《概率论与数理统计》习题及答案

合集下载

概率论与数理统计练习题(含答案)

概率论与数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。

(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。

(B )(3)事件的对立与互不相容是等价的。

(B ) (4)若()0,P A = 则A =∅。

(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。

(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。

(B )(8)若P(A)P(B)≤,则⊂A B 。

(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。

(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。

(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。

概率论和数理统计课后习题答案解析

概率论和数理统计课后习题答案解析

随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题6.习题7习题9习题10习题12习题13习题14习题15习题16习题18习题20习题21习题23习题24习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为 P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3}; (3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1, 即3716c=1,解得c=3716=2.3125.由条件概率知 P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5. 在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110, P{X=4}=C32⋅1C53=310, P{X=5}=C42⋅1C53=35,所以X的分布律为设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120.X的分布律为X 0123P 3512036120211201120习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59, 求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以 P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0, 是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1 问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0, F(1+0)=F(1)=1,且 F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:X 135Pk 0.30.50.2所以其分布函数F(x)=P{X≤x}={0,x<10.3,1≤x<30.8,3≤x<51,x≥5.F(x)的图形见图.习题4设离散型随机变量X的分布函数为 F(x)={0,x<-10.4,-1≤x<10.8,1≤x<31,x≥3,试求:(1)X的概率分布; (2)P{X<2∣X≠1}.解答:(1)X -113pk 0.40.40.2(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx, -∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答: F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又 \becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为 p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9, 问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c}, 必有1-P{X≤c}=P{X≤c}, 即 P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9, 即 P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282, 所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1, 即1-P{X<x}=0.1,所以1-F(x)=0.1, 即 1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此 x-400060≈1.28, 即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05, 求x, 即1-P{X≤x}≤0.05, 亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645, 从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则 X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e), 其反函数为x=lny, 可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1, 于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x), 分布函数为F(x), 求下列随机变量Y的概率密度:(1)Y=1X; (2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0, 综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0, 这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0, 综上所述 fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2), 已知θ=5(T-32)/9, 试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2). θ=59(T-32), 反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0, 其分布函数为FY(x), 又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0, 故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z), 因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k, P(Ak)=ck, k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20} =1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7, 求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7, 故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7), 而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X, 则X∼b(2500,0.002), 则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须 200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A, 则P(A)=0.03, 显然X∼b(300,0.03), 即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265, (查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计), 求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2, P{X=0}=e-3/2≈0.223;(2)t=5,λ=5/2, P{X≥1}=1-P{X=0}=1-e-5/2≈0.918.习题6设X为一离散型随机变量,其分布律为X -101pi 1/21-2qq2试求:(1)q的值; (2)X的分布函数.解答:(1)\because离散型随机变量的概率函数P{X=xi}=pi, 满足∑ipi=1, 且0≤pi≤1,∴ {1/2+1-2q+q2=10≤1-2q≤1q2≤1,解得q=1-1/2. 从而X的分布律为下表所示:因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0, 故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x). 显然,当x<0时,F(x)=0, 当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0, 所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a, 而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它, 计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3) dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1. 证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且 F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且 a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0, 分布函数F(x)满足:(1)F(-a)=1-F(a); (2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5), 所以 fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0, 即 K2-K-2≥0,亦即(k-2)(K+1)≥0, 解得K≥2(K≤-1舍去), 所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取.习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴ F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率 .解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1, P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为 fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1), 则Y的取值范围为[1,2). 当1≤y<2时, FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为 FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y 1231 1/61/91/182 1/3a1/9求a.解答:由分布律性质∑i⋅jPij=1, 可知 1/6+1/9+1/18+1/3+a+1/9=1,解得 a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示: (3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求: (1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求: (2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求: (3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且 P{X≥0,Y≥0}=37, P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0} =P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值: (0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512, 请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1, 故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0}, {X=0,Y=13, {X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:(2)P{Y=0}=P{X=-1,Y=0}+P{X=0,Y=0}+P{X=2,Y=0} =0+16+512=712,同样可求得 P{Y=13=112,P{Y=1}=13,关于的Y边缘分布见下表:Y 01/31pk 7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0), 其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y}, 故 P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它,(1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为 f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c; (2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1, 有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1, 有 F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1, 有 F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式 F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为 f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度.解答:区域G的面积A=∫01(x-x2)dx=16, 由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1, 即 fX(x)={6(x-x2),0≤x≤10,其它fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为解答:由题意知X的密度函数为fX(x)={15,0≤x≤50,其它, 因为X与Y相互独立,所以X与Y的联合密度为:fXY(x,y)={2(5-y)125,0≤y≤5,0≤x≤50,其它,故此人能及时上火车的概率为P{Y>X}=∫05∫x52(5-y)125dydx=13.习题7设随机变量X与Y都服从N(0,1)分布,且X与Y相互独立,求(X,Y)的联合概率密度函数.解答:由题意知,随机变量X,Y的概率密度函数分别是fX(x)=12πe-x22,fY(y)=12πe-y22因为X与Y相互独立,所以(X,Y)的联合概率密度函数是f(x,y)=12πe-12(x+y)2.习题8设随机变量X的概率密度f(x)=12e-∣x∣(-∞<x<+∞),问:X与∣X∣是否相互独立?解答:若X与∣X∣相互独立,则∀a>0, 各有 P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a}, 故由上式有 P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0, 求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到: P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx] =1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x 22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以 P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V, 可见P{U=i,V=j}=0(i<j).此外,有 P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0, 显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0 即 {x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为 fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y 的概率密度.解答:据题意,X,Y的概率密度分布为 fX(x)={1,0<x<10,其它, fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy =∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0, 故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即 fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b. ∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而 f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故 FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)FY(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以 FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此 FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y, 其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0, ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y}, 则 F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z} =1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0, F2(z)={1-e-βz,z≥00,z<0,故 F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试明: P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则 P{a<min{X,Y}≤b}=FZ(b)-FZ(a),。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整版)《概率论与数理统计》习题及答案选择题

