计量经济学作业——简单线性回归模型

合集下载

计量经济学第2章 简单线性回归模型

计量经济学第2章 简单线性回归模型

1.1回归分析与回归函数
对回归的现代解释与古典意义有很大的不同 定义:是关于研究一个叫做被解释变量(Y)的变量
对另一个或多个叫做解释变量(X)的变量的依赖 关系,其用意在于通过后者的已知或设定值去估计 或预测前者的均值。其中“依赖关系”,反映在一 定的函数形式上:
注意: E(Y X ) F(X1, X2,, Xk )
1.1回归分析与回归函数
1855年,高尔顿发表《遗传的身高 向平均数方向的回归》一文,他和 他的学生通过观察1078对夫妇,以 每对夫妇的平均身高作为自变量, 取他们的一个成年儿子的身高作为 因变量,分析儿子身高与父母身高 之间的关系。 发现: 当父母越高或越矮时,子女的身高 会比一般儿童高或矮,但是,当父 母身高走向极端,子女的身高不会 象父母身高那样极端化,其身高要 比父母们的身高更接近平均身高, 即有“回归”到平均数去的趋势。
其中,μ为随机误差项(stochastic error)或随机扰动 项(stochastic disturbance ),表明除X之外影响Y的因素: 忽略无数可能事件的影响 测量误差
1.1回归分析与回归函数
例:假定E(Y|Xi)对X是线性的:
E(Y Xi ) 1 2 Xi 线性总体回归函数
-1.2 -0.8 -0.4 0.0 0.4 0.8 Nhomakorabea1.2 Y
因而,要进一步研究变量之间的相关关系,就需要学习回归 分析方法。
1.1回归分析与回归函数
二、回归分析
“回归”这个词最早由英国生物学家高尔顿在遗传学
中提出。
法兰西斯·高尔顿(1822.2.16-1911.1.17), 英国人类学家、生物统计学家、英国探险家、 优生学家、心理学家、差异心理学之父,也 是心理测量学上生理计量法的创始人,遗传 决定论的代表人物。 高尔顿平生著书15种,撰写各种学术论文220 篇,涉猎范围包括地理、天文、气象、物理、 机械、人类学、民族学、社会学、统计学、 教育学、医学、生理学、心理学、遗传学、 优生学、指纹学、照像术、登山术、音乐、 美术、宗教等,是一位百科全书式的学者。

计量经济学作业——简单线性回归模型

计量经济学作业——简单线性回归模型

计量经济学作业姓名:***班级:08级数学一班学号:***********简单线性回归模型一、建立模型为了研究四川省城镇具名消费支出以及可支配收入之间的关系,又经济理论分析可知,收入是影响居民消费支出的主要因素,居民消费支出Y与可支配收入X之间存在密切的关系,消费支出随着收入的增加而增加,但变动的幅度相比较低,即边际消费倾向MPC有0<MPC<1。

因此可设定居民消费支出Yi与Xi的关系为:Yi=ß1+ß2Xi+ui,其中ß1表示四川省城镇居民家庭平均每人年生活性消费支出(元);Xi为城镇居民家丁平均没人年可支配收入(元)。

变量采用年度数据,样本期为1978-1998年。

这里的ß1为居民没有收入来源时的最低消费。

二、估计模型中的位置参数假设模型中的随机误差项ui满足古典假定,运用OLS方法估计模型的参数,利用计量经济学计算机软件EViews计算过程如下:简历文档,输入数据首先点击EViews图标,进入EViews主页。

点击File后,在File菜单的New选项中点击Workfile,这时屏幕上出现Workfile Range对话框,在Srart Date里键入1978,在End Date里键入1998,点击OK后屏幕出现Workfile工作框。

在Object菜单栏,点击New Object对话框里选Group并在Name for Object上定义文件名,点击OK,屏幕出现数据编辑框。

也可在光标出直接输入Data Y X,回车后即可出现数据编辑框。

此时可录入数据,首先按上行键,这时对应“obs”字样的空格会自动上跳,在对应第二个“obs”字样,有边框的空格里键入变量名,再按下行键,这时对应变量名下的这一列出现“NA”字样,便可依时间顺序键入相应的数据。

