九年级数学下中考知识点梳理 反比例函数

合集下载

人教版九年级数学下册反比例函数知识点归纳及练习(含),文档

人教版九年级数学下册反比例函数知识点归纳及练习(含),文档

反比率函数26.1 知识点 1 反比率函数的定义一般地,形如 y k0 )的函数称为反比率函数,它能够从以下几个方面来理解:( k 为常数,kx⑴ x 是自变量, y 是 x 的反比率函数;⑵自变量 x 的取值范围是x 0的一确实数,函数值的取值范围是y 0 ;⑶比率系数 k0 是反比率函数定义的一个重要构成部分;⑷反比率函数有三种表达式:k① y(k0 ),x② y kx1( k0 ),③ x y k (定值)(k0 );⑸函数 y k0 )与xky 是 x 的反比率函数时, x 也是 y 的反比率函数。

( k( k 0 )是等价的,所以当x y( k 为常数,k0 )是反比率函数的一部分,当k=0 时,y k k x,就不是反比率函数了,因为反比率函数y( k 0x )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确立反比率函数的表达式。

26.2 知识点 2 用待定系数法求反比率函数的分析式因为反比率函数 yk0 )中,只有一个待定系数,所以,只需一组对应值,就能够求出k 的值,进而确( kx定反比率函数的表达式。

26.3 知识点 3 反比率函数的图像及画法反比率函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,因为反比率函数中自变量函数中自变量x 0 ,函数值y0 ,所以它的图像与x 轴、 y 轴都没有交点,即双曲线的两个分支无穷凑近坐标轴,但永久达不到坐标轴。

反比率的画法分三个步骤:⑴列表;⑵描点;⑶连线。

再作反比率函数的图像时应注意以下几点:①列表时选用的数值宜对称选用;②列表时选用的数值越多,画的图像越精准;③连线时,一定依据自变量大小从左至右(或从右至左)用圆滑的曲线连结,切忌画成折线;④绘图像时,它的两个分支应所有画出,但切忌将图像与坐标轴订交。

( 1)图象的形状:双曲线.越大,图象的曲折度越小,曲线越平直.越小,图象的曲折度越大.(2)图象的地点和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大.(3)对称性:图象对于原点对称,即若(a, b)在双曲线的一支上,则(,)在双曲线的另一支上.图象对于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4. k 的几何意义如图 1,设点 P( a, b)是双曲线上随意一点,作PA⊥ x 轴于 A 点, PB⊥y 轴于 B 点,则矩形PBOA 的面积是(三角形PAO 和三角形PBO 的面积都是).如图 2,由双曲线的对称性可知,P 对于原点的对称点Q 也在双曲线上,作QC⊥PA 的延伸线于C,则有三角形PQC 的面积为.图1图 25.说明:(1)双曲线的两个分支是断开的,研究反比率函数的增减性时,要将两个分支分别议论,不可以混为一谈.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点对于原点成中心对称.(3)反比率函数与一次函数的联系.26.4 知识点 4 反比率函数的性质☆对于反比率函数的性质,主要研究它的图像的地点及函数值的增减状况,以下表:反比率k0 )y( kk 的符号k 0k 0图像① x 的 取 值 范 围 是 ① x 的 取 值 范 围 是x0 ,y 的取值范围是x0 ,y 的取值范围是yy性质②当 k0 时,函数图像 ② 当 k 0 时,函数图像的两个分支分别在第 的两个分支分别在第 一、第三象限,在每个 二、第四象限,在每个 象限内,y 随 x 的增大而 象限内,y 随 x 的增大而 减小。

(完整版)初中数学反比例函数知识点及经典例

(完整版)初中数学反比例函数知识点及经典例
似。
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。

初三数学反比例函数知识点归纳

初三数学反比例函数知识点归纳

初三数学反比例函数知识点归纳
反比例函数是指函数的变量之间的关系满足倒数的关系。

1. 反比例函数的定义:如果函数y=k/x,其中k是一个非零常数,x≠0,则y与x的关系是反比例关系,称为反比例函数。

2. 反比例函数的图像:反比例函数的图像呈现出一种特殊的形状,即一个双曲线。

曲线在第一象限和第三象限分别向无穷大和无穷小逼近,且过原点。

3. 反比例函数的性质:
- 当x逐渐增大(或减小)时,y逐渐减小(或增大)。

- 当x=0时,函数无定义。

- 当y=k/x中的k为正数时,函数在第一象限、第三象限为正值;当k为负数时,函数在第二象限、第四象限为负值。

- 反比例函数的图像关于y轴和x轴对称。

4. 反比例函数的图像特征:
- 具有一个渐进线,即曲线在接近y轴和x轴时,趋于无穷大或无穷小。

- 曲线在x轴和y轴上有渐进截距。

- 曲线在y轴上有一个渐近良好的对称轴。

5. 反比例函数的应用:
- 反比例函数常用于描述两个变量的关系,如速度与时间、产量与工人、密度与体积等。

- 反比例函数也可以用来解决实际问题中的问题,如求出满足特定条件的变量值。

总结起来,反比例函数是数学中一种特殊的函数形式,其定义和性质都与倒数有关,反比例函数的图像呈现出一种特殊的形
状,具有特定的渐进线和渐近截距,常用于描述两个变量的关系和解决实际问题。

