业机器人Inertial 惯性的,惯量的,惰性的Inherent characteristic 固有特性Initial condition 初始条件Initial state 初始状态Initial value theorem 初值定理Inner loop 内环Input 输入Input node 输入节点Input signal 输入信号·329·自动控制原理·330· ·330·Integral action 积分作用 Integral control积分控制 IAE(integrated absolute error) 绝对误差积分 ISE(integrated square error) 平方误差积分 Internal description 内部描述 Intelligent instrument 智能仪表 Invariant 不变的,恒定的 Inverse matrix 逆矩阵 Inverse transformation 反变换 Inverse Laplace transforms 拉普拉斯反变换 Isocline method 等倾线法 Iterative algorithm迭代算法JJordan block 约旦块 Jordan canonical form约旦标准型KKalman criterion 卡尔曼准则 Kalman filter卡尔曼滤波LLag network 滞后网络 Lag compensation 滞后补偿 Laplace transforms 拉普拉斯变换 Large scale system 大系统 Lead network 超前网络 Least-mean-square 最小均方 Limit cycle 极限环 Linearization 线性化 Linearity 线性度 Linear equation 线性方程 Linear system 线性系统 Linear programming 线性规划 Load 负载附录B控制理论术语中英文对照表·331·Load-response curve 负荷响应曲线Locus 轨迹Logic diagram 逻辑图Log magnitude 对数幅值Low pass characteristic 低通特性MMagnitude condition 幅值条件Magnitude-versus-phase plot 幅相特性曲线Manipulated variable 操纵变量Mason rule 梅逊公式Mathematical model 数学模型Matrix 矩阵Maximum overshoot 最大超调量Measurable 可测量的Measured variable 被测变量Minimum phase system 最小相位系统Model decomposition 模型分解Modulus 模Moment of inertia 转动惯量Multinomial 多项式(的)Multivariable system 多变量系统NNatural frequency 自然频率Negative feedback 负反馈Nichols chart 尼柯尔斯图线Node 节点Noise 噪声Nonlinear control system 非线性控制系统Nonminimum phase system 非最小相位系统Nonsingular 非奇异的Norm 范数Numerator 分子Numerical control 数字控制,数控Nyquist criterion 奈奎斯特判据Nyquist contour 奈奎斯特轨线·331·自动控制原理·332··332·OObjective function 目标函数Observability 可观性,能观性Observer 观测器Odd symmetry 奇对称Off line 离线Offset 偏移,位移On line 在线Open loop 开环Optimal control 最优控制Optimization 最优化Origin 原点Oscillating loop 振荡回路Oscillation 振荡Oscillatory response 振荡响应Outer loop 外环Output 输出Output signal 输出信号Over damping 过阻尼Overshoot 超调量PParameter 参数Peak overshoot 超调峰值Peak time 峰值时间Performance index 性能指标Perturbance 扰动,摄动Phase lag 相位滞后Phase lead 相位超前Phase margin 相角裕度Phase modifier 相位调节器Phase plane 相平面Pickoff point 引出点PID(proportional plus integral plus derivative) controller PID (比例、积分、微分)控制器Piece-wise linearization 分段线性化Pneumatic controller 气动调节器,气动控制器附录B控制理论术语中英文对照表·333·Pole 极点Pole assignment 极点配置Polynomial 多项式Position