(完整版)《概率论与数理统计》习题及答案选择题

·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销”; (D )“甲种产品滞销”.解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销’. 选C.2.设,,A B C 是三个事件,在下列各式中,不成立的是( ).(A )()A B B A B -=;(B )()AB B A -=; (C )()A B AB ABAB -=;(D )()()()A B C A C B C -=--.解:()()()A B B AB B A B BB A B -=== ∴A 对. ()()A B B A B B AB BB AB A B A -====-≠ B 不对()()().AB AB A B B A ABAB -=--= C 对 ∴选B.同理D 也对.3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C )()()P C P AB =; (D )()().P C P AB =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B.4.设(),(),()P A a P B b P AB c ===,则()P AB 等于( ).(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -. 解:()()()()()()()P AB P A B P A P AB a P A P B P AB c b =-=-=--+=-·152· ∴ 选B.5.设,A B 是两个事件,若()0P AB =,则( ).(A ),A B 互不相容; (B )AB 是不可能事件; (C )()0P A =或()0P B =; (D )AB 未必是不可能事件. 解:()0P AB AB =⇒=∅/. ∴ 选D.6.设事件,A B 满足AB =∅,则下列结论中肯定正确的是( ). (A ),A B 互不相容; (B ),A B 相容; (C )()()()P AB P A P B =; (D )()()P A B P A -=. 解:,A B 相容 ∴ A 不对. ,,A B B A AB ===Φ ∴ B 错. ()0AB P AB =Φ⇒=,而()()P A P B 不一定为0 ∴ C 错. ()()()()P A B P A P AB P A -=-=. ∴ 选D. 7.设0()1,(|)(|)1P B P A B P A B <<+=,则( ) (A ),A B 互不相容; (B ),A B 互为对立; (C ),A B 不独立; (D ),A B 相互独立.解:()()()()()1()1()()()1()()1()P AB P AB P AB P A B P AB P A B P B P B P B P B P B P B -=+=+=+-- ()(1())()(1()()())()(1())P AB P B P B P A P B P AB P B P B -+--+=-⇒22()()()()()()()P B P B P AB P B P A P B P B -=+--()()()P AB P A P B ∴= ∴ 选D. 8.下列命题中,正确的是( ). (A )若()0P A =,则A 是不可能事件; (B )若()()()P A B P A P B =+,则,A B 互不相容; (C )若()()1P AB P AB -=,则()()1P A P B +=;(D )()()()P A B P A P B -=-. 解:()()()()P AB P A P B P AB =+-()()()()1P A B P AB P A P B ⇒-=+=由()0P A A =⇒=Φ/, ∴ A 、B 错.只有当A B ⊃时()()()P A B P A P B -=-,否则不对. ∴ 选C.·153·9.设,A B 为两个事件,且B A ⊂,则下列各式中正确的是( ). (A )()()P AB P A =; (B )()()P AB P A =;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-. 解:()()B A AB A P A B P A ⊂⇒=⇒= ∴选A.10.设,A B 是两个事件,且()(|)P A P A B ≤;(A )()(|)P A P A B =; (B )()0P B >,则有( ) (C )()(|)P A P A B ≥; (D )前三者都不一定成立.解:()(|)()P AB P A B P B =要与()P A 比较,需加条件. ∴选D. 11.设120()1,()()0P B P A P A <<>且1212(|)(|)(|)P A A B P A B P A B =+,则下列等式成立的是( ). (A )1212(|)(|)(|)P A A B P A B P A B =+; (B )1212()()()P A B A B P A B P A B =+; (C )1212()(|)(|)P A A P A B P A B =+;(D )1122()()(|)()(|)P B P A P B A P A P B A =+. 解1:121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ 1212(|)0()0P A A B P A A B ⇒=⇒=12121212()()()()()()P A B A B P A B P A B P A A B P A B P A B =+-=+ ∴ 选B. 解2:由1212{|}(|)(|)P A A B P A B P A B =+ 得1212()()()()()P A B A B P A B P A B P B P B +=可见 1212()()()P A B A B P A B P A B =+∴ 选B.12.假设事件,A B 满足(|)1P B A =,则( ). (A )B 是必然事件; (B )()1P B =; (C )()0P A B -=; (D )A B ⊂.解:()(|)1()()()()0()P AB P B A P AB P A P A P AB P A ==⇒=⇒-=()0P A B ⇒-= ∴ 选C.13.设,A B 是两个事件,且,()0A B P B ⊂>,则下列选项必然成立的是( ).·154· (A )()(|)P A P A B <; (B )()(|)P A P A B ≤; (C )()(|)P A P A B >; (D )()(|)P A P A B ≥.