15-Xu et al._BIOLOGICAL RESEARCH 20
斑马鱼miR-15a对红细胞发生的作用研究

基因组学与应用生物学,2020年,第39卷,第11期,第4928 4933页研究报告Research Report斑马鱼m iR-15a对红细胞发生的作用研究裴田瑛1颜帅帅'许强华11上海海洋大学海洋科学学院,上海,20丨306; 2上海海洋大学,大洋漁业资源可持续开发省部共建教部重点实验室,丨•.海,201306; 3上海海 洋大学,国家远洋渔业工程技术研究中心,上海,201306: 4上海海洋大学,远洋渔业协同创新中心,上海,201306*通信作者,*************.cn摘要微小RNA (miRNA)是长度约为22 n t的小分子RNA,其转录后调节数千个基因的表达。
多种 miRNAs是红细胞分化的关键调节因子,在造血中起关键作用。
生活在高海拔的青藏裂腹鱼相比于低海拔裂 腹鱼血液组织中血红蛋白含量有着明显差异为切入点,本研究以斑马鱼作为模式生物,筛选出青藏高原裂腹 鱼血液组织中高表达的miR-15a,合成模拟物并在斑马鱼胚胎内过表达,36 h后固定胚胎固蓝染色发现血红 蛋白的含量明显减少。
靶基因预测结果显示CBFp-3’UTR靶向miR15a,通过一系列分子生物手段进行靶 基因验证。
结果表明,miR-15a通过靶向CBFp-3'U TR对红细胞发生起作用。
关键词miR_15a,CBFp,红细胞发生,斑马鱼Effect o f Zebrafish miR-15a on Erythropoiesis ProductionPei Tianying1Yan Shuaishuai1Xu Qianghua l2,3,4*1College of Marine Science, Shanghai Ocean University. Shanghai, 201306; 2 Key Laboratory of Sustainable Development of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306; 3 National Oceanic Fisheries Engineering Technology Research Center, Shanghai Ocean University, Shanghai, 201306; 4 Oceanic Fisheries Collaborative Innovation Center, Shanghai Ocean University, Shanghai, 201306*Corresponsingauthor,*************.cnDOI: 10.13417/j.gab.039.004928Abstract MicroRNAs(miRNAs)are small RNAs of about22 n t in length that regulate the expression of thousands of genes after transcription.Multiple miRNAs are key regulators of blood cell differentiation and play a key role in hematopoiesis.The difference in hemoglobin content between the high-altitude Qinghai-Tibet fish was compared with that in the low-altitude cracked fish,and the zebrafish was used as a model organism to express high expression in the blood tissue of the Qinghai-Tibet Plateau in this study.miR-15a overexpressed miR-15a in zebrafish embryos.After 36 hours,embryonic fixation and solid blue staining showed a significant decrease in hemoglobin content.The target gene prediction results showed that the CBFp-S'UTR targets miR-15a,and the target gene is verified by a series of molecular biological means.The results indicate that miR-15a acts on hemoglobin production by targeting CBFp-3'UTR.Keywords miR-15a,CBFp,Erythropoiesis,Zebrafish红细胞为所有组织和器官提供氧气,并在整个 身体内循环。
拮抗放线菌ZZ-9菌株发酵液的抑菌谱及稳定性测定

拮抗放线菌ZZ-9菌株发酵液的抑菌谱及稳定性测定范万泽;薛应钰;张树武;徐秉良【摘要】为探究拮抗放线菌ZZ-9(Streptomyces rochei)菌株发酵液的抑菌谱,并明确传代培养、温度、光照、pH及紫外线等理化因素对发酵液稳定性的影响.以15种植物病原真菌为供试菌,采用菌丝生长速率法测定发酵液的抑菌谱,并以苹果树腐烂病菌(Cytospora sp.)为指示菌,测定不同条件下发酵液的稳定性.抑菌谱结果表明:ZZ-9菌株发酵液对供试的15种病原真菌均具有不同程度的抑制作用,其中对苹果树腐烂病菌和立枯丝核菌抑制效果最好,生长抑制率可达96%以上,且效果持久;而对苹果轮纹病菌、蚕豆褐斑病菌、月季叶霉病菌等抑制效果较差,抑制率在27%以下.稳定性试验结果表明:菌株传接6代时,活性稳定,从第7代开始菌株活性下降显著;发酵液耐高温,对强酸强碱处理、可见光及紫外线照射均有较好的稳定性;且在4℃及室温(20~25℃)下可贮藏至少30 d而保持其抑菌活性几乎不变.因此,拮抗放线菌ZZ-9菌株次生代谢产物具有较广谱的抑菌活性和较强的稳定性,具有开发成微生物农药的潜力.%To study bacteriostatic spectrum of fermentation broth from actinomycetes strain ZZ-9 identified as Streptomyces rochei,and to verify the effect of it on stability of fermentation broth under biochemical and physical factors such as subculture,temperature,illumination,pH and ultraviolet conditions.As the tested phytopathogen,method of growth rate was used to determine antimicrobial spectrum of fermentation broth with 15 kinds of plant pathogenic fungus.With Cytospora sp.as indicator phytopathogen,the stability of fermentation broth under different conditions was measured.The bacteriostatic spectrum results showed that the fermentation broth of ZZ-9 strain had inhibitory effects at differentdegres on 15 kinds of pathogenic fungus.With growth inhibition rate of more than 96% and the lasting effect,the fermentation broth of ZZ-9 strain had the best effect on Cytospora sp.and Rhizoctonia solani,and it had worse effect on Botryosphaeria piricola,Cladosporium cladosporioidesv and Ascochyta fabae,the inhibition rate was under 27 %.The stability test showed that the activity of strain was stable until the 6th generation,it decreased significantly from the 7th generation,and the fermentation broth had high temperature resistance,good stability under strong acid and alkali,visible light and ultraviolet irradiation treatments.Moreover,the fermentation broth could be stored for at least 30 days at 4 ℃ and room temperature (20-25 ℃),the activity remained nearlyunchanged.Therefore,the secondary metabolites of antagonistic actinomycetes ZZ-9 strain had broad-spectrum antibacterial activity and strong stability,and the potential could be developed into the microbial pesticide.【期刊名称】《西北农业学报》【年(卷),期】2017(026)003【总页数】8页(P463-470)【关键词】拮抗放线菌;发酵液;抑菌谱;稳定性【作者】范万泽;薛应钰;张树武;徐秉良【作者单位】甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室,兰州730070;甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室,兰州730070;甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室,兰州730070;甘肃农业大学植物保护学院/甘肃省农作物病虫害生物防治工程实验室,兰州730070【正文语种】中文【中图分类】S482.2+92中国是世界上农药和化肥污染最严重的国家之一,化学农药的滥用不仅对生态环境、人类健康产生影响,而且易造成病虫害抗性等问题。
艾纳香化学成分及药理活性研究进展

3,3′,5,7-四羟基-4′-甲氧基-二氢黄酮、7-甲氧基紫衫叶素(padmatin )、木犀草素-7-甲醚、槲皮素等7个黄酮类化合物。
1.2 挥发油张颖等[5]研究共检测出45个化合物,其中主要化学成分14种,为2-茨醇、反式石竹烯、D-樟脑、石竹素等。
李亮星等[6]实验研究结果不同产地的两种艾纳香中鉴定了57、53种化合物,占各自挥发性成分总量的98.32%和98.14%,其中共有化合物为52种,其中樟脑、(-)龙脑、β-石竹烯、α-蒎烯、β-蒎烯、莰烯这6种成分占纳艾纳香挥发油的86.31%。
1.3 萜类化合物胡永等[3]从艾纳香不同部位中已经分离得到艾纳香烯N 和艾纳香烯F 。
XU 等[7]研究发现艾纳香地上部分提取分离得到倍半萜类物质。
WANG 等[8]研究发现艾纳香挥发油中提取得到较高的单萜和倍半萜等多种萜类化合物。
1.4 甾醇类化合物陈美安等[2]研究发现艾纳香含有的的甾醇化合物主要有木栓酮、木栓醇、β-谷甾醇、木犀草素、山奈酚、邻苯二甲酸二丁酯、原儿茶醛、原儿茶酸、咖啡酸、水杨酸等。
1.5 多糖类化合物许子竞等[9]研究发现滇桂艾纳香多糖的分离纯化及单糖组成分析发现主要由鼠李糖、果糖和半乳糖组成。
石少瑜等[10]0 引言艾纳香(Blumea balsamifera DC )是贵州省十大苗药之一,为菊科艾纳香属植物,民间又称大风艾、再风艾、大骨风、牛耳艾、冰片艾、大黄草、土冰片、艾粉、真金草、山大艾等。
艾纳香化学成分有黄酮类、挥发油类、甾醇等,尤其是艾纳香叶用于加工提取挥发油,研究表明,艾纳香挥发油中具有龙脑(天然冰片)、樟脑、柠檬烯等多种活性成分及这些成分具有重要的药理活性[1]。
其挥发油中提取得到的冰片,《本草纲目》描述,冰片具有“通诸窍、散郁火”之功效,此外还具有消炎灭菌、作为香料香精的原料等用途。
黄酮类具有抗肿瘤活性、抗酪氨酸激酶活性、抗氧化活性等药理作用,用途广泛。
现对近年来艾纳香主要化学成分及药理活性研究综述,为艾纳香药用资源的深入研究及系统开发利用提供科学依据。
褐藻多糖硫酸酯的生物活性及应用前景_马浩

现 ,褐 藻 多 糖 硫 酸 酯 具 有 良 好 的 抗 凝 血 功 能 ,引 起 了 人 们的兴趣。
Athukorala等[7]通 过 记 录 静 脉 内 皮 细 胞 中 活 化 部分凝血活酶时 间 (APTT)、凝 血 酶 时 间 (TT)、凝 血 酶 原 时 间 (PT),发 现 从 静 脉 内 皮 细 胞 分 离 出 的 褐 藻 多 糖 硫 酸 酯 通 过 与 抗 凝 血 酶 Ⅲ (ATⅢ )相 互 作 用 ,强 烈 地 抑 制 凝 血 因 子 活 性 ,表 现 出 与 肝 素 相 近 的 抗 凝 血 活 性 。 Nishino等[8]研究了具 有 不 同 硫 酸 基 含 量 的 褐 藻 多 糖 硫 酸 酯 的 抗 凝 血 活 性 ,结 果 表 明 ,其 主 要 的 抗 凝 血 酶 活 性是通过肝素辅助因 子 Ⅱ 介 导 的,抗 凝 血 酶 活 性 随 硫 酸基含量的增加而显著提高。de Zoysa等[9]从发酵 的 褐藻马尾藻 中 分 离 的 褐 藻 多 糖 硫 酸 酯 具 有 抗 凝 血 性 能。将冻干的褐藻置于25 ℃的孵化器中70d,褐藻大 分子物质转化成抗凝 血 多 糖 硫 酸 酯 (ASP),56d 时 的 褐藻粗提 物 (SWE)已 表 现 出 较 高 的 抗 凝 血 活 性。 进 一 步 研 究 其 抗 凝 血 活 性 表 明 ,小 鼠 最 大 耐 受 量 达1.2g ·kg-1,表 明 其 具 有 较 低 的 毒 性 。
神经酰胺酶在鞘脂代谢和肿瘤中的作用

Science &Technology Vision 科技视界,。
,,。
,[1]。
,、、、。
(Cer)(SPH)、,-1-(S1P)[2]。
5(ASAH1、ASAH2、ACER1、ACER2ACER3)[3]。
5,,。
1神经酰胺酶1.1ASAH1(ASAH1)Cer SPH,,ASAH1、、[4]。
Lucki [5]genistein GPR30c-Src ERK1/2ASAH1,α-1ASAH1,。
genistein ASAH1B2,ASAH1。
Justine [6]ASAH1,ASAH1,,。
Marko [7]ASAH1,。
ASAH1HCT116(OXA),ASAH1(carmofur),OXA 、、。
OXA OXA ,2β1,κB(NF-κB)B(Akt)。
,OXA ASAH1。
1.2ASAH2ASAH1。
,ASAH2(nCDase)。
nCDase ,nCDase ,[8]。
Monica [9]神经酰胺酶在鞘脂代谢和肿瘤中的作用黄铃月1谭亲友1,2(1.桂林医学院药学院,广西桂林541199;2.桂林医学院附属医院药学部,广西桂林541000)【摘要】鞘脂在癌细胞的生长和死亡中起着关键作用,越来越成为新型抗癌疗法的主题。
鞘脂途径中的几种酶有助于神经酰胺和S1P 的稳态。
神经酰胺酶是一种溶酶体半胱氨酸水解酶,可催化神经酰胺转化为脂肪酸和鞘氨醇。
在在人类中,已知有五种不同的神经酰胺酶———酸性神经酰胺酶、中性神经酰胺酶和碱性神经酰胺酶1、2和3,它们由五种不同的基因(分别为ASAH1、ASAH2、ACER1、ACER2和ACER3)编码组成。
于神经酰胺的增加和随之而来的S1P 的减少会减少各种癌症的增殖,因此神经酰胺酶可能为抗肿瘤治疗提供新的靶点。
文章旨在评估目前神经酰胺酶在鞘脂代谢和肿瘤治疗中可能发挥的潜在作用。