其他变量的数据类似输入。

可以几个变量同时录入数据。

在主页上选Quick菜单,点击Eatimate Equation项,屏幕上出现估计对话框(Equation Spacification),在Easmation Setting中选OLS估计,即Least Squares,键入Y C X或Y X C(C为EViews固定的截距系数)。

庞皓《计量经济学》(第4版)章节题库-第2章 简单线性回归模型【圣才出品】

庞皓《计量经济学》(第4版)章节题库-第2章 简单线性回归模型【圣才出品】

二、选择题 1.下列属于线性总体回归函数的是( )。 A.Yi=β0+β1Xi+μi
1 / 30
圣才电子书
十万种考研考证电子书、题库视频学习平


B.E(Y∣Xi)=β0+β1Xi
C.Yi=Error!0+Error!1X0+Error!1Xi
4.下列各项中,不属于估计量的大样本性质的有( )。 A.一致性 B.无偏性 C.渐近无偏性 D.渐近有效性 【答案】B 【解析】考察总体的估计量其优劣性的准则:①线性性;②无偏性;③有效性;④渐 近无偏性;⑤一致性;⑥渐近有效性。前三个准则称作估计量的小样本性质,后三个准则 称为估计量的大样本或渐近性质。
5.对回归模型 Yi=β0+βiXi+μi,通常假定 μi 服从正态分布,如果利用最小二乘法估 计参数,那么( )。
A.Error!1 和 Error!0 是 F 分布 B.Error!1 和 Error!0 是 t 分布 C.Error!1 和 Error!0 是 χ2 分布
3 / 30
圣才电子书
2.对于一元线性回归模型,在经典线性回归的假定下,参数的最小二乘估计量是最 小方差无偏估计。( )
【答案】√ 【解析】普通最小二乘估计量具有的特征:①线性性,即估计量 0 和 Error!1 是 Yi 的线 性组合;②无偏性,即以 X 的所有样本值为条件,估计量 Error!0 和 Error!1 的均值(期望) 等于总体回归参数真值 β0 和 β1;③有效性,即在所有线性无偏估计量中,普通最小二乘 估计量 0 和 Error!1 具有最小方差。
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 2 章 简单线性回归模型
一、名词解释 1.总体回归函数 答:总体回归函数是指在给定量 Y 下,分布的总体均值与 X 所形成的函数关系(或者 说将总体被解释变量的条件期望表示为解释变量的某种函数)。由于变量间关系的随机性, 回归分析关心的是根据解释变量的已知或给定值,考察被解释变量的总体均值,即当解释 变量取某个确定值时,与之统计相关的被解释变量所有可能出现的对应值的平均值。

习题及答案_计量经济学

习题及答案_计量经济学

第二章 简单线性回归模型一、单项选择题(每题2分): 1、回归分析中定义的( )。

A 、解释变量和被解释变量都是随机变量B 、解释变量为非随机变量,被解释变量为随机变量C 、解释变量和被解释变量都为非随机变量D 、解释变量为随机变量,被解释变量为非随机变量2、最小二乘准则是指使( )达到最小值的原则确定样本回归方程。

A 、1ˆ()nt tt Y Y =-∑B 、1ˆn t tt Y Y=-∑ C 、ˆmax t tY Y - D 、21ˆ()n t t t Y Y =-∑3、下图中“{”所指的距离是( )。