解:()()(|)()()()A B P AB P A P A B P A P B P B ⊂====≥ ()()0()1A B P A P B P B ⊂⇒≤<< ∴选B (或者:,()()()(|)(|)A B P A P AB P B P A B P A B ⊂==≤)14.设12()0,,P B A A >互不相容,则下列各式中不一定正确的是( ). (A )12(|)0P A A B =; (B )1212(|)(|)(|)P A A B P A B P A B =+; (C )12(|)1P A A B =; (D )12(|)1P A A B =.解:1212()0P A A A A =⇐=Φ1212()(|)0()P A A B P A A B P B == A 对.121212(|)(|)(|)(|)P A A B P A B P A B P A A B =+-12(|)(|)P A B P A B =+ B 对. 121212(|)(|)1(|)P A A B P A A B P A A B ==-121(|)(|)1P A B P A B =--≠ C 错.121212(|)(|)1(|)101P A A B P A A B P A A B ==-=-= D 对.∴ 选C.15.设,,A B C 是三个相互独立的事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是( ). (A )A B 与C ; (B )AC 与C ;(C )A B -与C ; (D )AB 与C . 解:[()]()()()()(1())(1())()P AB C P ABC P A P B P C P A P B P C ===--[1(()()()())]()()()P A P B P A P B P C P A B P C =-+-= A 对.()[()]()()()()P ACC P AC C P AC CC P AC P C P AC ===+-()()()P C P AC P C =≠ AC ∴与C 不独立 ∴ 选B.16.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是( ).(A )A 与BC 独立; (B )AB 与AC 独立;(C )AB 与AC 独立; (D )A B 与A C 独立.·155·解:,,A B C 两两独立, ∴若,,A B C 相互独立则必有()()()()()()P ABC P A P B P C P A P BC == ∴A 与BC 独立.反之,如A 与BC 独立则()()()()()()P ABC P A P BC P A P B P C == ∴选A. 17.设,,A B C 为三个事件且,A B 相互独立,则以下结论中不正确的是( ). (A )若()1P C =,则AC 与BC 也独立; (B )若()1P C =,则A C 与B 也独立; (C )若()1P C =,则A C -与A 也独立;(D )若C B ⊂,则A 与C 也独立. 解:()()(),()1P AB P A P B P C ==∴概率为1的事件与任何事件独立AC ∴与BC 也独立. A 对. [()][()]()P AC B P A C B P AB BC ==()()()()()P AB P BC P ABC P A C P B =+-= ∴B 对.[()]()()()()P A C A P ACA P AC P A P C -===()()P A P AC =∴ C 对 ∴ 选D (也可举反例).18.一种零件的加工由两道工序组成. 第一道工序的废品率为1p ,第二道工序的废品率为2p ,则该零件加工的成品率为( ). (A )121p p --; (B )121p p -; (C )12121p p p p --+; (D )12(1)(1).p p -+- 解:设A =成品零件,i A =第i 道工序为成品 1,2.i = 11()1P A p =- 22()1P A p =-1212()()()()P A P A A P A P A ==12(1)(1)p p =-- 12121p p p p =--+ ∴ 选C.19.设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为( ).(A )44610(1)C p p -; (B )3469(1)C p p -; (C )4459(1)C p p -; (D )3369(1).C p p -解:说明前9次取得了3次成功 ∴ 第10次才取得第4次成功的概率为33634699(1)(1)C p p p C p p -=-∴ 选B.20.设随机变量X 的概率分布为(),1,2,,0kP X k b k b λ===>,则·156· ( ).(A )λ为任意正实数; (B )1b λ=+;(C )11b λ=+; (D )11b λ=-. 解:111()111k kk k k b P X K b b b λλλλλλ∞∞∞=========--∑∑∑ ∴ 11bλ=+ 选C .21.设连续型随机变量X 的概率密度和分布函数分别为()f x 和()F x ,则下列各式正确的是( ).(A )0()1f x ≤≤; (B )()()P X x f x ==; (C )()()P X x F x ==; (D )()()P X x F x =≤. 解:()()()F x P X x P X x =≤≥= ∴ 选D. 22.下列函数可作为概率密度的是( ). (A )||(),x f x ex R -=∈; (B )21(),(1)f x x R x π=∈+; (C)22,0,()0,0;xx f x x -⎧≥=<⎩(D )1,||1,()0,|| 1.x f x x ≤⎧=⎨>⎩解:A :||0222x x x e dx e dx e dx +∞+∞+∞----∞===⎰⎰⎰∴ 错.B :211arctan []1(1)22dx x x πππππ+∞+∞-∞-∞==+=+⎰ 且 21()0(1)f x x R x π=≥∈+ ∴ 选B. 23.下列函数中,可作为某个随机变量的分布函数的是( ). (A )21()1F x x =+; (B )11()arctan 2F x x π=+; (C )1(1),0()2,0;x e x F x x -⎧->⎪=⎨⎪≤⎩·157·(D )()()x F x f t dt -∞=⎰,其中() 1.f t dt +∞-∞=⎰解:对A :0()1F x <≤,但()F x 不具有单调非减性且()0F +∞= ∴A 不是. 