【关键词】神经酰胺酶;鞘脂代谢;肿瘤中图分类号:R73文献标识码:ADOI:10.19694/ki.issn2095-2457.2021.34.50作者简介:黄铃月(1996.03.10—),女,汉族,广西人,桂林医学院,硕士,研究方向:神经鞘脂与肿瘤。
纳米二氧化铈的潜在生态风险及毒性作用机制研究进展

生态毒理学报Asian Journal of Ecotoxicology第16卷第1期2021年2月V ol.16,No.1Feb.2021㊀㊀基金项目:国家自然科学基金资助项目(52039003);中央高校基本科研业务费专项资金资助项目(B210202114);国家自然科学基金青年基金资助项目(52009031);中国博士后科学基金面上项目(2020M671326,2020M681478)㊀㊀第一作者:许伊(1990 ),女,博士,研究方向为农业水土环境,E-mail:*****************㊀㊀*通讯作者(Corresponding author ),E -mail:****************;**************.cnDOI:10.7524/AJE.1673-5897.20201116001许伊,杨士红,尤国祥,等.纳米二氧化铈的潜在生态风险及毒性作用机制研究进展[J].生态毒理学报,2021,16(1):43-55Xu Y ,Yang S H,You G X,et al.Review of the potential ecological risks and toxicity mechanisms of nanoceria [J].Asian Journal of Ecotoxicology,2021,16(1):43-55(in Chinese)纳米二氧化铈的潜在生态风险及毒性作用机制研究进展许伊1,2,杨士红1,尤国祥2,侯俊2,*1.河海大学农业科学与工程学院,南京2100982.河海大学环境学院,浅水湖泊综合治理与资源开发教育部重点实验室,南京210098收稿日期:2020-11-16㊀㊀录用日期:2021-01-16摘要:作为重要的纳米稀土化合物,纳米二氧化铈(CeO 2)被广泛应用于工㊁农㊁医学等领域,随之而来的是大量的纳米CeO 2在其生产使用和处理处置等过程中被释放进入到环境中,进而导致其生物安全性受到越来越多的关注㊂本文从纳米CeO 2对细胞㊁组织器官㊁植物㊁水生生物和土壤生物产生的毒性效应入手,系统综述了纳米CeO 2的潜在环境生态风险;进一步从物理损伤和化学抑制2个方面剖析了纳米CeO 2的生物毒性作用机制;最后基于已有的关于纳米CeO 2生态风险的研究中存在的不足对未来发展方向进行了展望㊂本文旨在为纳米CeO 2的生态安全评价提供理论基础和科学依据㊂关键词:纳米二氧化铈;植物;微生物;细胞毒性;氧化损伤;生态风险文章编号:1673-5897(2021)1-043-13㊀㊀中图分类号:X171.5㊀㊀文献标识码:AReview of the Potential Ecological Risks and Toxicity Mechanisms of NanoceriaXu Yi 1,2,Yang Shihong 1,You Guoxiang 2,Hou Jun 2,*1.College of Agricultural Science and Engineering,Hohai University,Nanjing 210098,China2.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education,College of Envi -ronment,Hohai University,Nanjing 210098,ChinaReceived 16November 2020㊀㊀accepted 16January 2021Abstract :As one of the most important nano -rare earth compounds,nanoceria (nano -CeO 2)has been widely ap -plied in industrial,agricultural and medical areas.Subsequently,large amounts of nano -CeO 2are inevitably released into the environment during their production,utilization and disposal processes.Thereby,the biological safety of re -leased nano -CeO 2has attracted more and more attention.In this paper,the toxicity effects of nano -CeO 2on cells,tissue and organs,plants,aquatic organisms and soil organisms are systemically reviewed to illustrate the potential ecological environmental risks of nano -CeO 2.Furthermore,the biotoxicity mechanisms of nano -CeO 2are explored from the aspects of physical damage and chemical inhibition.At last,the further research directions are proposed based on the shortages existing in the current studies about the ecological risks of nano -CeO 2.The aim of this re -view is to provide theoretical and scientific basis for the evaluation of the ecological safety of nano -CeO 2.44㊀生态毒理学报第16卷Keywords:nano-ceria;plant;microbes;cytotoxicity;oxidative damage;ecological risks㊀㊀纳米(nm)是物理学上的度量单位,当物质尺寸达到纳米尺度(1~100nm)时,其物理化学性质会发生很大的变化,在材料强度㊁韧度㊁磁化率和催化能力等方面表现出特殊性能[1-2]㊂作为现代科技与交叉学科的发展基础,纳米技术在新材料研发㊁生态修复㊁生命健康和国家安全等诸多领域具有广阔的应用和发展前景[3-6]㊂铈(Ce)是元素周期表中第Ⅲ副族镧系元素,是一种稀土元素㊂稀土元素因其独特的金属特性被大量用于纳米材料的生产,而二氧化铈(CeO2)作为稀土氧化物中的重要组成部分,具有独特的理化性质和广泛的应用前景㊂2012年欧盟工作报告指出纳米CeO2的全球产量约为10000t(http://ec.europa.eu/nanotechnology/index_en.html,2012)[7]㊂来自美国地质调查局的数据显示,全球市场中有超过80%的纳米CeO2来源于中国㊂纳米CeO2及含有纳米CeO2的消费品的大规模生产和使用,必然会导致越来越多的纳米CeO2在其生命周期循环过程中向水㊁土和空气等环境介质释放㊂近年来,已有学者结合2014年市场统计数据,通过全生命周期评价模型,评估了自然介质中纳米CeO2的浓度,得出大气中的纳米CeO2浓度为0.01~0.6ng㊃m-3,地表水中的纳米CeO2浓度为0.6 ~100pg㊃L-1,沉积物中的纳米CeO2浓度为0.2~ 45μg㊃kg-1,土壤中的纳米CeO2浓度为24~1500 ng㊃kg-1[6]㊂在纳米CeO2的环境浓度迅速增加的同时,其生物安全与生态效应问题日益突出[8-11]㊂近年来,纳米CeO2的潜在环境风险及生态效应问题引起社会各界学者越来越多的关注㊂作为全球纳米CeO2最大的生产国和销售国,我国更加有必要加强对纳米CeO2生态安全性评价的研究㊂基于此,本文主要综述了不同生态环境内,纳米CeO2的生物毒性效应以及潜在的毒性作用机制,以期为纳米CeO2的安全评价提供科学依据㊂1㊀纳米CeO2的潜在生态风险(Potential ecological risks of CeO2nanoparticles)随着大量含有纳米CeO2产品的生产㊁加工㊁运输和使用,势必会有越来越多的纳米CeO2通过各种途径进入大气㊁土壤及水环境中,进而可能会对人体和生态环境中的生物体产生潜在危害㊂此外,不同环境介质中的纳米材料在外部环境因子㊁生物及非生物的作用下,会发生溶解-释放㊁团聚-沉降㊁吸附-解吸及生物累积-放大等一系列行为变化,最终对生态系统产生毒性胁迫效应㊂纳米CeO2在其生命周期内可能的释放途径㊁环境行为及生态效应如图1所示㊂近年来,关于纳米CeO2的生物毒性及潜在环境风险受到广泛关注,国内外已经开展大量有关纳米CeO2对微生物细胞㊁典型水生生物㊁植物及模式微生物的生长和代谢的影响研究,发现不同生态环境下纳米CeO2的毒性效应不尽相同㊂1.1㊀纳米CeO2对细胞的毒性作用(Toxicity effectsof CeO2nanoparticles on cells)细胞是组成生物体结构和功能的基本单位,关于纳米CeO2的细胞毒性研究已成为一大热点,但在分子水平上探究其毒性作用机制的研究还比较缺乏㊂纳米CeO2对不同的细胞系产生的毒性作用机制有所不同,了解并控制纳米CeO2致毒的机理可以为降低其毒性并制定安全性评价提供可靠的依据㊂Lin等[12]将A549细胞系暴露于纳米CeO2悬液中发现,细胞的存活率随暴露时间及暴露剂量的增加而下降:主要原因是细胞内活性氧(ROS)水平㊁脂质过氧化反应和细胞膜损伤程度增加,同时抗氧化水平下降,表明纳米CeO2在细胞内部引起氧化损伤[13]㊂此外,纳米CeO2还可以导致炎性因子的分泌及DNA损伤,进而引起细胞形态受损和细胞的凋亡㊂Gojova等[14]用不同浓度的纳米CeO2悬液培养HAECs细胞,结果显示暴露细胞内部炎症标记物浓度与纳米CeO2浓度呈显著正相关性,该结果与纳米CeO2引起细胞DNA及染色体的损伤有关[15-16]㊂另有学者利用电流式细胞术结合电镜观察证实,纳米CeO2还可以通过损害细胞形态降低细胞活性,最终诱导细胞凋亡[17-18]㊂值得关注的是,纳米CeO2对不同细胞的毒性作用表现出一定的选择性㊂例如,Park等[18]的研究表明,相同处理条件下纳米CeO2使BEAS-2B细胞活力下降,但对T98G和H9C2细胞的活力没有影响㊂进一步研究表明,纳米CeO2对放射介导下的不同细胞的凋亡和损伤呈现出不同的作用,即对正常的细胞具有保护作用而对相应的癌细胞具有灭活作用[19],这为纳米CeO2在医学领域的应用提供了思路[20]㊂第1期许伊等:纳米二氧化铈的潜在生态风险及毒性作用机制研究进展45㊀图1㊀纳米颗粒(NPs )在其生命周期内的环境行为及释放途径Fig.1㊀The environmental fate and release pathways of nanoparticles (NPs)in the nature1.2㊀纳米CeO 2对组织器官的毒性作用(Toxicityeffects of CeO 2nanoparticles on tissues and organs)纳米CeO 2可以通过多种环境介质的传播和食物链传递等方式进入生物体内,因而纳米CeO 2的广泛使用极大程度地增加了生态环境中的生产者㊁消费者等与纳米CeO 2的接触机会㊂目前,纳米CeO 2对生物体最直接的暴露途径是经呼吸道吸入㊂抛光粉㊁汽车尾气净化剂及柴油燃料添加剂中的纳米CeO 2可以通过呼吸道直接进入机体内部㊂已有报道指出,当空气中纳米CeO 2颗粒含量或毒性超过肺部防御能力时会引起肺损伤㊁纤维化等多种炎症反应㊂例如,Srinivas 等[21]通过连续4h 给雌性和雄性大鼠吸入气溶胶浓度为641mg ㊃m -3的纳米CeO 2并在24h ㊁48h 和14d 后检测大鼠肺部活性发现,急性暴露途径吸入的纳米CeO 2颗粒会通过氧化应激效应诱导细胞毒性,最终导致慢性毒性的发生,但是该过程与暴露时间之间没有显著的相关性㊂向雄性大鼠滴注纳米CeO 2的方式同样发现纳米CeO 2可以引起肺部炎症和肺损伤,进一步导致肺纤维化[22],向雄性大鼠气管滴注纳米CeO 2的方式可产生氧化应激诱导中性粒细胞及淋巴细胞等产生氧化损伤[23]㊂纳米CeO 2进入机体后,会随血液循环到达机体的其他组织器官,包括肝㊁肾㊁心和脑等部位并引发相应的毒性效应㊂对小鼠进行纳米CeO 2灌胃实验证实,经口染毒的纳米CeO 2也会引起肝肾功能的损伤[24]㊂对小鼠的一次性灌胃染毒实验进一步可以证实进入机体内部的纳米CeO 2对脑㊁心脏和脾脏器官产生了一定的毒性作用[25]㊂根据已有研究可以得出,纳米CeO 2对生物体的影响是全方位的㊂因为纳米CeO 2的粒径较小,其不仅可以绕过血脑屏障到达嗅球,还可以随血液循环到达其他组织器官并产生毒性效应㊂但是,目前关于纳米CeO 2作用的具体靶器官及损伤机制还不明确,有待进一步研究证实㊂46㊀生态毒理学报第16卷1.3㊀纳米CeO 2对植物的影响(Toxicity effects of CeO 2nanoparticles on plants)作为环境中的重要组成部分,植物在维持生态系统平衡㊁为动物和人类提供能量过程中发挥着不可替代的作用㊂然而,随着空气㊁水体和土壤中纳米颗粒的不断累积,植物会不可避免地通过根系或叶片暴露于纳米CeO 2富集的环境中㊂一旦植物表面接触了纳米CeO 2,其会在植物体内通过吸收㊁转运等方式储存在不同的部位,进而极有可能进入食物链并在高等生物体内累积㊁放大[26-27]㊂Zhang 等[28]研究黄瓜对纳米CeO 2的吸收和运输时发现,黄瓜根部可以快速吸收纳米CeO 2并向上迁移㊁转运到其他组织中,且纳米颗粒的尺寸越小越容易被吸收,累积量也越多[29]㊂进一步利用扫描透射电子显微镜及X 射线精细近边结构谱技术发现,累积在黄瓜根部的纳米CeO 2大部分被生物转化并主要以磷酸铈的形式存在,而在茎尖组织部位的纳米CeO 2则大部分以羧酸铈的形式存在[28]㊂在纳米CeO 2表面生成的磷酸铈沉淀会降低纳米CeO 2的生物可利用性,进而降低其毒性[30]㊂另外,植物体内或根部在应对纳米暴露过程中分泌的物质可能会改变纳米颗粒的团聚状态和介质的pH 值,导致纳米CeO 2发生还原溶解的现象,这一结果是引起纳米CeO 2不同的生物累积状况及生物毒性效应的原因[31]㊂除在植物体内的吸收㊁运移和转化外,纳米CeO 2对高等植物的毒性作用也得到了大量的证实㊂Priester 等[32]研究了纳米CeO 2对大豆的影响,发现纳米CeO 2不仅会抑制大豆的生长㊁降低大豆的产量,高浓度情况下还会抑制大豆根瘤的固氮效果㊂利用随机扩增多态DNA 技术可以直接证实纳米CeO 2对大豆的基因毒性[33]㊂Hernandez -Viezcas 等[34]和Bandyopadhyay 等[35]同样观察到纳米CeO 2暴露条件下,大豆及苜蓿根部共生的固氮菌活性会受到明显抑制,导致植物生长过程中氮循环过程受阻㊂Ma 等[36]研究纳米CeO 2对拟南芥生物量的影响时指出,500~2000mg ㊃L -1暴露浓度下,拟南芥的生长与对照组相比减少了85%㊂而浓度为1000mg ㊃L -1和2000mg ㊃L -1时拟南芥叶片叶绿素含量分别降低了60%和85%㊂分析潜在机制主要是暴露过纳米CeO 2的植物内脂质过氧化水平㊁电解质释放及功能酶活性都发生了变化,表明纳米CeO 2对植物细胞造成氧化胁迫效应[37-38]㊂1.4㊀纳米CeO 2对水生生物的毒性效应(Toxicityeffects of CeO 2nanoparticles on aquatic organisms)目前为止,还没有确切的实验现象来证实纳米CeO 2可以进入到生物细胞内部,但大量试验结果佐证了纳米CeO 2的确可以进入到胞外聚合物(EPS)或吸附在微生物细胞膜上[39]㊂近年来关于纳米CeO 2对水生生物的毒性效应的报道层出不穷,且毒性效应与纳米尺寸及生物体的种类息息相关㊂已有研究中关于纳米CeO 2对水生生物毒性效应的详细内容如表1所示㊂在纳米CeO 2对水生生物的影响研究中,水生生物种类㊁暴露方式及积累的Ce 含量的不同均会导致相应的半致死浓度(LC 50)不同㊂例如,在暴露于亚致死浓度的纳米CeO 2的过程中,吸附在小球藻(Chlorella pseudomonas )上的纳米CeO 2的量是大型溞上面Ce 元素总量的3倍㊂大型溞(Daphniapulex )主要是通过食物链的摄食过程吸收纳米CeO 2,而小球藻自身较大的比表面积使其能够吸附更多的纳米CeO 