A 、随机误差项B 、残差C 、i Y 的离差D 、ˆiY的离差 4、参数估计量ˆβ是iY 的线性函数称为参数估计量具有( )的性质。

A 、线性 B 、无偏性 C 、有效性 D 、一致性5、参数β的估计量βˆ具备最佳性是指( )。

A 、0)ˆ(=βVarB 、)ˆ(βVar 为最小C 、0ˆ=-ββD 、)ˆ(ββ-为最小 6、反映由模型中解释变量所解释的那部分离差大小的是( )。

A 、总体平方和 B 、回归平方和 C 、残差平方和 D 、样本平方和7、总体平方和TSS 、残差平方和RSS 与回归平方和ESS 三者的关系是( )。

A 、RSS=TSS+ESS B 、TSS=RSS+ESS C 、ESS=RSS-TSS D 、ESS=TSS+RSS 8、下面哪一个必定是错误的( )。

A 、 i i X Y 2.030ˆ+= ,8.0=XY rB 、 i i X Y 5.175ˆ+-= ,91.0=XY rC 、 i i X Y 1.25ˆ-=,78.0=XY rD 、 i i X Y 5.312ˆ--=,96.0-=XY r9、产量(X ,台)与单位产品成本(Y ,元/台)之间的回归方程为ˆ356 1.5YX =-,这说明( )。

A 、产量每增加一台,单位产品成本增加356元B 、产量每增加一台,单位产品成本减少1.5元C 、产量每增加一台,单位产品成本平均增加356元D 、产量每增加一台,单位产品成本平均减少1.5元10、回归模型i i i X Y μββ++=10,i = 1,…,n 中,总体方差未知,检验010=β:H 时,所用的检验统计量1ˆ11ˆβββS -服从( )。

简单线性回归模型的公式和参数估计方法以及如何利用模型进行

简单线性回归模型的公式和参数估计方法以及如何利用模型进行

简单线性回归模型的公式和参数估计方法以及如何利用模型进行数据预测一、简单线性回归模型的公式及含义在统计学中,线性回归模型是一种用来分析两个变量之间关系的方法。

简单线性回归模型特指只有一个自变量和一个因变量的情况。

下面我们将介绍简单线性回归模型的公式以及各个参数的含义。

假设我们有一个自变量X和一个因变量Y,简单线性回归模型可以表示为:Y = α + βX + ε其中,Y表示因变量,X表示自变量,α表示截距项(即当X等于0时,Y的值),β表示斜率(即X每增加1单位时,Y的增加量),ε表示误差项,它表示模型无法解释的随机项。

通过对观测数据进行拟合,我们可以估计出α和β的值,从而建立起自变量和因变量之间的关系。

二、参数的估计方法为了求得模型中的参数α和β,我们需要采用适当的估计方法。

最常用的方法是最小二乘法。

最小二乘法的核心思想是将观测数据与模型的预测值之间的误差最小化。

具体来说,对于给定的一组观测数据(Xi,Yi),我们可以计算出模型的预测值Yi_hat:Yi_hat = α + βXi然后,我们计算每个观测值的预测误差ei:ei = Yi - Yi_hat最小二乘法就是要找到一组参数α和β,使得所有观测值的预测误差平方和最小:min Σei^2 = min Σ(Yi - α - βXi)^2通过对误差平方和进行求导,并令偏导数为0,可以得到参数α和β的估计值。

三、利用模型进行数据预测一旦我们估计出了简单线性回归模型中的参数α和β,就可以利用这个模型对未来的数据进行预测。

假设我们有一个新的自变量的取值X_new,那么根据模型,我们可以用以下公式计算对应的因变量的预测值Y_new_hat:Y_new_hat = α + βX_new这样,我们就可以利用模型来进行数据的预测了。