对B :arctan 22x ππ-≤≤∴ 0()1F x ≤≤.由arctan x 是单调非减的 ∴ ()F x 是单调非减的.11()()022F ππ-∞=+⋅-= 11()122F ππ+∞=+⋅=.()F x 具有右连续性. ∴ 选B.24.设12,X X 是随机变量,其分布函数分别为12(),()F x F x ,为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取( ).(A )32,55a b ==-; (B )22,33a b ==; (C )13,22a b =-=; (D )13,22a b ==.解:12()()()0F aF bF -∞=-∞--∞=,()1F a b +∞=-=,只有A 满足∴ 选A25.设随机变量X 的概率密度为()f x ,且()(),()f x f x F x -=是X 的分布函数,则对任意实数a 有( ). (A )0()1()a F a f x dx -=-⎰;(B )01()()2a F a f x dx -=-⎰;(C )()()F a F a -=;(D )()2()1F a F a -=-. 解:()()()()a a a F a f x dx f du f u du μ-+∞-∞+∞-==--=⎰⎰⎰()()a f x dx f x +∞-∞-∞=-⎰⎰001(()())a dx f x dx f x dx -∞=-+⎰⎰00111()()22a a f x dx f x dx =--=-⎰⎰由()2()1f x dx f x dx +∞+∞-∞==⎰⎰001()()2f x dx f x dx +∞-∞⇒==⎰⎰∴ 选B.26.设随机变量2~(1,2)X N ,其分布函数和概率密度分别为()F x 和·158· ()f x ,则对任意实数x ,下列结论中成立的是( ).(A )()1()F x F x =--; (B )()()f x f x =-; (C )(1)1(1)F x F x -=-+; (D )11122x x F F -+⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭. 解:2~(1,2)()X N f x ∴以1x =为对称轴对称.(1)(1)P X x P X x ∴>+=≤-即 (1)1(1)1(1)F x P X x F x -=-≤+=-+ ∴ 选C.27.设22~(,4),~(,5)X N Y N μμ,设1(4)P X p μ≤-=,2(5)P Y p μ≥+=,则( ).(A )对任意实数μ有12p p =; (B )12p p <;(C )12p p >; (D )只对μ的个别值才有12.p p =解:14(4)(1)1(1)4p P X μμμ--⎛⎫=≤-=Φ=Φ-=-Φ⎪⎝⎭25(5)1(5)11(1)5p P Y P Y μμμμ+-⎛⎫=≥+=-<+=-Φ=-Φ ⎪⎝⎭∴ 12p p = ∴ 选A (or 利用对称性)28.设2~(,)X N μσ,则随着σ的增大,概率(||)P X μσ-<的值( ).(A )单调增大; (B )单调减少; (C )保持不变; (D )增减不定.解:1)1(2)1()1()(|)(|-Φ=-Φ-Φ=+<<-=<-σμσμσμX P X P ∴ 不随σ变 ∴ 选C.29.设随机变量X 的分布函数为)(x F X ,则35-=X Y 的分布函数 )(y F Y 为( ).(A ))35(-y F X ; (B )3)(5-y F X ; (C )⎪⎭⎫⎝⎛+53y F X ; (D ).3)(51+y F X解:))3(51()35()()(+≤=≤-=≤=y X P y X P y Y P y F Y ⎪⎭⎫⎝⎛+=53y F X ∴ 选C.·159·30.设X 的概率密度为)1(1)(2x x f +=π,则X Y 2=的概率密度为( ). (A ))41(12y +π; (B )2)4(1y +π;(C ))4(22y +π; (D ))1(22y +π.解:⎪⎭⎫⎝⎛=≤=≤=≤=2)2()2()()(y F y X P y X P y Y P y F X Y∴ )4(2)41(121221)(22y y y f y f X Y +=+⋅=⎪⎭⎫ ⎝⎛=ππ ∴ 选C. 31.设随机变量X 与Y 相互独立,其概率分布分别为212111P X - 212111PY -则下列式子正确的是( ).(A )Y X =; (B )0)(==Y X P ;(C )21)(==Y X P ; (D )1)(==Y X P . 解:A 显然不对. )1,1()1,1()(==+-=-===Y X P Y X P Y X P2121212121)1()1()1()1(=⋅+⋅===+-=-==Y P X P Y P X P ∴ 选C.32.设)1,1(~),1,0(~N Y N X ,且X 与Y 相互独立,则( ).(A )21)0(=≤+Y X P ; (B )21)1(=≤+Y X P ; (C )21)0(=≤-Y X P ; (D )21)1(=≤-Y X P .解:)1,1(~)1,0(~N Y N X 且独立 ∴ )2,1(~N Y X +21)0()1()1(=Φ=>+=≤+Y X P Y X P ∴ 选B. 33.设随机变量2,1,412141101~=⎪⎪⎭⎫⎝⎛-i X i且满足1)0(21==X X P ,则==)(21X X P ( ).·160· (A )0; (B )1/4; (C )1/2; (D )1. 解:(2121P∴ )0()1()(212121==+-====X X P X X P X X P )1(21==+X X P0000=++= ∴ 选A.34.设随机变量X 取非负整数值,)1()(≥==n a n X P n ,且1=EX ,则a 的值为( ).(A )253+; (B )253-; (C )253±; (D )5/1.解:∑∑∑∑∞=∞=∞===-∞='-='====1111)1()(1n n n aX n aX nn n nX a X a naa naEX2)1(11a ax x a a X -='⎪⎭⎫⎝⎛-==∴ 253,013,)1(22±==+--=a a a a a ,但1<a . ∴ 253-=a . ∴ 选B. 35.设连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧<≥-=,1,0,1,11)(4x x x x F则X 的数学期望为( ).(A )2; (B )0; (C )4/3; (D )8/3.