2[49]㊂van Hoecke 等[43]将大型溞暴露于14㊁20和29nm 的纳米CeO 2悬液21d ,发现对于2种较小尺寸的纳米CeO 2LC 50约为40mg ㊃L -1,而29nm 的LC 50为71mg ㊃L -1㊂相比较于大型溞,同形溞(D.similis )对纳米CeO 2的毒性抵抗能力更强,其LC 50值大约是大型溞的350倍[50]㊂纳米CeO 2对大肠杆菌(E.coli )和枯草芽孢杆菌(B.subti -lis )的毒性明显高于奥奈达希瓦氏菌(S.oneiden -sis )[51]㊂当以隐杆线虫(C.elegans )作为模式生物时,0.172μg ㊃L -1的纳米CeO 2即可以引起其体内ROS 累积㊁氧化损伤及生命周期的缩短[52]㊂然而,在斑马鱼(Danio rerio )的暴露实验中,500μg ㊃L -1的纳米CeO 2在斑马鱼的肝脏部位有明显的积累,5000μg㊃L -1浓度暴露下斑马鱼对纳米CeO 2却没有明显的吸收,且纳米CeO 2在72h 的暴露过程中只有超过200mg ㊃L -1时才对斑马鱼产生明显的毒性作用[43]㊂在贝类(Mytilus galloprovincialis )对纳米CeO 2的吸收实验中,不同的暴露方法(即直接暴露或通过摄食浮游植物暴露)对贝类吸收纳米CeO 2量的影响只表现在前2周,因为随着贝类体内累积的纳米CeO 2含量的增加,其自身清除速率也会相应增加以抵抗组织中不断增加的纳米CeO 2含量[53]㊂目前已有报道中,由于不同暴露实验中所用纳米CeO 2的理化性质不同,导致相同水生生物对纳米CeO 2暴露的毒性响应有所不同,因而难以对纳米第1期许伊等:纳米二氧化铈的潜在生态风险及毒性作用机制研究进展47㊀表1㊀纳米CeO2对水生生物的毒性研究Table1㊀Studies assessing the toxicity of CeO2NPs to aquatic organisms受试生物Tested organisms颗粒尺寸/nmParticle size/nm电势/mVPotential/mV暴露时长Exposuretime测定指标Tested endpoints作用浓度Effective concentration文献Reference大肠杆菌E.coli 7+12h生长状况Growth conditions无None[40] 7+3h成活实验(CFU)Colony forming units(CFU)<0.9mg㊃L-1,<90%;5mg㊃L-1,50%;230mg㊃L-1,100%[40] 7+24h活/死细菌Live/dead bacteria100mg㊃L-1,10%存活率(Survival rate)[41]集胞藻Synechocystis 7+10dCFU㊁活/死细菌CFU,live/dead bacteria100mg㊃L-1,无影响(No effects)(再生水Reclaimed water);20mg㊃L-1,20%存活(Survival)(纯水Pure water)[41]项圈藻Anabaena <50-0.03ʃ0.1672h/96h光合强度Photosynthetic intensity0.01~100mg㊃L-1[42] 100.4ʃ0.824h荧光强度Fluorescence intensityEC50:6.3mg㊃L-1[39] 2522.4ʃ1.324h荧光强度Fluorescence intensityEC50:0.56mg㊃L-1[39] 5018.7ʃ0.824h荧光强度Fluorescence intensityEC50:0.27mg㊃L-1[39] 600.7ʃ1.124h荧光强度Fluorescence intensityEC50:7.5mg㊃L-1[39]月牙藻Selenastrum reinsch10-12.5ʃ0.972h/96h生长(光密度㊁细胞计数㊁三磷酸腺苷(ATP))Growth(Optical density,cell counting,adenosinetriphosphate(ATP))EC50(光密度Opticaldensity):12.8mg㊃L-1;细胞计数Cell counting:29.6mg㊃L-1;ATP:12.3mg㊃L-1[39]25-15.5ʃ172h/96h生长(光密度㊁细胞计数㊁ATP)Growth(Optical density,cell counting,ATP)EC50(光密度Opticaldensity):0.95mg㊃L-1;细胞计数Cell counting:9.7mg㊃L-1;ATP:5.3mg㊃L-1[39]50-16ʃ0.972h/96h生长(光密度㊁细胞计数㊁ATP)Growth(Optical density,cell counting,ATP)EC50(光密度Opticaldensity):0.88mg㊃L-1;细胞计数Cell counting:4.4mg㊃L-1;ATP:2.4mg㊃L-1[39]60-10.9ʃ0.372h/96h生长(光密度㊁细胞计数㊁ATP)Growth(Optical density,cell counting,ATP)EC50(光密度Opticaldensity):8.96mg㊃L-1;细胞计数Cell counting:16.4mg㊃L-1;ATP:8.5mg㊃L-1[39] 14,20,29-15~-19.672h生长状况Growth conditionEC10:2.6~5.4mg㊃L-1;EC50:10.2~19.1mg㊃L-1;LOEC:5.6mg㊃L-1;NOEC:3.2mg㊃L-1[43]48㊀生态毒理学报第16卷续表1受试生物Tested organisms颗粒尺寸/nmParticle size/nm电势/mVPotential/mV暴露时长Exposuretime测定指标Tested endpoints作用浓度Effective concentration文献Reference月牙藻Selenastrum reinsch<50-16.0ʃ0.972h光合强度Photosynthetic intensity促进Promotion:0.01~1mg㊃L-1;抑制Inhibition:10~100mg㊃L-1[42] 10~20-13~-1872h藻生长速率Growth rate of algae抑制Inhibition:1mg㊃L-1;EC50:10mg㊃L-1[44]摇蚊Chironomidae 15,30无None24h死亡率Mortality15nm,10%致死Lethal:1mg㊃L-1;30nm,15%致死Lethal:1mg㊃L-1[45] 15,30无None24h生长状况Growth condition无影响No effects:1mg㊃L-1[45] 15,30无None24h繁殖Reproduction无影响No effects:1mg㊃L-1[45]大型溞Daphnia magna<25-1096h存活状况Survival status无影响No effects:10mg㊃L-1[46-47] <25-1096h蜕皮状况Exuviate conditions抑制Inhibition:10mg㊃L-1[46-47] <25-1096h生长状况Growth condition抑制Inhibition:0.01mg㊃L-1,10mg㊃L-1;无抑制No inhibition:0.1mg㊃L-1,1mg㊃L-1[46-47] <25-1021d存活状况Survival status无致死No lethal:0.1mg㊃L-1,1mg㊃L-1;100%致死Lethal:10mg㊃L-1[46-47] <25-1021d蜕皮状况Exuviate conditions无影响No effects:<10mg㊃L-1[46-47] <25-1021d生长状况Growth condition无影响No effects[46-47] 15,30无None96h死亡状况Death15nm,10%致死Lethal:1mg㊃L-1;30nm,无致死No lethal:1mg㊃L-1[45] 15,30无None96h生长状况Growth condition无影响No effects:1mg㊃L-1[45] 15,30无None96h繁殖Reproduction无影响No effects:1mg㊃L-1[45] 14,20,29-3.9~-9.121d存活状况Survival conditionEC50:36.9mg㊃L-1,71.1mg㊃L-1;NOEC:32~56mg㊃L-1[43] 14,20,29-3.9~-9.121d繁殖ReproductionEC10:8.8mg㊃L-1,20mg㊃L-1;EC50:20.5mg㊃L-1,42.7mg㊃L-1;LOEC:18~32mg㊃L-1;NOEC:ɤ18mg㊃L-1[43] 14,20,29-3.9~-9.121d移动能力Mobility无影响No effects:1000mg㊃L-1[43]斑马鱼胚胎Zebrafish embryos 14,20,29无None24,48,72h移动㊁孵化Mobility,incubation无影响No effects:200mg㊃L-1[43]斑马鱼Zebrafish <25,10.2无None14d吸收Assimilation肝脏累积Liver accumulation:500μg㊃L-1;无明显累积No accumulation:5000μg㊃L-1[48]注:EC50表示半效应浓度,EC10表示10%的效应浓度,LOEC表示最小观察效应浓度,NOEC表示无可观察效应浓度㊂Note:EC50refers to the median effective concentration;EC10refers to the10%effective concentration;LOEC refers to the lowest observed effective con-centration;NOEC refers to the no observed effective concentration.第1期许伊等:纳米二氧化铈的潜在生态风险及毒性作用机制研究进展49㊀CeO2在水环境中的生态效应得出一致的结论㊂此外,毒理实验中得到的纳米CeO2对水生生物的毒性效应浓度往往低于模型预测的浓度,可能原因是实际水环境介质中的天然有机物(NOM)㊁离子强度或pH对纳米CeO2的团聚分散行为与化学反应活性产生了影响,进而间接影响了其毒性效应㊂因此,建立不同水环境条件下纳米CeO2的赋存分布特征及反应活性与其毒性效应间的关系对全面认识并评估纳米CeO2的生态风险具有重要意义㊂1.5㊀纳米CeO2对土壤生物的影响(Toxicity effectsof CeO2nanoparticles on soil organism)由于纳米CeO2较小的尺寸,其可以透过土壤的宏观或微观孔隙,进而对土壤生物产生不利的影响㊂已有研究多关注纳米CeO2对土壤中无脊椎动物的生理活性的影响,而关于纳米CeO2对土壤微生物群落结构的影响的内容还比较少㊂因为纳米CeO2可以通过多种直接或间接的致毒途径影响微生物群落的组成结构,因而难以解析纳米CeO2实际的毒性效应及作用机制㊂直接作用主要源于纳米CeO2可以通过吸附作用改变有毒物质或营养盐的生物可利用性,而间接作用主要是由于纳米CeO2与NOM或毒性有机物的相互作用可以扩大或缓解其毒性效应[54]㊂Vittori Antisari等[55]选取2种土壤,用100mg Ce㊃kg-1(土壤干质量)的纳米CeO2暴露60d后发现2种土壤内微生物的生物量均未发生明显变化㊂但是,纳米CeO2降低了微生物的C与N比值且增加了微生物的代谢商数(q CO2),主要原因是微生物栖息的土壤环境组成成分发生变化,细胞内部受到胁迫效应㊂关于土壤无脊椎动物的研究,目前主要集中在秀丽隐杆线虫(Caenorhabditis elegans)和蚯蚓(Eisenia fetidia)2种㊂对比Ce盐及3种不同粒径的纳米CeO2对蚯蚓的毒性作用发现[58],所有的暴露实验中,蚯蚓体内累积的Ce含量都随暴露浓度的增加而增加,且暴露于纳米CeO2颗粒的蚯蚓相比较暴露于离子态Ce的蚯蚓累积量更多㊂组织学观察结果显示,暴露于纳米CeO2的蚯蚓的体壁角质层损失明显,肠上皮细胞完整性遭到破坏㊂因而,尽管蚯蚓的生存及繁殖在相对较短的暴露实验中没有受到明显的影响,但是组织学的变化可以在一定程度上推断蚯蚓在长期暴露过程中受到的毒性抑制作用[59]㊂Collin等[57]进一步说明了纳米CeO2表面的电极电势对其毒性效应具有显著影响㊂带正电的纳米CeO2相较于中性及带负电的纳米CeO2表现出更高的生物累积及生物毒性效应,其在24h暴露实验中对生长阶段的隐杆线虫LC50为15.5mg㊃L-1㊂作为典型的土壤模式生物,纳米CeO2对秀丽隐杆线虫的毒性胁迫效应受到专家学者的广泛关注,纳米CeO2不同的理化性质导致其对秀丽隐杆线虫产生的毒性有所不同,具体内容如表2所示㊂综上所述,纳米CeO2对土壤生物的毒性效应会受到土壤中NOM含量㊁纳米CeO2自身电极电势及粒径的影响㊂因此,为缓解土壤中纳米CeO2的生态风险,可以对纳米CeO2进行改性㊁修饰,如通过吸附NOM以改变纳米CeO2颗粒的表面电势或增加纳米CeO2的粒径,以降低其被蚯蚓或线虫等吞食的风险㊂2㊀纳米CeO2的生物致毒机制(Toxicity mecha-nisms of CeO2nanoparticles on organisms)已有研究中,众多学者对纳米CeO2的生物毒性作用机制进行了一系列的探索,但是目前还没有得出一致的㊁明确的结论,因为纳米CeO2较小的尺寸导致其可以在亚细胞结构(包括细胞膜㊁蛋白质和DNA分子等)上与生物系统发生相互作用进而产生毒性效应㊂根据已有研究,纳米CeO2对生物的毒性作用机理大致可以分为以下2个部分:直接或物理性抑制(包括与细胞本身或细胞膜直接接触并产生相互作用)和间接或化学抑制(即纳米CeO2与生物体的内在㊁外在环境作用进而产生一系列化学因素或化学反应而导致的毒性效应)㊂本文进一步将上述两方面总结绘制如图2所示的概要图㊂在复杂的生物体-纳米CeO2系统中,这2个方面的作用甚至会同时发生㊂2.1㊀物理损伤(Physical damage)纳米CeO2会通过直接吸附在生物细胞外膜上对生物体产生较强的毒性效应,其主要机理包括以下2个方面㊂(1)吸附在细胞表面的纳米CeO2会干扰生物体生存环境中的营养物质向细胞内部的迁移扩散,进而会引起生物体生存环境pH或氧化还原电势(EH)的改变并导致细胞营养缺乏[41,44];(2)一旦与细胞接触,纳米CeO2的不规则形状和粗糙的外表面会直接破坏细胞膜完整性,进而改变细胞膜的粘性及流动性㊁破坏离子泵的功能㊁使得胞内物质流出㊁干扰细胞与外部环境的物质交换过程,最终抑制生物体的生长[40,43-44,60]㊂50㊀生态毒理学报第16卷图2㊀纳米CeO 2通过物理损伤或化学抑制产生的生物毒性作用机制注:ROS 表示活性氧㊂Fig.2㊀Illustrations of CeO 2NPs biological toxicity mechanisms via the physical damage and chemical inhibitionNote:ROS stands for reactive oxygen species.表2㊀纳米CeO 2对土壤中秀丽隐杆线虫的毒性研究Table 2㊀Studies assessing the toxicity of CeO 2NPs to C.elegans in soil颗粒尺寸/nm Particle size/nm 电势/mV Potential/mV 暴露时长Exposure time 测定指标Tested endpoints作用浓度Effective concentration文献Reference 8.5ʃ1.5,38.3无数据No data 动态的Dynamic 寿命Life span 显著降低Significant decrease :172~1720ng ㊃L -1[56]53.34ʃ3.12无数据No data3d生长状况Growth conditions 生长抑制Growth inhibition :2.5~75.0mg ㊃L -1[56]15,45无数据No data动态的Dynamic胁迫响应㊁基因表达㊁生长和死亡数Oxidative stress,gene expression,growth and mortality15nm 抑制(Inhibition)80%:1mg ㊃L -140nm 抑制(Inhibition)100%:1mg ㊃L -1[55]3.99ʃ0.71-9.348h 死亡数Mortality 16.7%:1000mg ㊃L -1[57]3.99ʃ0.71无数据No data 48h 死亡数Mortality <6.7%:1000mg ㊃L -1[57]3.62ʃ0.8-31.548h 死亡数Mortality LC 50:272mg ㊃L -1,15.5mg ㊃L -1[57]3.62ʃ0.8无数据No data 48h 死亡数Mortality <6.7%:1000mg ㊃L -1[57]3.65ʃ0.6928.548h 死亡数Mortality 3.3%:1000mg ㊃L -1[57]3.65ʃ0.69-30~3048h死亡数MortalityHA 缓解(Attenuation)500mg ㊃L -1CeO 2NPs[57]注:LC 50表示半致死浓度㊂Note:LC 50refers to the lethal concentration of 50%.