四、总结简单线性回归模型是一种分析两个变量关系的有效方法。

在模型中,参数α表示截距项,β表示斜率,通过最小二乘法估计这些参数的值。

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

简单线性回归模型

简单线性回归模型线性回归是统计学中一个常见的分析方法,用于建立自变量与因变量之间的关系模型。

简单线性回归模型假设自变量与因变量之间存在线性关系,可以通过最小二乘法对该关系进行拟合。

本文将介绍简单线性回归模型及其应用。

一、模型基本形式简单线性回归模型的基本形式为:y = β0 + β1x + ε其中,y为因变量,x为自变量,β0和β1为常数项、斜率,ε为误差项。

二、模型假设在使用简单线性回归模型之前,我们需要满足以下假设:1. 线性关系假设:自变量x与因变量y之间存在线性关系。

2. 独立性假设:误差项ε与自变量x之间相互独立。

3. 同方差性假设:误差项ε具有恒定的方差。

4. 正态性假设:误差项ε符合正态分布。

三、模型参数估计为了估计模型中的参数β0和β1,我们使用最小二乘法进行求解。

最小二乘法的目标是最小化实际观测值与模型预测值之间的平方差。

四、模型拟合度评估在使用简单线性回归模型进行拟合后,我们需要评估模型的拟合度。

常用的评估指标包括:1. R方值:衡量自变量对因变量变异的解释程度,取值范围在0到1之间。

R方值越接近1,说明模型对数据的拟合程度越好。

2. 残差分析:通过观察残差分布图、残差的均值和方差等指标,来判断模型是否满足假设条件。

五、模型应用简单线性回归模型广泛应用于各个领域中,例如经济学、金融学、社会科学等。

通过建立自变量与因变量之间的线性关系,可以预测和解释因变量的变化。

六、模型局限性简单线性回归模型也存在一些局限性,例如:1. 假设限制:模型对数据的假设比较严格,需要满足线性关系、独立性、同方差性和正态性等假设条件。

2. 数据限制:模型对数据的需求比较高,需要保证数据质量和样本的代表性。

3. 线性拟合局限:模型只能拟合线性关系,无法处理非线性关系的数据。

简单线性回归模型是一种简单且常用的统计方法,可以用于探索变量之间的关系,并进行预测和解释。

然而,在使用模型时需要注意其假设条件,并进行适当的拟合度评估。

2简单线性回归模型

简单线性回归模型第二章学习要点一简单线性回归模型的设定二简单线性回归模型的基本假定三简单线性回归模型参数的估计方法四参数估计量的统计性质五拟合优度的度量六回归系数的区间估计和假设检验七回归模型预测八eviews应用经济变量间的相互关系确定性的函数关系
第二章
简单线性回归模型
学习要点
一、简单线性回归模型的设定 二、简单线性回归模型的基本假定 三、简单线性回归模型参数的估计方法 四、参数估计量的统计性质 五、拟合优度的度量 六、回归系数的区间估计和假设检验 七、回归模型预测 八、EViews应用
Yi

ui
X
ui Yi E(Yi X i ) Yi 1 2 X i
3、样本回归函数(SRF)
样本回归线: 对于X 的一定值,取得 Y 的样本观测值,可计算其条件均 值,样本观测值条件均值的轨迹称为样本回归线。 样本回归函数: 如果把应变量 Y的样本条件均值表示为解释变量 X 的某种 函数,这个函数称为样本回归函数(SRF)。
i
X)
2
1
(4)
wi X i
x x
Xi
x
Xi X
x (X X ) x

2 i i 2 i
X i2 XX i
2

x
xi2
2 i
1

最小二乘估计量b的无偏估计量
(1)b1

i 1
n
n
xi
x
i 1
n
2 i
Yi
i 1
n
xi
2 x i i 1 n
2wn 1wn u n 1u n ) n 1 2 2 2 Var (b1 ) u wi u n 2 i 1 x i

伍德里奇《计量经济学导论》笔记和课后习题详解(简单回归模型)【圣才出品】


β1 就是斜率参数。
②给定零条件均值假定 E(u|x)=0,把斱程中的 y 看成两个部分是比较有用的。一
部分是表示 E(y|x)的 β0+β1一个
部分是被称为非系统部分的 u,即丌能由 x 觋释的那一部分。
二、普通最小二乘法的推导
1.最小二乘估计值
表 2-1 简单回归的术语
3.零条件均值假定 (1)零条件均值 u 的平均值不 x 值无关。可以把它写作:E(u|x)=E(u)。当斱程成立时,就说 u 的均值独立亍 x。 (2)零条件均值假定的意义 ①零条件均值假定给出 β1 的另一种非常有用的觋释。以 x 为条件叏期望值,幵利用 E
1 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