解:⎪⎩⎪⎨⎧<≥=-114)(5x x xx f3541114144(3dx EX x dx x x x ∞∞∞-=⋅==⨯-⎰⎰34= ∴ 选C.36.已知44.1,4.2),,(~==DX EX p n B X ,则二项分布的参数为( ). (A )6.0,4==p n ; (B )4.0,6==p n ; (C )3.0,8==p n ; (D )1.0,24==p n .解:4.06.04.244.144.14.2=⇒=÷=⇒⎭⎬⎫====p q npq DX np EX 6=n∴ 选B.37.已知离散型随机变量X 的可能值为1,0,1321==-=x x x ,且89.0,1.0==DX EX ,则对应于321,,x x x 的概率321,,p p p 为( ).(A )5.0,1.0,4.0321===p p p ;(B )1230.1,0.1,0.5p p p ===; (C )4.0,1.0,5.0321===p p p ;(D )1230.4,0.5,0.5.p p p ===⎪⎭⎪⎬⎫+==+=⇒-=+-==312222319.0)1.0(89.0)(1.0p p EX EX EX DX p p EX 1230.40.10.5p p p ⎧=⎪⇒=⎨⎪=⎩ ∴ 选A.38.设)1,1(~),1,2(~-N Y N X ,且Y X ,独立,记623--=Y X Z ,则~Z __________.(A ))1,2(N ; (B ))1,1(N ; (C ))13,2(N ; (D ))5,1(N . 解:)1,1(~)1,2(~-N Y N X 且独立∴ 2)623(=--=Y X E EZ .949413DZ DX DY =+=+=.又独立正态变量的线性组合仍为正态变量,∴ ~(2,13)Z N ∴ 选C.39.设6)(),1,2(~),9,2(~=XY E N Y N X ,则)(Y X D -之值为( ).(A )14; (B )6; (C )12; (D )4. 解:),cov(2)(Y X DY DX Y X D -+=-, 246),cov(=-=-=EXEY EXY Y X 62219)(=⨯-+=-Y X D . ∴ 选B.40.设随机变量X 的方差存在,则( ).(A )22)(EX EX =; (B )22)(EX EX ≥; (C )22)(EX EX >; (D )22)(EX EX ≤.解:0)(22≥-=EX EX DX ∴ 22)(EX EX ≥. ∴ 选D. 41.设321,,X X X 相互独立,且均服从参数为λ的泊松分布,令)(31321X X X Y ++=,则2Y 的数学期望为( ).(A )λ31; (B )2λ; (C )231λλ+; (D )λλ+231.解:321X X X 独立)(~λP )3(~)(321λP X X X ++∴λ3)()(321321=++=++X X X D X X X E3)(91)](31[321321λ=++=++X X X D X X X D 2222)(λ-=-=EY EY EY∴ 322λλ+=EY ∴选C.42.设Y X ,的方差存在,且EXEY EXY =,则( ).(A )DXDY XY D =)(; (B )DY DX Y X D +=+)(;(C )X 与Y 独立; (D )X 与Y 不独立. 解:),cov(2)(Y X DY DX Y X D ++=+DY DX EXEY EXY DY DX +=-++=)(2 ∴选B.43.若随机变量Y X ,满足)()(Y X D Y X D -=+,且0>DXDY ,则必有( ).(A )Y X ,独立; (B )Y X ,不相关; (C )0=DY ; (D )0)(=XY D .解:Y X P Y X Y X D Y X D ,00),cov()()(⇒=⇒=⇒-=+不相关. ∴ 选B.44.设Y X ,的方差存在,且不等于0,则DY DX Y X D +=+)(是YX ,( ).(A )不相关的充分条件,但不是必要条件; (B )独立的必要条件,但不是充分条件; (C )不相关的必要条件,但不是充分条件; (D )独立的充分必要条件.解:由()cov(,)00D X Y DX DY X Y X ρ+=+⇔=⇔=⇔与Y 不相关 ∴ DY DX Y X D +=+)(是不相关的充要条件. A 、C 不对. 由独立DY DX Y X D +=+⇒)(,反之不成立 ∴ 选B.45.设Y X ,的相关系数1=XY ρ,则( )(A )X 与Y 相互独立; (B )X 与Y 必不相关; (C )存在常数b a ,使1)(=+=b aX Y P ; (D )存在常数b a ,使1)(2=+=b aX Y P . 解:⇔=1||XY ρ存在b a ,使1)(=+=b aX Y P ∴ 选C.46.如果存在常数)0(,≠a b a ,使1)(=+=b aX Y P ,且+∞<<DX 0,那么Y X ,的相关系数ρ为( ).(A )1; (B )–1; (C )||1ρ=; (D )||1ρ<. 解:aDX X X a b aX X Y X ==+====),cov(),cov(),cov(1以概率 DX a DY 21以概率==== ||||),cov(1a a DX a aDX DYDX Y X XY=====⋅=以概率ρ||1ρ∴=,以概率1成立. ∴ 选C.47.设二维离散型随机变量),(Y X 的分布律为则( ).(A )Y X ,不独立; (B )Y X ,独立; (C )Y X ,不相关; (D )Y X ,独立且相关.解:1.0)0,0(===Y X P)2.01.0)(25.005.01.0()0()0(+++===Y P X P 12.03.04.0=⨯= )0()0()0,0(==≠==Y P X P Y X P ∴ X 与Y 不独立. ∴ 选A.48.设X 为连续型随机变量,方差存在,则对任意常数C 和0>ε,必有( ).(A )εε/||)|(|C X E C X P -=≥-; (B )εε/||)|(|C X E C X P -≥≥-; (C )εε/||)|(|C X E C X P -≤≥-; (D )2/)|(|εεDX C X P ≤≥-. 解:||||||(||)()()X C X C X C P X C f x dx f x dx εεεε-≥-≥--≥=≤⎰⎰||1()||X C f x dx E X C εε+∞-∞-≤=-⎰∴ 选C.49.设随机变量X 的方差为25,则根据切比雪夫不等式,有)10|(|<-EX X P ( ).(A )25.0≤; (B )75.0≤; (C )75.0≥; (D )25.0≥. 解:75.0431002511)10|(|2==-=-≥<-εDXEX X P ∴ 选C.50.