第1期许伊等:纳米二氧化铈的潜在生态风险及毒性作用机制研究进展51㊀2.2㊀化学抑制过程(Chemical inhibition)化学抑制是纳米CeO 2产生生物毒性过程的重要方面,主要包括纳米CeO 2在其颗粒表面或细胞内部发生的一系列氧化还原反应㊂生物体-纳米CeO 2体系中相关的氧化还原化学过程会直接产生过量的ROS ,引起细胞㊁蛋白质及DNA 的损伤㊂下文主要从纳米CeO 2表面产生的ROS ㊁微生物细胞内部产生的ROS ㊁纳米CeO 2与生物体亚细胞结构间特殊的化学反应3个方面阐明其化学抑制机理㊂2.2.1㊀纳米CeO 2表面产生的ROS在外部环境条件作用下,纳米CeO 2的氧化还原特性会使得其晶格内部发生Ce(Ⅳ)与Ce(Ⅲ)相互转化的还原反应,进而激发可产生ROS 的类芬顿反应或在其晶格内部直接产生ROS[61-64]㊂Preda 等[64]证实,外部氧分子(O 2)与纳米CeO 2表面的氧空位(V o )相互作用会形成过氧(O 22-)或超氧(O -2㊃)自由基,相关反应过程可以描述为:[2Ce 3+,V o ]㊀+O 2ң[2Ce 4+,O 22-](1)[2Ce 3+,V o ]㊀+O 2ң[Ce 4+,Ce 3+,O -2㊃](2)在UV 紫外照射下(365nm),Li 等[61]同样观测到在纳米CeO 2表面有O -2㊃产生,但是并未观测到羟基自由基(㊃OH),因为在实验条件下产生㊃OH 的E H 为2.2V ,明显高于纳米CeO 2的价带(1.6eV)㊂然而,Heckert 等[65]提出,在过氧化氢(H 2O 2)存在下,纳米CeO 2表面的Ce(Ⅲ)可以作为活性位点与H 2O 2发生类芬顿反应产生㊃OH ㊂因此,纳米CeO 2表面发生的氧化还原反应及生成的各类ROS 分子会对生物体产生氧化胁迫效应[18]㊂2.2.2㊀纳米CeO 2在生物体内部产生的ROS 纳米CeO 2与细胞结构的物理接触界面也会有ROS 的形成㊂在已有研究中,纳米CeO 2与大肠杆菌㊁生物膜㊁RLE -6TN 小鼠细胞及生菜的相互作用过程中,生物体内同时检测到了㊃OH ㊁O -2㊃或单线氧(1O 2)3种不同形式的ROS[40,66-68]㊂Li 等[61]研究提出上述3种ROS 在生物体内发挥着主要的毒性胁迫作用㊂此外,已有研究证实,在生物体细胞内部带有负电的细胞膜㊁DNA 和RNA 会吸引阳离子到其聚合阴离子表面,通过类芬顿反应产生㊃OH [63]㊂通常,在纳米CeO 2暴露过的生物体内,㊃OH 是主要的ROS 分子,在引起DNA 损伤及多糖裂解等毒性胁迫过程中发挥主导作用[66,69]㊂关于纳米CeO 2在细胞内部诱导产生ROS 的机理尚不明确,但是在生物体系中,诸多因素会激发氧化还原类的反应并产生ROS ,例如纳米CeO 2与无机㊁有机或液态的脂质发生的反应㊂根据已有文献,纳米CeO 2在胞内产生ROS 的主要过程可以归纳为以下几个反应[61,63,70-71]:Ce(Ⅳ)+X red -ңCe(Ⅲ)+X ox(3)Ce(Ⅲ)+O 2ңCe(Ⅳ)+O -2㊃(4)2H ++2O -2㊃ң1O 2+H 2O 2(5)H 2O 2+Ce(Ⅲ)ңCe(Ⅳ)+OH -+㊃OH(6)2LOOH +Ce(Ⅲ)ңCe(Ⅳ)+2LO ㊃+㊃OH+OH -(7)式中:X red -表示胞内与生理学相关的还原性物质,X ox 是其氧化状态,LOOH 表示胞内脂质过氧化物,LO ㊃表示过氧化反应中产生的烷氧基自由基㊂然而目前已有关于纳米CeO 2在胞内产生ROS 的化学反应过程的研究还不够全面,潜在机理方面的探究还有待深入㊂今后的研究应增加对纳米CeO 2表面催化活性位点的关注,同时尝试分析氧化还原反应产物的物质的量比及分子组成,这2个方面会对未来揭示胞内ROS 的产生机理提供一定的帮助㊂2.2.3㊀纳米CeO 2与生物大分子间的化学反应系统阐明纳米CeO 2与生物体相关的大分子间的化学反应是揭示纳米CeO 2致死效应的关键㊂因此,关于纳米CeO 2在微生物细胞内与胞体本身结构或组分间发生的化学反应受到越来越多的关注㊂已有研究得出,当纳米CeO 2进入到生物体内与生物大分子发生接触时,两者之间主要发生以下4个方面的相互作用㊂(1)纳米CeO 2可以直接从磷脂双分子层中剥夺有机磷并与其形成络合物,导致细胞膜裂解和细胞器损伤[72];(2)纳米CeO 2还可以直接使三磷酸腺苷(A TP)和含磷氨基酸中的磷脂键断裂,影响生物体的正常生理功能[73-74];(3)纳米CeO 2与生物体系中电活性物质间的相互作用同样会诱导纳米CeO 2的细胞毒性㊂例如,生物体中含有双硫键的大分子(金属硫蛋白㊁色氨酸等)是具有代表性的还原物质,其很容易被纳米CeO 2氧化,从而导致大分子结构被分解[73,75];(4)由于Ce(Ⅲ)与Ca 2+具有近乎相同的结构和半径,生物体内包含Ca 2+的化合物中,Ca 2+很容易被Ce(Ⅲ)取代[76-77]㊂然而,一旦控制细胞内部信号传导及起调节作用的蛋白分子结构中的Ca 2+被Ce(Ⅲ)取代,细胞功能会发生紊乱,最终影响细胞活性[78]㊂3㊀本领域存在的不足及未来发展方向(Insufficien-cy and future development direction in this field )本文系统综述了纳米CeO 2对细胞㊁组织器官㊁。
应用纳米银敷料治疗烧伤创面的研究进展

应用纳米银敷料治疗烧伤创面的研究进展纳米银敷料是近年来发展起来的功能性敷料,应用于烧伤创面,具有抗菌谱广、无毒副作用、愈合后瘢痕少、渗出少、有利引流、保护创面、镇痛等优点,其杀菌机制为重金属使细菌蛋白质变性,且机体不易产生耐药性。
本文介绍了纳米银的抗菌原理、纳米银敷料用于治疗烧伤创面、纳米银的安全评价,并展望纳米银应用的未来。
标签:纳米银敷料;烧伤创面;生物安全性烧伤患者感染率较高,在治疗过程中,因创面局部血管阻塞,全身抗生素应用难以到达局部创面,单靠静脉用药控制细菌繁殖效果不理想,所以,创面的处理对于治疗烧伤来说显得尤为重要[1]。
在处理创面时主要应用外用药,理想的外用药应具有抗菌谱广、无毒副作用、愈合后瘢痕少、渗出少、有利引流、保护创面、镇痛等特点。
银制剂用作烧伤创面外用药已有数十年历史,具有广谱的杀菌作用,且机体不易产生耐药性。
1纳米银敷料抗菌原理银属于重金属,对人体毒性小,且抗菌谱广,细菌不会对其出现抵抗性。
银可阻断细菌内的电子传输系统,增强细菌DNA的稳定性,从而减弱细菌的细胞复制,同时可破坏细菌本身结构,及其存在的受体功能,生成无效代谢化合物,具不可溶性,更加有利于预防及控制感染。
银可减轻伤口炎症反应,促进创面愈合[2]。
迄今为止,还没有一种细菌可逃脱银的杀灭性。
当材料达到纳米材料尺度,即1100 nm时,即会出现量子效应、小尺寸效应、表面效应等[3]。
表面积将大幅提高,可充分与皮肤及创面渗出液相接触,提高抗菌活性[4]。
纳米银颗粒极其微小,因其具有独特的体积,可轻而易举进入病原体,迅速与存在于细菌中的酶蛋白巯基-SH结合,使代谢酶失活,细菌无法进行正常代谢,最终导致死亡。
纳米银还可与细菌的DNA碱基相结合,形成交叉链接,使嘧啶或嘌呤中相邻氮间的氢键被置换,导致DNA变性,使细菌无法进行复制[5]。
纳米银的原子排列顺序介于分子与固体之间,称为“介态”,具有强大的抗菌能力,可杀死细菌、支原体、衣原体、真菌等致病微生物。
我国猪蓝耳病NADC34-like_毒株的流行病学及致病性研究进展

DOI:10.16174/j.issn.1673-4645.2024.02.007收稿日期:2023-06-09基金项目:四川省区域创新合作项目(2022YFQ0024);四川省重点研发项目(2021YFYZ0030);国家现代农业产业技术体系四川创新团队建设项目(Sccxtd-2020-08);四川省财政运行专项项目(SASA2022CZYX006);四川省区域创新合作项目(2023YFQ0037);四川省“十四五”川猪重大科技专项项目(2021ZDZX0010)作者简介:李金海(1976-),男,高级兽医师,主要从事猪病防控工作*通信作者:李兴玉(1975-),女,四川什邡人,副研究员,主要从事猪病防控研究工作我国猪蓝耳病NADC34-like 毒株的流行病学及致病性研究进展李金海1,2,李兴玉3*(1华派生物技术(集团)股份有限公司,四川成都641402;2西昌学院动物科学学院,四川西昌615013;3四川省畜牧科学研究院,四川成都610066)摘要:猪繁殖与呼吸综合征(PRRS )又称猪蓝耳病,在我国广泛流行,常见流行毒株种类很多。
我国自2017年首次检测到NADC34-like 毒株以来,该毒株的传播呈逐年上升趋势,给猪场蓝耳病防控提出了新的挑战。
本文综述了我国不同地区猪蓝耳病NADC34-like 毒株的流行情况和分离毒株的致病性研究,以期为当前猪场蓝耳病的防控提供参考。
关键词:生猪;猪蓝耳病;繁殖与呼吸障碍综合征;流行现状;致病性研究中图分类号:S828;S852.65文献标识码:A文章编号:1673-4645(2024)02-0059-08开放科学(资源服务)标识码(OSID ),扫一扫,了解文章更多内容引用本文:李金海,李兴玉.我国猪蓝耳病NADC34-like 毒株的流行病学及致病性研究进展[J].中国猪业,2024,19(2):59-66LI JH,LI XY.Research progress on the prevalence and pathogenicity study of NADC34-like porcine reproductive and respiratory syndrome in China[J].China Swine Industry,2024,19(2):59-66Research Progress on the Prevalence and Pathogenicity Study of NADC34-Like Porcine Reproductive and Respiratory Syndrome in ChinaLI Jinhai 1,2,LI Xingyu 3*(1Huapai Biological Group,Chengdu 641402,China;2College of Animal Sciences,Xichang University,Xichang 615013,China;3SichuanAnimal Science Academy,Chengdu 610066,China )Abstract:Porcine reproductive and respiratory syndrome (PRRS)was widely prevalent in China with many different viral strains.Since the NADC34-like strain was detected in China in 2017,it had been spreading on the rise annually,posed new challenges to the preven-猪繁殖与呼吸综合征(PRRS),又称猪蓝耳病,是由猪繁殖与呼吸综合征病毒(PRRSV)引起的猪的高度接触性传染病。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INTRODUCTIONPlants have evolved to exist in conditions that are ra -re l y ideal for normal maintenance and may be at the survival limit. In response, plants can adapt to avoid and overcome stress by using various rapid or slow re-sponding mechanisms, such as leaf movement and phe n otypic plasticity (Kato et al ., 2003; Shepherd &Griffiths, 2006; Xu et al ., 2009a). As the fundamentalenergy unit of plants, leaves are considered as a nexus between plants and environments, which can have im-portant ecological implications for species survival,growth, and distribution. Recently, general scaling re-lationships between leaf traits and climate have been the subject of interest. A worldwide ‘‘economic’’ spec-trum of correlated leaf traits (that can provide a link bet w een the various environmental factors and leafJournal of Biological Research-Thessaloniki 20:312–325, 2013J. Biol. Res.-Thessalon.is available online at http://www.jbr.grIndexed in:WoS (Web of Science, ISI Thomson), SCOPUS,CAS (Chemical Abstracts Service) and DOAJ (Directory of Open Access Journals)312Sensitivity of leaf physiognomy to climate: applications to habitat-scaled and species-based climate proxyFei XU 1,3, Renqing WANG 2,3and Weihua GUO 2,3*1College of Life Sciences ,Shandong Normal University ,250014 Jinan ,P. R. China2Institute of Ecology and Biodiversity ,College of Life Sciences ,Shandong University ,250100 Jinan ,P. R. China3Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology ,Shandong University ,250100 Jinan ,P. R. ChinaReceived: 14 February 2013Accepted after revision: 6 December 2013Leaf physiognomy is climate-sensitive and used for quantitative climate reconstruction by apply-ing leaf-climate correlations. Most studies have focused on site-level means of species sets in lar -ge-scale environments. The sensitivity of leaf physiognomy to habitat microclimate within species is poorly known, which limits our understanding of leaf-climate relationships and applications to