第 2 章 简单回归模型
2.1 复习笔记
一、简单回归模型的定义 1.双发量线性回归模型 一个简单的斱程是:y=β0+β1x+u。 假定斱程在所关注的总体中成立,它便定义了一个简单线性回归模型。因为它把两个发 量 x 和 y 联系起来,所以又把它称为两发量戒者双发量线性回归模型。 2.回归术语
E x y β0 β1x 0
得到
1 n
n i1
yi βˆ0 βˆ1xi
0

2 / 33
圣才电子书 十万种考研考证电子书、题库视频学习平台

1
n
n i 1
xi
yi βˆ0 βˆ1xi
0
这两个斱程可用来觋出 βˆ0 和 βˆ1 , y βˆ0 βˆ1x ,则 βˆ0 y βˆ1x 。
量了 yi 的样本发异,SSR 度量了 ui 的样本发异。y 的总发异总能表示成觋释了的发异和未
觋释的发异 SSR 乊和。因此,SST=SSE+SSR。

实验3计量经济学实验一元线性回归模型

ˆ0~N(0,,n(2Xi XX i2 )2)
ˆ1 ~N(1,,
2
) (Xi X)2
三、知识点回顾
n 4、最小二乘估计量的性质及分布
随机干扰项 i 的方差 2 的估计 ˆ 0 和 ˆ 1 的方差表达式中都包含随机干扰项 i 的方差 2
,由于随机干扰项 i 实际上是无法观察测量的,因此其
量 Y 的平均值。
三、知识点回顾
1、四种重要的关系式
(2)总体回归函数(方程): E(YXi)01Xi
其中总体回归参数真值 0 , 1 是未知的;总体回归方程也是 未知的。
(3)样本回归函数(方程): Yˆi ˆ0 ˆ1Xi
在实际应用中,从总体中抽取一个样本,进行参数估计,从 而获得估计的回归方程,系数 ˆ 0 , ˆ1 为估计的回归系数;用 这个估计的回归方程近似替代总体回归方程,其中估计的回 归系数 ˆ 0 , ˆ1 是总体参数真值 0 , 1 的估计值;基于估计方程 计算的 Y ˆ i 就为 E (Y X i ) 的估计值; 由于我们从来就无法知道真实的回归方程,因此计量经济学 分析注重的是这个估计的回归方程和估计的回归系数;
据;普通最小二乘法给出的判断拟合程度的标准是:残差平
方和最小,即:m in Q ne i2n(Y i Y ˆi)2n Y i (ˆ0ˆ1 X i) 2
i 1
i 1
i 1
最小二乘法就是:在使上述残差平方和Q 达到最小时,确定
模型中的参数 ˆ 0 和 ˆ 1 的值,或者说在给定观测值之下,选
择出 ˆ 0 , ˆ1 的值,使残差平方和Q 达到最小。
接近,这也说明OLS估计值是非常有价值的。
三、知识点回顾
n 4、最小二乘估计量的性质及分布
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学作业姓名:万超班级:08级数学一班学号:118简单线性回归模型一、建立模型为了研究四川省城镇具名消费支出以及可支配收入之间的关系,又经济理论分析可知,收入是影响居民消费支出的主要因素,居民消费支出Y与可支配收入X之间存在密切的关系,消费支出随着收入的增加而增加,但变动的幅度相比较低,即边际消费倾向MPC有0<MPC<1。

因此可设定居民消费支出Yi与Xi的关系为:Yi=1+2Xi+ui,其中1表示四川省城镇居民家庭平均每人年生活性消费支出(元);Xi为城镇居民家丁平均没人年可支配收入(元)。

变量采用年度数据,样本期为1978-1998年。

这里的1为居民没有收入来源时的最低消费。

二、估计模型中的位置参数假设模型中的随机误差项ui满足古典假定,运用OLS方法估计模型的参数,利用计量经济学计算机软件EViews计算过程如下:简历文档,输入数据首先点击EViews图标,进入EViews主页。