设 ,,21X X 为独立随机变量序列,且i X 服从参数为λ的泊松分布,,2,1=i ,则( ).(A ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ;(B )当n 充分大时,∑=ni iX1近似服从标准正态分布; (C )当n 充分大时,∑=ni iX1近似服从),(λλn n N ;(D )当n 充分大时,)()(1x x XP ni iΦ≈≤∑=.解:由独立同分布中心极限定理∑∞→=⇒nn i iX1近似服从),(λλn n N∴ 选C51.设 ,,21X X 为独立随机变量序列,且均服从参数为λ的指数分布,则( ).(A ))(/lim 21x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (B ))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ;(C ))(/11lim 21x x X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ; (D )).(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ解:λ1=i EX 21λ=i DX λnX E n i =⎪⎭⎫ ⎝⎛∑1 21λn X D n i =⎪⎭⎫ ⎝⎛∑由中心极限定理⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑∞→x n nX P n i n 21lim λλ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=∑∞→x n n X P n i n 1lim λ)(x Φ=. ∴ 选B.52.设4321,,,X X X X 是总体),(2σμN 的样本,μ已知,2σ未知,则不是统计量的是( ).(A )415X X +; (B )41ii Xμ=-∑;(C )σ-1X ; (D )∑=412i iX.统计量是不依赖于任何未知参数的连续函数. ∴ 选C.53.设总体n X X X p B X ,,,),,1(~21 为来自X 的样本,则=⎪⎭⎫ ⎝⎛=n k X P ( ).(A )p ; (B )p -1;(C )k n k k n p p C --)1(; (D )k n k k n p p C --)1(.解:n X X X 21相互独立且均服从),1(p B 故 ∑=ni ip n B X1),(~即 ),(~p n B X n 则()()(1)k k n k n k P X P nX k C p p n-====- ∴ 选C.54.设n X X X ,,,21 是总体)1,0(N 的样本,X 和S 分别为样本的均值和样本标准差,则( ).(A ))1(~/-n t S X ; (B ))1,0(~N X ;(C ))1(~)1(22--n S n χ; (D ))1(~-n t X n .解:∑==ni i X n X 11 0=X E ,)1,0(~112n N X n n n X D ∴== B 错 )1(~)1(222--n S n χσ )1(~)1(1)1(2222--=-∴n S n S n χ)1(~-n t n SX . ∴ A 错.∴ 选C.55.设n X X X ,,,21 是总体),(2σμN 的样本,X 是样本均值,记=21S∑∑∑===--=-=--n i n i n i i i i X n S X X n S X X n 1112232222)(11,)(1,)(11μ,∑=-=n i i X n S 1224)(1μ,则服从自由度为1-n 的t 分布的随机变量是( ).(A )1/1--=n S X T μ; (B )1/2--=n S X T μ;(C )nS X T /3μ-=; (D )n S X T /4μ-=解:)1(~)(2212--∑=n X Xni iχσ)1,0(~N n X σμ-)1(~1)(1122----=∑=n t n X XnX T ni iσσμ)1(~11/)(222---=--=n t n S X n nS n X T μμ ∴ 选B.56.设621,,,X X X 是来自),(2σμN 的样本,2S 为其样本方差,则2DS 的值为( ).(A )431σ; (B )451σ; (C )452σ; (D ).522σ 解:2126,,,~(,),6X X X N n μσ= ∴)5(~5222χσS由2χ分布性质:1052522=⨯=⎪⎪⎭⎫ ⎝⎛σS D即442522510σσ==DS ∴ 选C.57.设总体X 的数学期望为n X X X ,,,,21 μ是来自X 的样本,则下列结论中正确的是( ).(A )1X 是μ的无偏估计量; (B )1X 是μ的极大似然估计量; (C )1X 是μ的一致(相合)估计量; (D )1X 不是μ的估计量. 解:11EX EX X μ==∴是μ的无偏估计量.∴ 选A.58.设n X X X ,,,21 是总体X 的样本,2,σμ==DX EX ,X 是样本均值,2S 是样本方差,则( ).(A )2~,X N n σμ⎛⎫ ⎪⎝⎭; (B )2S 与X 独立;(C ))1(~)1(222--n S n χσ; (D )2S 是2σ的无偏估计量. 解:已知总体X 不是正态总体 ∴(A )(B )(C )都不对.∴ 选D.59.设n X X X ,,,21 是总体),0(2σN 的样本,则( )可以作为2σ的无偏估计量.(A )∑=n i i X n 121; (B )∑=-n i i X n 1211; (C )∑=n i i X n 11; (D )∑=-ni i X n 111. 解:2222)(,0σ==-==i i i i i EX EX EX DX EX22121)1(σσ=⋅=∑n nX n E n i∴ 选A.60.设总体X 服从区间],[θθ-上均匀分布)0(>θ,n x x ,,1 为样本,则θ的极大似然估计为( )(A )},,max {1n x x ; (B )},,min{1n x x (C )|}|,|,max {|1n x x (D )|}|,|,min{|1n x x解:1[,]()20x f x θθθ⎧∈-⎪=⎨⎪⎩其它似然正数∏==ni i n x f x x L 11),();,,(θθ 1,||1,2,,(2)0,i nx i n θθ⎧≤=⎪=⎨⎪⎩其它此处似然函数作为θ函数不连续 不能解似然方程求解θ极大似然估计∴ )(θL 在)(n X =θ处取得极大值 |}|,|,max{|ˆ1nn X X X ==θ ∴ 选C.。