cli m ate proxies for forest monitoring. An experiment was performed in the present study to inve -sti g ate the responses of leaf size, shape, and venation pattern in the seedlings of Quercus acutissi -ma to different gradients of water and light availability. Multiple linear regressions and a contour ex t raction method were developed and their ability to predict microclimate was assessed by using va r iables derived from leaf physiognomy. The trends of leaf morphological variations along the gra d ients share a general resource acquisition and conservation enhancement pattern. The syner -gy of leaf size, shape, and venation pattern optimized the tradeoff relationship between investment and return of restricted resources. The water-induced plasticity of leaves was lower compared to light-induced plasticity, which resulted in the predictive methods’ poor ability to estimate water a v ailability compared to their ability to estimate light availability. The contour extraction method was more precise, especially for combined predictions of extreme environments because multiple li n ear regressions exhibited overestimation and underestimation at lower and higher gradients,res pectively. The present study demonstrated that intraspecific variations of leaf physiognomy can provide a functional link to habitat, and climate proxies based on these relationships may con t ribute useful information towards forest management.Key words: climate proxies, contour extraction method, leaf physiognomy, multiple linear regres -sion, water and light availability.* Corresponding author: e-mail: guo_ w h@ This open-access article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use,printing, distributing, transmitting and reproduction in any medium, provided the original author and source are appropriately cited. Full text and supplementary material (if any) is available on www.jbr.grfun c tions) has been identified (Niinemets, 2001; We -s t o b y et al., 2002; Westoby & Wright, 2003; Wright et al., 2004, 2007; Shipley et al., 2006a) and widely used from functional individuals to communities and e c o -sy s tems (Garnier et al., 2004; Shipley et al., 2006b; We s toby & Wright, 2006). In addition, this spectrum of traits has become the proxy for reconstructing pa-leoclimates or predicting future climates (Royer et al., 2005; Whitfield, 2006).Leaf morphological characteristics are a useful vi-sual guide for constructing relationships between dif-ferent plants as well as between plants and their envi -ron m ents (Navas & Garnier, 2002; Roche et al., 2004). Leaf physiognomy can serve as an excellent tool for botanical and ecological studies (Traiser et al., 2005). Plant species with widely varying leaf shapes, sizes and venation co-occur in vegetation. The significance of leaf variations for species niche differentiation is still not entirely understood, whereas the differences in leaf physiognomy have been the subject of exten-sive research (Niinemets et al., 2007b). The morpho -lo g ical traits of leaves are often used in taxonomy. However, attention needs to be given to the problem of the reliability of leaf morphological characteristics, which are dependent on environmental conditions (Viscosi et al., 2009). The development of digital ima -ge processing and analysis technology has improved the ability to recognize and conduct geometric mea -su r ements of leaf morphology in the field (Du et al., 2007), which has led to the increased number of stud-ies on the sensitivity of leaf physiognomy to climate.Environmental sensitivity of leaf physiognomy has led to an upsurge in developing the technique for cli-mate proxies. The most common leaf physiognomic methods are leaf-margin analysis and leaf-area analy-sis, both of which are based on a single variable, na m e -ly, the percentage of untoothed species at a site and site-mean leaf size, respectively (Peppe et al., 2011). The Climate-Leaf Analysis Multivariate Program, which uses additional categorical leaf states, was de v e -loped to obtain more accurate climate estimates com -pared to the results of univariate approaches (Wolfe, 1995). However, errors and biases were also found in problems related to character definitions, states, and analysis methods in the predictive framework. An a -me l iorative digital leaf physiognomy, which uses con-tinuous variables to replace the discrete ones, is con-siderably more accurate because it uses stricter chara -cter definitions (Huff et al., 2003). Multiple linear re-gression models are the preferred multivariate analy-sis methods for simple application (Royer et al., 2005;Peppe et al., 2011). Other complex analyses based on com p uter algorithms have also been applied (Me z ia -ne & Shipley, 2001; Blonder et al., 2011). These pre-vious studies were usually based on the averages of se v eral species, i.e. site-based analysis (Greenwood, 2005; Royer et al., 2009). In such case, the climate was predicted at large scales, while predictions at local sca -le have not been conducted yet. Therefore, spe c ies-based analysis of leaf physiognomy may reveal new insights concerning its relation with microclimate. A contour method, which is usually used in geography, can display the continuous variations of multi-para-meters and account for small changes of leaf chara -cte r istics according to microclimate. In the present stu d y, we originally developed a contour extraction me t hod to construct the visual relationships between leaf physiognomy and microclimate.The oak species of genus Quercus L. generally ex -hi b it large plasticity in leaf morphology and have been commonly used for the analysis of leaf-climate rela-tionships (Sisóet al., 2001; Quero et al., 2006; Royer et al., 2008; Viscosi et al., 2009; Zhu et al., 2012). Quer c us acutissima Carr. is one of the most widespread oak species in north China and is the dominant decid-uous broadleaved species in the study area. The growth of Q.acutissima can be mainly affected by restrictions caused by habitat conditions. Increasingly different environmental conditions result in an increasingly dif-ferent phenotypic plasticity of the who l e plant and leaf traits (Xu et al., 2008). In addition, many Q.acutissi-ma forests exhibit patch distribution because of an-thropogenic disturbance. Other strong competitors, such as Robinia pseudoacacia L., are gra d u a lly invad-ing and changing native habitats, which lead to the de c line in seedling recruitment and decrease in growth rates through aggressive capture of light and water re-sources (Xu et al., 2010). The adaptive mechanisms may be investigated by analyzing the leaf morphology of Q.acutissima and the function of environmental in d ication in response to diverse water and light con-ditions, which are conducive for guiding vegetation maintenance and restoration.We designed an experiment with controlled water and light conditions to investigate responses of leaf size, shape, and venation pattern in the seedlings of Q.acutissima to different gradients of water and light availability. In previous studies, we have found that va r iations of leaf physiognomy in the nature can be si -mu l ated artificially and there are interspecific diffe r en -c es between coexisted species (Xu et al. 2008, 2009b).Fei Xu et al.