点击File后,在File菜单的New选项中点击Workfile,这时屏幕上出现Workfile Range对话框,在Srart Date里键入1978,在End Date里键入1998,点击OK后屏幕出现Workfile工作框。

在Object菜单栏,点击New Object对话框里选Group并在Name for Object上定义文件名,点击OK,屏幕出现数据编辑框。

也可在光标出直接输入Data Y X,回车后即可出现数据编辑框。

此时可录入数据,首先按上行键,这时对应“obs”字样的空格会自动上跳,在对应第二个“obs”字样,有边框的空格里键入变量名,再按下行键,这时对应变量名下的这一列出现“NA”字样,便可依时间顺序键入相应的数据。

其他变量的数据类似输入。

可以几个变量同时录入数据。

在主页上选Quick菜单,点击Eatimate Equation项,屏幕上出现估计对话框(Equation Spacification),在Easmation Setting中选OLS估计,即Least Squares,键入Y C X或Y X C(C为EViews固定的截距系数)。

然后OK,得输入结果。

三、检验模型从估计的结果可以看出,模型拟合较好。

因为可以决系数R2=,表明模型在整体上拟合的非常好。

系数显着性检验:对于2,t的统计量为.给定α=,查t分布表,在自由度n-2=19下,得临界值t(19)=,因为t(19)<t,所以拒绝H2=0,表明城镇居民年人均可支配收入对年人均生活费支出有着显着性影响。

并且从经济意义上看,=,符合经济理论中绝对可收入假说边际消费倾向在0与1之间,表明四川省城镇居民年人均可支配收入每增加1元居民年人均生活费支出平均增加元。

四、预测我们还可以在估计出的Eaquation框里选Forecast项,EViews自动计算出样本估计期内的被解释变量的拟合值,拟合变量记为YF。

运用趋势分析预测1999与2000年的人均可支配收入分辨是元和元。

下面预测1999年、2000年两年居民人均生活费支出。

再输入数据之前将Range从1978——19981扩展为1978——2000。

将X(1999)=和X(2000)=分别输入变量X中,在前面Eguation对话框里选Forecast,将时间Sanple定义在1999——2000,这时EViews自动计算Y(1999)=和Y(2000)=.下面计算Y(1999)和Y(2000)的预测拒签,在X、Y的数据框里点击View,选Dcscriptive State里的Common Sample Eviews使计算出有关X和Y的描述统计结果。

据此可计算如下结果Y(1999)的95%预测区间为(,),Y(2000)的95%预测区间为(,)。

中国旅游市场发展分析一、 模型的背景近年来,中国旅游业一直保持高速的发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。

中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长%,与此同时国内旅游业迅速增长。

改革开放20多年来,特别市进入20实际90年代后,中国的国内旅游收入年均增长%,远高于同期%的增长率。

为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。

二、 模型设定及其估计经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。

为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设施的代表。

为此设定了以下形式的计量经济模型:12233445566t t t t t t t Y X X X X X ββββββμ=++++++其中,t Y 为第t 年全国旅游收入(亿元);2X 为国内旅游人数(万人/次); 3X 为城镇居民人均旅游支出(元); 4X 为农村居民人均旅游支出(元);X为公路里程(万Km);5X为铁路里程(万Km);6为了估计模型参数,收集旅游事业发展最快的1994~2003年的统计数据,如下表所示。

通过Eviews软件对模型进行OLS回归的结果如下图所示:由此可见,该模型20.9954R =,20.9897R =可决系数很高,F 检验值173.3525,明显显着。

但是当0.05α=时/20.025()(106) 2.2776t n k t α-=-=,回归结果显示2X 、6X 系数的t 检验不显着,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。

为了得到进一步显示,我们求出数据的相关系数矩阵:由相关系数矩阵可以看出,各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。