初三数学反比例函数知识点归纳-复习必备打印背熟

初三数学反比例函数知识点归纳-复习必备打印背熟

反比例函数是什么?反比例函数相关知识1:反比例函数是什么?反比例函数的定义域和值域因为x在分母上,所以x≠0,即自变量X的取值范围为非零实数。

而且常数k≠0,因此y≠0,即因变量y的`取值范围为非零实数。

反比例函数的图像及其性质形状:反比例函数的图象是两条双曲线,每一条曲线都无限向X轴Y轴延伸但不与坐标轴相交。

增减性:当k>0时,双曲线的两支分别位于第一、三象限,在每个象限内y随x的增大而减小;当k<0时,双曲线的两支分别位于第二、四象限,在每个象限内y随x的增大而增大。

对称性:反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=x和y=-x,对称中心是坐标原点。

2:反比例函数知识点1、反比例函数的表达式X是自变量,Y是X的函数y=k/x=k?1/xxy=ky=k?x^(-1)(即:y等于x的负一次方,此处X必须为一次方)y=kx(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n2、函数式中自变量取值的范围①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数y=k/x=k?1/xxy=ky=k?x^(-1)y=kx(k为常数(k≠0),x不等于0)3、反比例函数图象反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

4、反比例函数中k的几何意义是什么?有哪些应用?过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值_y的.绝对值=(x_y)的绝对值=|k|研究函数问题要透视函数的本质特征。

反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM?PN=|y|?|x|=|xy|=|k|。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。

初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。

本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。

一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。

通常用符号y=k/x表示,其中k为常数。

1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。

2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。

因为当x=0时,函数值无意义,除数不能为0。

此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。

二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。

其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。

2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。

水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。

3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。

三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。

1. 比例尺:反比例函数可以用来解决比例尺相关的问题。

比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。

2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。

如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。

比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。

3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。

九年级反比例函数知识点

九年级反比例函数知识点

九年级反比例函数知识点反比例函数是数学中的一种特殊函数类型,它的图像呈现出一条直线,并且函数的定义域和值域都不包括零。

在九年级学习数学的过程中,反比例函数是一个重要的知识点。

本文将为大家介绍九年级反比例函数的相关知识。

一、反比例函数的定义与特征反比例函数是指当自变量x变大时,函数值y变小;当自变量x变小时,函数值y变大。

可以简单地用以下形式表示:y = k/x,其中k为一个常数。

反比例函数的定义域是除了x=0之外的所有实数。

反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。

这条直线的渐进线是x轴和y轴,即当x趋近于正无穷或者负无穷时,函数值y趋近于零。

二、反比例函数的性质与运算1. 曲线的平移:若y = k/x关于y轴平移h个单位,则函数变为y = k/(x - h)。

2. 曲线的伸缩:若y = k/x的k值乘以a,则函数变为y = ak/x。

当a>1时,图像在x轴方向上被压缩;当0<a<1时,图像在x轴方向上被展开。

3. 曲线的关于y轴的对称:若y = k/x关于y轴对称,则函数变为y = -k/x。

4. 曲线的关于x轴的对称:若y = k/x关于x轴对称,则函数变为y = -k/x。

三、反比例函数的应用反比例函数在实际问题中具有广泛的应用,下面以几个例子来说明:1. 比例尺:地图上的比例尺就是一个反比例函数。

比如地图上标注1cm代表的实际距离为1km,这个比例尺可以表示为y = 1/x。

2. 速度与时间:当一辆车以恒定的速度行驶时,车辆的速度与时间呈现出反比例关系。

速度越大,所用的时间越短,可以用反比例函数来表示。

3. 某商品的价格与销售数量:在市场中,某商品的价格与销售数量通常是呈反比例关系的。

价格越高,销售数量越小,可以用反比例函数来描述。

四、反比例函数的图像与解析式反比例函数的图像为一条直线,并且经过第一象限和第三象限的两个点:(1, k)和(-1, -k)。

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题(附答案解析)

九年级数学反比例函数知识点归纳和典型例题一、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。

九年级数学下册 反比例函数知识点总结

九年级数学下册 反比例函数知识点总结

九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。

在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。

下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。

2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。

当x为正数且逐渐减小,y的值会逐渐增大。

如果x等于0,函数的值为无穷大或无穷小。

反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。

3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。

当k为正数时,双曲线的开口朝上。

当k为负数时,双曲线的开口朝下。

当k的绝对值变大时,双曲线的形状越陡峭。

4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。

工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。

投资的金额与收益的关系:当投资的金额增加时,收益会减少。

5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。

给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。

以上是九年级数学下册关于反比例函数的知识点总结。

反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。

通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11讲 反比例函数的图象和性质
)由两条曲线组成,叫做双曲线;
(1)意义:从反比例函数y =k
x (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线
与坐标轴所围成的矩形面积为|k |,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.
(2)常见的面积类型:
可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.
也可逐一选项判断、排除.
(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD.
知识点三:反比例函数的实际应用
7.一般步
骤(1题意找出自变量与因变量之间的乘积关系;
(2设出函数表达式;
(3)依题意求解函数表达式;
(4)根据反比例函数的表达式或性质解决相关问题.。

相关文档
最新文档