— Sensitivity of leaf physiognomy to climate313On this basis, the objectives of this study were to (1) investigate the role of intraspecific variation in leaf-cli m ate relationships, (2) develop microclimate predi -ction models by using variables derived from leaf phy -sio g nomy, and (3) assess the potential application of models as microclimate proxies.MATERIALS AND METHODS Study siteThe study was conducted at the Fanggan Research Station of Shandong University, Shandong Province, China (36°26΄N, 117°27΄E). The site is characterized by a warm temperate monsoon climate, with a mean annual temperature of 13±1°C and a mean annual precipitation of 700±25 mm, which occurs mostly during the summer. The soil of the area is a cinna-mon-type, and the parent material is limestone (Xu et al., 2008). Sawtooth oak (Q.acutissima) and black lo-cust (R.pseudoacacia) coexist and form mixed forests in this area. The canopy has a dominant layer which reaches 14 m, and the lower limits of the crown are at about 9 m. The leaf area index can reach ~5.12 when the trees are flourishing in August (Xu et al., 2009b).Plant materialsOne-year-old seedlings of Q.acutissima were used as ex p erimental materials in this study. Acorns of Q.a -cu t issima were collected from a hill near the research station in early spring and planted in plastic pots (32×29 cm in height ×diameter, one acorn in each pot). The soil was a 64:22:14 (v/v/v) mixture of humic soil, sand, and loam, with a saturated water content of 36% by mass, the largest volumetric water content of 28%, and 68% porosity. The pH was 4.4, and the ma-jor chemical components included 88.4 g organic mat -ter, 3.7 g total nitrogen and 42.3 mg available phos -pho r us per kilogram. All the pots were regularly irri-gated and subjected to weed control before the begin-ning of the experiment.Experimental designThe seedlings were submitted to controlled experi-ments from July to September. A factorial experiment of two factors (water and light) of four and three lev-els, respectively, was designed. Water was withheld from the drought groups until the soil moisture reac -hed ~50% (W2), 30% (W3), and 10% (W4) of field ca p acity, whereas the well-watered groups received daily irrigation to maintain soil water content between 70% and 80% (W1) of field capacity. All the pots were moved into a rain-out shelter to avoid precipitation di s turbance. The soil water content was controlled by gravimetric probe and the pots were weighed daily to maintain the four different water contents. Top irri-gation evenly supplemented the water lost via transpi-ration and evaporation.The light-control treatment was conducted in sha -de shelters covered by plastic films or woven black ny-lon nets. The frame of the shelter was 5.0×2.5×3.0 m (length×width×height). The microclimate was moni -tored daily by using a micro-quantum sensor and a temperature sensor of Mini-PAM (Walz GmbH, Ef -fel t rich, Germany). The average Photosynthetic Ac-tive Radiation (PAR) measured from 07:00 to 16:00 was 544±71, 361±17, and 56±6.7 μmol m–2s–1in the open field (L1), under plastic films (L2), and ny-lon nets (L3), respectively. The light transmission ra-tio was ~66% and 10% under the stress condition com -pared with the control. Analysis of variance (ANO-VA) found no significant difference (p=0.534) in air temperature between the three light gradients (32.8±0.46, 32.4±0.40 and 32.1±0.39°C).The Relative Water Content (RWC) and Relative Light Intensity (RLI) were used as the standards to quantify the gradients of water and light availability. RWC was calculated by averaging the diurnal soil wa-ter content of the sampled seedlings. The average light intensity of the sampled seedlings was obtained by mea s uring PAR in four directions where the seed l ings were located. RLI was then calculated by dividing the average light intensity with the maximal value. Ten pots were randomly assigned to each water and light availability treatment. The gradients of W2 and W4 were eliminated from the high (L1) and low (L3) gra-dients of light availability considering the heavy mana -gement and measurement workload. After a two-month treatment period, 15 mature leaves from three seedlings per treatment were taken for morphological measurements.Morphological measurementsThe leaf area was measured by using a CI-203 laser area meter (CID Inc., Washington, USA). The linear measurement was taken by using a digital caliper. Leaf dry mass was measured after oven drying at 80°C for 48 hrs. The detailed information of the mor-phological parameter measurements and definitions are shown in Figure 1 and Table 1.314Fei Xu et al.— Sensitivity of leaf physiognomy to climateStatistical analysisTwo-way ANOVA with type III sums of squares was used to test the interactive effects of environmental factors on leaf physiognomy. Pearson’s correlations between leaf morphological traits and climate para -me t ers were calculated, and Ordinary Least Square (OLS) regression lines were fitted to predict the habi-tat information by using variables that were consid-ered to represent the primary responses. The multi-collinearity influence could be ignored without using elimination methods (e.g., stepwise or ridge regression)because focus was given only to the predictive power of the functions (Mela & Kopalle, 2002; Dormann et al ., 2013). The jackknife-type approach was used to evaluate the accuracy of the regression functions to build a group of virtual data as the test set, and the ab s olute residuals were used as the predictive criterion.The level of response to the variation of each factor (water and light) was estimated by using the PI RWC and PI RLI indices, respectively, which ranged from 0to 1. The index of plasticity (PI) was calculated as the difference between the maximum and the minimum mean values divided by the maximum mean value (Val l adares et al ., 2000b). The changes of leaf mor -pho l ogical variables in the different gradients of wa-ter and light availability were illustrated in three-di-mensional surface and contour plots. The smoothing cubic spline was employed to trace the variability of the leaf variables (Schimek, 2000), and contour ex-traction was carried out by adjusting the step and mi-nor number for values of the Z-axis (data of leaf mor-phology). The intersections of contours from differ-ent leaf variables, which are considered to provide in-formation about the habitat, were easily fixed by graph-merged and data-drawn application. All statistical analyses were performed by using the SPSS 13.0 soft-ware package (SPSS Inc., Chicago, USA). Plots were drawn by using the Statistica 6.0 software (StatSoft Inc., Oklahoma, USA).RESULTSLA significantly increased at increasing water and light availability (Fig. 2A, Table 2). The range of the changes was broader with sufficient resources than with seedlings under serious stress. Similar to LA, va -ri a bles LDM, LL, and LW were positively correlated with water and light availability, respectively (Fig. 2B,D, E). SLA showed a positive correlation with wa t er availability, but was negatively correlated with light a -vai l ability. The variations were nearly linear in the sur -face plot (Fig. 2C). Although LPL was significantly correlated with water and light availability, the trend was not consistent with environmental gradients be-Fei Xu et al.