error 位置误差Positive definiteness 正定性Pre-compensator 预补偿器Process control 过程控制Proportional action 比例作用Proportional band 比例带Proportional control 比例控制Prototype 原型,模型,样机Pulse 脉冲Pulse width 脉宽Pure delay 纯滞后QQuadratic 二次的Quadratic form 二次型Quality control 质量控制Quantizer 数字转换器RRamp input 斜坡输入Ramp response 斜坡响应Rate feedback 速度反馈Rate time 微分时间,预调时间Rational 有理(数)的,合理的Rational number 有理数Realization 实现Reference variable 参考变量Regulator 调节器Relay 继电器Relative stability 相对稳定性Reliability 可靠性Remote control 遥控Reproducibility 再现性Resilience 弹性,弹性形变·333·自动控制原理·334· ·334·Resonance 谐振 Response 响应Reset time 再调时间,积分时间 Residue 留数 Rise time上升时间 RMS(root mean square) 均方根 Roots loci 根轨迹 Routh array劳斯阵列Routh-Hurwitz criterion 劳斯-赫尔维茨判据 Routh stability criterion劳斯稳定判据SSampling control 采样控制 Sampling frequency 采样频率 Sampling period 采样周期 Saturation 饱和 Scalar function 标量函数 Scaling factor 比例因子 Sensitivity 灵敏度 Sensor传感器 Series compensation 串联补偿Servo 伺服机构,伺服电机 Servodrive 伺服传动,伺服传动装置 Set point 设定点 Set value 设定值Settling time 调节时间;稳定时间 Signal flow graph 信号流图 Singularity 奇点 Sinusoidal 正弦的 Slope 斜率 Stability 稳定(性) Stability margin 稳定裕度 State equations 状态方程 State space 状态空间 State variables 状态变量 Stationary 稳态的 Steady-state 稳态 Steady-state deviation 稳态偏差附录B控制理论术语中英文对照表·335·Steady-state error 稳态误差Step singal 阶跃信号Step response 阶跃响应Stochastic process 随机过程Summing junction 相加点Superposition 叠加Supervise 监控,检测,操纵System 系统Systematic deviation 系统偏差System identification系统辨识TTangent 切线Terminology 术语Threshold value 阈值Time constant 时间常数Time domain 时域Time response时间响应Time-invariant system 常定(时不变)系统Time-varying system 时变系统Trajectory 轨迹Transducer 传感器,变换器Transfer function 传递函数Transfer matrix转移矩阵Transient response 暂态响应Transmitter 变送器Transportation lag 传输滞后Transpose 转置(阵)UUndamped natural frequency 无阻尼自然频率Underdamping欠阻尼Uniform stability 一致稳定Unit circle 单位圆Unit impulse 单位脉冲Unit step function 单位阶跃函数Unit feedback 单位反馈·335·自动控制原理·336· ·336·Unit matrix 单位矩阵 Unstable 不稳定的 Unsymmetrical不对称的VValue of quantity 量值 Variable 变量 Vector向量 Velocity feedback 速度反馈 Viscous friction黏摩擦WWave 波 Waveform 波形 Weighting function 加权函数 White noise白噪声ZZero零点 Zero input response 零输入响应 Zero-order holder 零阶保持器 Zero-state response 零状态响应 Z-transfer function z 传递函数 Z-transformationz 变换。