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)

《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

18、设21)(,41)(,31)(===B A P B P A P ,则=)(B A P 。

19、假设一批产品中一、二、三等品各占60%,30%,10%。

从中随机取一件,结果不是三等品,则为一等品的概率为20、将n 个球随机地放入n 个盒子中,则至少有一个盒子空的概率为 。

二、选择题1、设0)(=AB P ,则下列成立的是( )① A 和B 不相容 ② A 和B 独立 ③ 0)(0)(==B orP A P ④ )()(A P B A P =-2、设C B A ,,是三个两两不相容的事件,且a C P B P A P ===)()()(,则 a 的最大值为( ) ① 1/2 ② 1 ③ 1/3 ④ 1/43、设A 和B 为2个随机事件,且有1)|(=AB C P ,则下列结论正确的是( )① 1)()()(-+≤B P A P C P ② 1)()()(-+≥B P A P C P③ )()(AB P C P = ④ )()(B A P C P =4、下列命题不成立的是 ( )① B B A B A = ② B A B A =③ (Φ=))(B A AB ④ A B B A ⊂⇒⊂5、设B A ,为两个相互独立的事件,0)(,0)(>>B P A P ,则有 ( )①)(1)(B P A P -= ②=)|(B A P 0 ③)(1)|(A P B A P -= ④=)|(B A P )(B P6、设B A ,为两个对立的事件,0)(,0)(>>B P A P ,则不成立的是 ( )①)(1)(B P A P -= ②=)|(B A P 0 ③)|(B A P =0 ④=)(AB P 17、设B A ,为事件,0)()()(>+=B P A P B A P ,则有 ( )① A 和B 不相容 ② A 和B 独立 ③ A 和B 相互对立 ④ )()(A P B A P =-8、设B A ,为两个相互独立的事件,0)(,0)(>>B P A P ,则)(B A P 为( )①)()(B P A P + ②)()(1B P A P - ③)()(1B P A P + ④)(1AB P -9、设B A ,为两事件,且=)(A P 3.0,则当下面条件( )成立时,有7.0)(=B P①A 与B 独立 ②A 与B 互不相容 ③A 与B 对立 ④A 不包含B10、设B A ,为两事件,则))((B A B A 表示( )①必然事件 ②不可能事件 ③A 与B 恰有一个发生 ④A 与B 不同时发生11、每次试验失败的概率为)10(<<p p ,则在3次重复试验中至少成功一次的概率为( )①)1(3p - ②3)1(p - ③31p - ④213)1(p p C -12、10个球中有3个红球7个绿球,随机地分给10个小朋友,每人一球,则最后三个分到球的小朋友中恰有一个得到红球的概率为( ) ①)103(13C ②2)107)(103( ③213)107)(103(C ④3102713C C C 13、设8.0)|(,7.0)(,8.0)(===B A P B P A P ,则下列结论成立的是( )①A 与B 独立 ② A 与B 互不相容 ③ A B ⊃ ④ )()()(B P A P B A P +=14、设C B A ,,为三事件,正确的是( )① )(1)(AB P B A P -= ② 1)()()(+-=B P A P B A P③ )(1)(C B A P ABC P -= ④ )()(A B P B A P =-15、掷2颗骰子,记点数之和为3的概率为p ,则p 为( )① 1/2 ② 1/4 ③ 1/18 ④ 1/3616、已知B A ,两事件的概率都是1/2, 则下列结论成立的是( )① 1)(=B A P ② 1)(=B A P ③ )()(AB P B A P = ④21)(=AB P 17、C B A ,,为相互独立事件,1)(0<<C P ,则下列4对事件中不相互独立的是( )① B A 与C ② B A -与C ③ AB 与C ④AC 与C18、对于两事件B A ,,与B B A = 不等价的是( )① φ=B A ② φ=B A ③ B A ⊂ ④ A B ⊂19、对于概率不为零且互不相容的两事件B A ,,则下列结论正确的是( ) ①A 与B 互不相容 ②A 与B 相容 ③)()()(B P A P AB P = ④)()(A P B A P =-三、计算题1、某工厂生产的一批产品共有100个,其中有5个次品。