三、 模型的修正1) 逐步回归法分别做Y 对2X 、3X 、4X 、5X 、6X 的一元回归,得到的结果如下表所示:33明显加入5的效果比较好,继续加:26345修正之后的回归结果为:3452442.386 4.2196 3.216013.6279t Y X X X =-+++(8.2537)t =- (3.9502) (3.0633) (4.6945)20.9915R = 20.98718R = 231.7958F = 1.9520DW =经济学解释为在其它因素不变的情况下,当城镇居民人均旅游支出3X 和农村居民人均旅游支出4X 分别增长1元,公路里程5X 每增加1万Km 时,国内旅游收入Y 将分别增长亿元、亿元和亿元。

2) 差分法效果不好 = =|||医疗机构模型一、问题的提出与模型设定根据本章引子提出的问题,为了给制定医疗机构的规划提供数据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口的回归模型。

假定医疗机构数与人口数之间满足线性约束,则理论模型设定为其中, Y表示医疗机构数,X表示人口数。

由2001年《四川统计年鉴》得到以下数据二、参数估计进入EViews软件包,确定样本范围,编辑输入数据,选择估计方程菜单,估计以下样本回归函数(下图)估计样本回归函数Dependent Variable: YMethod: Least SquaresDate: 11/14/11 Time: 17:17Sample: 1901 1921Included observations: 21Variable Coefficient Std. Error t-Statistic Prob.XAdjusted R-squared . dependent var. of regression Akaike info criterionSum squared resid7375164. Schwarz criterionLog likelihood F-statisticDurbin-Watson stat Prob(F-statistic)估计结果为括号内t为统计量。

三、检验模型异方差本例用的是四川省2000年各地市州的医疗机构数何人口数,由于地区之间存在不同人口数,因此,对各种医疗机构的设置数量会存在不同的需求,这种差异使得模型很容易产生异方差。

从而影响模型的估计和作用。

为此,必须对该模型是否存在异方差进行检验。

(一)图形法生成残差平方序列。

在得到上述结果后,立即用生成命令建立序列ei^2,记为e2,生成过程如下绘制散点图。

选择变量名X与e2,进入数据列表可得散点图如下2、判断由上散点图可以看出,残差平方对解释变量X的散点图主要分布在图形中的下三角部分,大致看出残差平方随Xi的变动呈增大趋势,因此模型很可能存在异方差。

但是否确实存在异方差还应通过进一步的检验。

(二)Goldfeld-Quanadt检验1、EViews软件操作对变量取值排序(按递增或者递减)。

在Procs菜单里选Sort Series 命令,出现排序对话框,如果以递增型排序。

选择Ascending,如果以递减排序选择Decending,输入X,点击OK。

本例选择递增排序,这时变量Y与X将以X按递增排序。

构造子样本区间,建立回归模型。

在本例中,样本容量n=21,删除中间1/4的观测值。

即大约5个观测值,余下部分平分得两个样本区间:1-8和14-21,他们的样本个数均是8,即n1=n2=8.在sample菜单里,将区间定义为1-8,然后用OLS方法得到以下结果在sample菜单里,将区间定义为14-21,再用OLS方法求得以下结果,见下表求F统计量值。

基于表和表中残差平方和(sum/squared/residual)的值,由表可以得到残差平方和为=,由表中可以得到残差平方和为=,根据Goldfeld-Quanadt检验,F统计量为判断。

在a=下()式中分子、分母的自由度均为6,查F分布表,得临界值F=>F()=,所以拒绝原假设,表明模型确实存在异方差。

(三)White检验由表估计结果,按路径view/residul tests/white heteroskedasticity(no cross terms or cross terms),进入White 检验。

根据White检验中辅助函数的构造,最后一项为变量的交叉乘积项,因为本例为一元函数,故无交叉乘积项,因此应选no cross terms,则辅助函数为经检验出现White检验结果,见表.从表可以看出,nR^2=,由White检验知,在a=下,查分布表得临界值=,同时X与的t检验也很显着。

比较计算的统计量与临界值,因为=>,所以拒绝原假设,不拒绝备择假设,表明存在异方差。

表四、异方差的修正运用加权最下二乘法(WLS)估计过程中,我们分别选用了权数=。

相关文档
最新文档