— Sensitivity of leaf physiognomy to climate315TABLE 1. Leaf morphological parameters and their defini-tions. The two capital letters in the definition demonstrate the linear distance between the corresponding two points pre s ented in Figure 1Variable DefinitionLA (cm 2)Leaf area LDM (g)Leaf dry massSLA (cm 2g –1)Specific leaf area (ratio of leaf area to leaf dry mass)LL (cm)Leaf length=AB LW (cm)Leaf width=FGLPL (cm)Leaf petiole length=BCLE Leaf elongation (ratio of leaf length to leaf width)LL/LPL Leaf length to petiole length ratio LWD Leaf widest division=AD/BD LBD Leaf bulgy division=AE/BE NLT (ea)Number of leaf teethMDV (cm)Mean distance between veins=2AB/(NLT+1)FIG. 1. Illustrated diagram of leaf morphology measure-ments in Q . acutissima . The dashed lines perpendicular to the midrib indicate the widest (above) and bulgy (below)part of the leaf lamina. The two lines are determined by the ang l es between the midrib and the edge of the lamina. The po s itions where the angle is the smallest and the largest re -pre s ent the widest and bulgy part of the leaf lamina, respecti -ve l y. The leaf is divided into three fractions (top, middle, and bot t om) by these two lines. The capital letters along the lines re p resent the positions located at the midrib or the edge of the lamina (see Table 1 for more details).316Fei Xu et al.— Sensitivity of leaf physiognomy to climateFIG. 2. Three-dimensional surface plots for LA (A), LDM (B), SLA (C), LL (D), LW (E), LPL (F), LE (G), LL/LPL (H), LWD (I), LBD (J), NLT (K) and MDV (L) of Q.acutissima in the different gradients of water and light availability. The gray -sca l e maps indicate that the darker chroma corresponds to the higher value of leaf morphological variable. The spline function is employed in the curved surface fitting and n=120 for each variable contained climate information.Fei Xu et al.— Sensitivity of leaf physiognomy to climate317cause of a high value under combined drought and shade conditions (Fig. 2F).LE and LL/LPL were found to increase in shade and decrease in sunlight with increasing water availa -bi l ity, whereas LWD and LBD showed inverse trends (Fig. 2G-J). Conflicting variations also occurred in the gradients of light availability. LE and LL/LPL in c reas -ed in drought and decreased under well-watered con-ditions, whereas LWD and LBD decreased in drought and increased in well-watered conditions with in c reas -ing light availability. These results caused either weak or zero correlations for these four variables with wa-ter and light availability (Table 2).NLT only showed significant correlation with wa-ter availability (Table 2). Water scarcity resulted in fewer leaf teeth. NLT increased along the gradient of light availability with abundant irrigation. On the con-trary, NLT decreased in high irradiance when the drought stress was a burden (Fig. 2K). MDV only show -ed significant correlation with light availability and mainly increased with increasing light availability ex-cept when the water resources were sufficient. The ma x imum values of MDV appeared when high irradi -ance and serious drought were simultaneously im-posed (Fig. 2L).The correlation coefficients of leaf traits to RWC were smaller than those of RLI, except for LPL, LL/LPL, and NLT, whose water-induced responses were higher and under the diagonal of the bivariate diagram (Fig. 3). A high variation existed in the degree of re-sponse to light versus water. The response to light had a mean value of 0.17 (range 0.03-0.54), while the re-sponse to water had a mean value of 0.12 (range 0.02-0.30).The overall determination coefficient of multiple li n ear regression was larger for RLI than that for RWC (Table 3). The mean values of absolute residuals were 9.20 for RWC and 6.43 for RLI, which indicated a 95%confidence interval on the RWC prediction wi d er than that of RLI (Fig. 4). The predicted values were signifi -c antly overestimated and significantly underestimated in the lower left and upper right of the scatter plots,respectively, for both RWC and RLI pre d ictions by t -tests (p <0.05).Actually, the leaf traits did not show absolutely li -near correlations with RWC and RLI, especially in the prediction of the bivariate of dependence. The ef-fects of linear and spline functions fitted on the leaf traits to the environmental gradients in contour plots for the case of LDM are shown in Figure 5. LDM was used as an example because it was significantly corre -lat e d with both RWC and RLI (Table 2). The con-tours fitted by the linear functions showed a disor-dered trend of LDM variations in the different gradi-ents of water and light availability. For example, the larger LDM (0.34 g) in W1L2 was located on the lower contour when compared to that (0.28 g) in W3L1 (Fig.5A). The contours fitted by the spline functions re s olv -ed the problem (Fig. 5B). The differences between the linear and spline contours can explain the biased predictions in the multiple linear regressions. A high-er probability of overestimating RWC and RLI exists318 Fei Xu et al.— Sensitivity of leaf physiognomy to climateces to RWC (PI RWC ) versus the plasticity indices to RLI (PI R-LI ) for leaf morphological traits of Q .acutissima . PI was cal -cu l ated as (maximum value –minimum value) / maximum va l ue.TABLE 3. Multiple linear regression functions for predicting RWC and RLI of Q . acutissima from leaf physiognomy. Or-dinary least squares (OLS) regressions were used by setting climate as the dependent variable and leaf traits as the inde-pendent variables. The leaf parameters chosen in the func-tions show significant correlations with RWC and RLI ac-cording to the analysis in Table 2. The significance level of each variable: ns p >0.05, *p ≤0.05, **p ≤0.01, ***p ≤0.001Variables Coefficient Coefficientfor RWC for RLI Intercept –154.91*–150.99*LA (cm 2)–2.56ns –1.75ns LDM (g)115.50***239.98***SLA (cm 2g –1)0.33***–0.36***LL (cm) 2.67ns –20.15*LW (cm)29.23ns 65.04*LPL (cm)76.12**25.75*LE –90.42*LBD ––23.45***NLT (ea)0.55*–MDV (cm)–0.57ns r 20.49***0.81***when both were at the lower gradients because the li -near contour was above the spline contour with the same values in the shadowed area (Fig. 5C). The area outside the shadowed area indicated an underestima-tion that frequently occurs at the higher gradients.We applied the contours of SLA and NLT, which are widely used as important leaf traits functionally linked to climate, in the contour extraction method to gauge the accuracy of predictions (Fig. 6 and online sup p lementary material Fig. S1). The intersections di-rectly showed the environmental information in the plots. The mean values of absolute residuals were 3.45 for RWC and 2.50 for RLI. Furthermore, a pair e d t-test indicated that the values of the residuals weresignificantly smaller in the contour extraction method than in the multiple linear regressions for RWC (p= 0.014) and RLI (p=0.038), respectively.DISCUSSIONSensitivity of leaf size and shape to climateIn the current research, leaf size was obviously re-stricted by the shortage of water and light as shown by LA and LDM. Although leaf size variation in Q.a c u -tis s ima can be partly linked to allometric factors, the ecological strategy with respect to environmental stress has an important role (Xu et al., 2008, 2009b). Variations in leaf size along the climatic gradients may result from higher water demand and overheat-ing of larger leaves because of photosynthesis-transpi-ration compromise and heat dissipation. The trend of selecting relatively small leaves may be caused by o -Fei Xu et al.