从中取30个进行检查,求次品数不多于1个的概率。

2、某人有5把形状近似的钥匙,其中有2把可以打开房门,每次抽取1把试开房门,求第三次才打开房门的概率。

3、某种灯泡使用1000小时以上的概率为0.2,求3个灯泡在使用1000小时以后至多有1个坏的概率。

4、甲、乙、丙3台机床加工同一种零件,零件由各机床加工的百分比分别为45%,35%,20%。

各机床加工的优质品率依次为85%,90%,88%,将加工的零件混在一起,从中随机抽取一件,求取得优质品的概率。

若从中取1个进行检查,发现是优质品,问是由哪台机床加工的可能性最大。

6、某人买了C B A ,,三种不同的奖券各一张,已知各种奖券中奖的概率分别为02.0,01.0,03.0;并且各种奖券中奖是相互独立的。

如果只要有一种奖券中奖则此人一定赚钱,求此人赚钱的概率。

7、教师在出考题时,平时练习过的题目占60%,学生答卷时,平时练习过的题目在考试时答对的概率为95%,平时没有练习过的题目在考试时答对的概率为30%。

求答对而平时没有练习过的概率8、有两张电影票,3人依次抽签得票。

求每个人抽到电影票的概率。

9、有两张电影票,3人依次抽签得票,如果第1个人抽的结果尚未公开,由第2个人抽的结果去猜测第1个人抽的结果。

问:如果第2个人抽到电影票,问第1个人抽到电影票的概率。

10、一批产品的次品率为0.1,现任取3个产品,问3个产品中有几个次品的概率的可能性最大。

11、有5个除颜色外完全相同的球,其中三个白色,两个红色。

从中任取两个,(1)求这两个球颜色相同的概率;(2)两球中至少有一红球的概率。

12、设B A ,是两个事件,用文字表示下列事件:B A AB B A B A ,,, 。

13、从1~100这100个自然数中任取1个,求(1)取到奇数的概率;(2)取到的数能被3整除的概率;(3)取到的数能被6整除的偶数。

14、对次品率为5%的某箱灯泡进行检查,检查时,从中任取一个,如果是次品,就认为这箱灯泡不合格而拒绝接受,如果是合格品就再取一个进行检查,检查过的产品不放回,如此进行五次。

如果5个灯泡都是合格品,则认为这箱灯泡合格而接受,已知每箱灯泡有100个,求这箱灯泡被接受的概率。

15、某人有5把形状近似的钥匙,其中只有1把能打开他办公室的门,如果他一把一把地用钥匙试着开门,试过的钥匙放在一边,求(1)他试了3次才能打开他办公室的门的概率;(2)他试了5次才能打开他办公室的门的概率16、10个塑料球中有3个黑色,7个白色,今从中任取2个,求已知其中一个是黑色的条件下,另一个也是黑色的概率。

17、装有10个白球,5个黑球的罐中丢失一球,但不知是什么颜色。

为了猜测丢失的球是什么颜色,随机地从罐中摸出两个球,结果都是白色球,问丢失的球是黑色球的概率。

18、 设有三只外形完全相同的盒子,Ⅰ号盒中装有14个黑球,6个白球;Ⅱ号盒中装有5个黑球,25个白球;Ⅲ号盒中装有8个黑球,42个白球。

现从三个盒子中任取一盒,再从中任取一球,求(1)取到的球为黑色球的概率;(2)如果取到的球为黑色球,求它是取自Ⅰ号盒的概率。

19、三种型号的圆珠笔杆放在一起,其中Ⅰ型的有4支,Ⅱ型的有5支,Ⅲ型的有6支;这三种型号的圆珠笔帽也放在一起,其中Ⅰ型的有5个,Ⅱ型的有7个,Ⅲ型的有8个。

现在任意取一个笔杆和一个笔帽,求恰好能配套的概率。

20、有两张电影票,3人依次抽签得票,如果第1个人抽的结果尚未公开,由第2个人抽的结果去猜测第1个人抽的结果。

问:如果第2个人抽到电影票,问第1个人抽到电影票的概率。

21、甲、乙、丙、丁4人独立地破译一个密码,他们能译出的概率分别为0.2 , 0.3 , 0.4 , 0.7,求此密码能译出的概率是多少。

22、袋中10个白球,5个黄球,10个红球,从中取1个,已知不是白球,求是黄球的概率。

23、设每次试验事件A 发生的概率相同,已知3次试验中A 至少出现一次的概率为19/27,求事件A 在一次试验中出现的概率。

相关文档
最新文档