有理函数逼近技术在合元极技术中的应用

第3期彭朕:有理函数逼近技术在合元极技术中的应用45l4数值实验为了验证有理函数逼近技术结合合元极技术的高效性,本文使用开发出的算法计算了一个电大尺寸复杂日标的宽角度与宽频带RCS.目标体为一带有介质填充腔的导体砖型目标.如图7所示,目标体高50cm,横截面长25cm,宽25cm,目标体内有一个长15cm、宽15cm、深15era的腔体.介质填充的介电常数为£,=4.0一j1.0.首先,计算目标的宽频带RCS,入射波的入射角度为口=30。

,妒=00,直接使用合元极技术和MBPE结合合元极技术计算目标体0.01GHz犁3G士频率萼围图7善器袭量苔亲腔的电大尺寸内的单站RCS所需的计算时间分别为41,521s和3,912s,数值结果见图8;然后,计算目标体j6∈(酽.180。

),口=00和日∈(00~180。

),≯=00角度范围内的单站RCS,入射波的频率为3GHz,数值结果见图9和图10,表3列出了内存需求和计算时问的比较.磊号葫星flGHz图8入射波入射角度为0=30。

,9=O。

,使用直接法和结合RFAT的合元极技术计算图7中电大尺寸砖型腔体0.01GHz到3.0GHz频率范围内的单站RCS表3使用直接法和结合MBPE的合元极技术计算电大尺寸目标宽频带和宽角度单站RCS所需计算资源的比较计算逐点计算MBPE结果计算频率点计算Ij,j'lhJ(s)插值频率点计算时fH】(e)加速比图83114152130391210.6l图93(n540ll304533¨.92图lO360541234159039.19鲁号葫星Phi/degree图9工作频率为3GHz,使用直接法和结合RFAT的合元极技术计算图7中电大尺寸砖型腔体争∈(O。

~180。

),0=0。

角度范围内的单站RCS磊∞乏∞U昌I"hera/degree图lO工作频率为3GHz,使用直接法和结合RFAT的合元极技术计算图7中电大尺寸砖型腔体0∈(O。

半导体词汇缩写表

ceramicballgridarray chemicalbottlestoragearea
computer-basedtraining chipcarrier;clustercontroller
ceramicchipcarrier charge-coupleddevice compatiblecurrent-sinkinglogic
cleandryair chemicaldownstreametch CustomerDeliveryEnterpriseModel collector-diffusionisolation CommonDeviceModelforSAB controlleddecomposition/oxidation chemicaldistributionroom chemicaldistributionsystem
APEC API APM APRDL aPSM AQI AQL Ar AR ARAMS ARC ARDE ARPA ARS As AS/RS ASAP ASIC ASO ASP ASR ATDF ATE ATG ATLAS atm ATP ATR Att Au AVP AVS AWE AWISPM AWS B Ba BARC BASE BAW BC BDEV BDS Be BEOL BESOI BF BFGS BFL BGA
boronphosphosilicateglass BPSGfromaTEOSsource bromine
backscatteredelectrondetection bumpedtapeautomatedbonding breakdownvoltage carbon calcium CIMarchitecture CIMapplicationsarchitecture