— Sensitivity of leaf physiognomy to climate319FIG. 4. Actual and predicted values of RWC (A) and RLI(B) from the multiple linear regressions shown in Table 3.Dashed lines indicate 95% confidence intervals.FIG. 5. Contour plots for LDM of Q.acutissima in the dif-ferent gradients of water and light availability. The linear (A)and spline (B) functions are employed to test the effect offitted curve. The scatters are the locations of LDM in everytreatment, and the means are listed as the labels. Whenoverlapped, these two contour plot lines with the same val-ues intersected at two points (C). The diagram can be divid-ed into two parts by sketching the intersections together. Thearrow in the shadowed area indicates the average values ofRWC and RLI that should be overestimated by using the lin-ear function instead of the spline function. The arrows in thewhite area contrast with the shadowed area.320Fei Xu et al.— Sensitivity of leaf physiognomy to climateFIG. 6. Validation experiment for the RWC and RLI of Q.acutissima in the treatment of W1L1 (A), W3L1 (B), W1L2 (C), W2L2 (D), W3L2 (E), W4L2 (F), W1L3 (G) and W3L3 (H) by using the contour extraction method. Solid and dashed lines refer to the contours of SLA and NLT, respectively. The intersections are established by the tool of drawing data. When two in t ersections appear in a plot, the mean value is used as a substitute.ve r all resource limitation in stressful environments, which makes the construction of large leaves with ex-tensive vascular and cell-wall fractions overly expensi -ve and will reduce the investment in LDM (Niine -mets et al., 2007a). Furthermore, smaller leaves have an advantage in minimizing self-shading (Falster & Westoby, 2003).An integrated variation of LA and LDM can be ex p ressed by SLA. This functional trait of leaves is im p ortant in connection with other traits and the cli-mate (Wright et al., 2004). To achieve different ameli -o r ative aims under resource stress, the variations along the gradients of water and light availability exhibited divergence. Lower values in water-limited environ-ments tend to correspond to relatively high invest-ments in leaf defenses and long leaf lifespan. Shade-tolerant leaves have remarkably larger SLA, which is an accommodation to decrease self-shading of chlo -ro p lasts in the abaxial surface of leaves (Quero et al., 2006). Another advantage is that the construction and maintenance costs of the production of leaves with mo r e symplastic component in shade are reduced (Lusk et al., 2008).LE, calculated as LL divided by LW, characterizes the overall slenderness of the leaves (Niinemets et al., 2007b), and often changes with leaf size because of the effect of allometry. However, plasticity to environ -men t al conditions also occurs (Tsialtas & Maslaris, 2007; Xu et al., 2009b). Leaves became longer instead of wider in the open field with the decrease of water availability. This correlation most likely allows the leaves to reduce transpiration by reducing the size of the boundary layer and to shed heat better in warm ha b itats. Leaves were also narrower in the shade and moist conditions, which is thought to be an adapta-tion to decrease self-shading and curliness of leaves with high SLA.Leaf shape was not only represented by the inte-grated changes of leaf major and minor axes, but the distribution of leaf area fractions (partitioned by LWD and LBD) in the present research also includes addi-tional information. When LE increased, lamina areas located close to the leaf apex decreased, which repre-sents the narrow part of the leaf increasing in propor-tion to the whole leaf lamina. The cooperation be-tween LE and leaf area fractions was also displayed in the case of the formation of wider leaves, which are capable to maximize their areas for light capture.Synergy between leaf venation pattern and leaf dimen-sionIn the present study, the changes of LPL were consis-tent with leaf size, which provides an available proxy for leaf size from petiole dimensions when the leaf blade was disfeatured (Jordan, 2011). The elongation of petioles will achieve optimal leaf display to deal with the shade stress. The increases in the relative di -stance of LA from the stem by longer petioles can re -du c e the between-row shading. Furthermore, a leaf with a narrow blade can reduce both between-row and within-row shadings (Takenaka, 1994). Leaf peti-ole and shape alternatively contributed to larger light capture in this research, shown by the similar changes in LE and LL/LPL, as plants had a tradeoff between the need for increasing interception areas and sup-port structures. Increasing the investment in petioles re q uires the synthesis of more xylogens and limits the biomass invested into functional leaf activity. Longer petioles also have a disadvantage which leads to the bending of the shaded leaf in a moist habitat (Pickup et al., 2005).Large leaves require disproportionately more mass allocated to petioles and veins for mechanical support (Niklas et al., 2007), especially for thin leaves. A sha -de-tolerant leaf shape, whose centroid is far from the leaf base, requires higher vein density to withstand the increased bending moment. Also, closer spacing of veins (decreased MDV) results in both higher wa-ter fluxes and carbon assimilation rates because of shorter path lengths between veins and stomata (Bro-dribb et al., 2007; Brodribb & Field, 2010). However, in v estments in support will transform the invested biomass into functional leaf activity. This inverse re-lationship is likely because of the displacement of the lamina tissue by non-photosynthetic venation tissue (Poorter et al., 2006). Xeromorphic leaves eliminated the dependence of veins because of the self-support of lamina, which can rely on lamina cells (non-specific support) in addition to vasculature (Niinemets, 2001).Characteristics of leaf teeth are functional traits to reflect a tradeoff between carbon uptake and water loss. The relationship between leaf teeth and enhanc -ed sap flow may help explain why leaf teeth are more absent in drought environments where the water cost associated with teeth may be more important (Peppe et al., 2011). This pulse in gas-exchange activity may be also adaptive in a shade condition because it may extend the season of potential growth (Royer & Wilf, 2006). In contrast, tooth-driven pulse in sap flow isFei Xu et al.— Sensitivity of leaf physiognomy to climate321。