MOR(Model Order Reduction)解读


Pade Approximation Example
1 x 2 f(x) 1 2x 3 39 2 Taylor : 1- x x 4 32 7 1 x 8 Pade : 13 1 x 8 1
Pade Approximation Example con’t
Pade Based Algorithm
set A G 1C ,r G 1B H ( s ) l T (I sA)1 r H ( s ) m0 m1s m2 s 2 ... m2 q 1s 2 q 1 O( s 2 q ); m k LT A k r
AWE Process for SISO con’t
Moment matching methods
"
Asymptotic Waveform Evaluation(AWE) (Explicit moment matching) Arnoldi Algorithm(Implicit)
"
"
Lanczos algorithm(Implicit)
AWE Method
"
"
"
"
"
Pade Method con't
"
The Dynamic System’s transfer function has the following structure: H(s) = A(s)/B(s),
for such kind of function, Pade approximation is simple and often better !
v 2 Av 1 - (Av1 )
;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NASA Technical Memorandum 110292
Asymptotic Waveform Evaluation(AWE) Technique for Frequency Domain Electromagnetic Analysis
C. R. Cockrell and F.B. Beck NASA Langley Research Center, Hampton, Virginia
3
List of Symbols
∇ δ qo ηo AWE A ( ko) A ( k) A
( n)
Del operator Kronecker delta defined in equation (12) Free space intrinsic impedance 377 Ω Asymptotic Waveform Evaluation Impedance/Admittance matrix of order NXN evaluated at k o Impedance/Admittance matrix of order NXN evaluated at k ( k) nth derivative of A ( k ) with respect to k ; d dk
d dk
n n
b ( k)
ds EFIE Ei I ( k)
The coefficient vector for current distribution in method of moments for EFIE implementation Vector basis function for the current distribution –1
J j
4
ko k Mn n! P ( q, p ) R T V ( k) x ( ko) x ( k) x
( n)
Wavenumber at frequency f o Wavenumber at any frequency f nth moment of AWE (n=0,1,2,3,4 .......) Factorial of number n Permutation Function Distance between the source point and the observation point Vector testing function used in EFIE The excitation vector due to the incident electric field Solution vector of order N evaluated at k o Solution vector of order N evaluated at k ( k) nth derivative of x ( k ) with respect to k ; d dk
n n
A ( k)
A
–1
( .)
Inverse of matrix A Excitation vector of order N evaluated at k o Excitation vector of order N evaluated at k
b ( ko) b ( k) b
( n)
( k)
nth derivative of b ( k ) with respect to k ; Surface integration Electric Field Integral Equation Incident electric field
November 1996
National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001
1
CONTENTS
Abstract List of Symbols 1.0 2.0 3.0 4.0 Introduction Derivation of AWE moments Numerical Results Concluding Remarks References 2 3 5 6 9 10 11
2
Abstract
The Asymptotic Waveform Evaluation(AWE) technique is applied to a generalized frequency domain electromagnetic problem. Most of the frequency domain techniques in computational electromagnetics result in a matrix equation, which is solved at a single frequency. In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix equation. The coefficients of the Taylor’s series are obtained in terms of the frequency derivatives of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used to predict the frequency response of the system over a frequency range. The detailed derivation of the coefficients (called ‘moments’) is given along with an illustration for electric field integral equation (or Method of Moments) technique. The Radar Cross Section(RCS) frequency response of a square plate is presented using the AWE technique and is compared with the exact solution at various frequencies.
n n
x ( k)
Z ( k)
Impedance matrix of order N in method of moments for EFIE implementation Inverse of the matrix Z ( . )
Z
–1( Βιβλιοθήκη )51. Introduction
Frequency domain numerical techniques such as Method of Moments(MoM), Finite Element Method(FEM) and hybrid FEM/MoM have become popular over the last few years due to their flexibility to handle arbitrarily shaped objects and complex materials[1,2]. One of the disadvantages of frequency domain techniques, however is the computational cost involved in obtaining the solutions over a frequency range. Computations have to be repeated for each frequency to obtain the complete frequency response over a frequency range. For frequency dependent systems such as resonant structures, the number of frequencies required to capture the resonance can be very large. If the problem size is large, total CPU time to compute all the frequencies can be highly prohibitive. To overcome this problem, a technique called Asymptotic Waveform Evaluation(AWE) is proposed. Initially, this technique was applied to timing analysis of VLSI circuits[3,4] and extended later to finite element analysis for microwave circuits[5]. The AWE technique, basically makes use of the Taylor series expansion of a matrix equation which is common in all frequency domain techniques. The coefficients of the Taylor Series (called ‘moments’, not to be confused with moments in Method of Moments) are evaluated using frequency derivatives of the original system matrix. In this work, we derive the expressions for evaluating the AWE moments and discuss the validity of AWE over a frequency band. Also, as an illustration, the Electric Field Integral Equation (EFIE) will be considered to compute the AWE moments. The AWE technique used with a single expansion frequency may not always produce accurate results over a desired frequency range. Once the desired frequency range is fixed, techniques such as Complex Frequency Hopping(CFH)[6] can be used to accurately predict the frequency response over the entire frequency range. CFH involves considering multiple expansion frequency points for applying AWE and checking the accuracy of the response. The organization of the rest of the paper is as follows. In section 2, the derivation of AWE moments for any system matrix (resulting from a frequency domain technique) is given. An application to the EFIE is also discussed. Section 3 discusses the accuracy of single frequency AWE and possible application of CFH for accurate prediction of frequency response over a desired frequency range. Numerical results of RCS frequency response of a square plate are presented. These results are compared with the computations done at each frequency point to validate the analysis presented in this paper. Section 4 concludes the paper with remarks on the advantages and limitations of the current technique.
相关文档
最新文档