概率统计练习题8答案
概率统计6-8章习题解答(DOC)

第13次1在总体N (U 「2)中抽取样本 X !,X 2,X 3 (」已知,二2未知),指出X ! X 2 X 3,解 X 1 X 2 X 3 , X 2 2h , max(X 1 ,X 2,X 3) , |X 1—'X 31 是统计量2给定样本观测值92,94,103,105,106求样本均值和方差1解 X =丄(9294 103 105 106) =100 521 2 2 2 2 2S[(92 -100)(94 -100) (103-100)(105 -100) (106 -100)]5 -1=42.53在总体X ~ N(12,22)中随机抽取容量为 5的样本,求样本均值与总体均值之差的绝对值大于1的概率 2解 注意到 X~N (叫——)n - (2 丫有 X ~ N(12,)& 5丿13 _ 12 11 _ 12P{| X -12 | 1} =1 - P{11 :: X :: 13} =1 -[门( )一 门( 2 )]、5. 5=1一:门( )亠叫一 )=1一门()1一门()=0.26282 2 2 24 已知 X ~t(8),求(1)P{X 2.306},P{X <1.3968}(2)若 P{X }=0.01 求’解 (1)P{X 2.306} =0.025,P{ X ::: 1.3968} = P{ X 1.3968} = 1 - 0.1 = 0.9(2)P{X } =0.01= • - 2.89655 已知 X ~2(8),求(1)P{X 2.18},P{X :: 20.09}(2)若 P{X 「} =0.025求,(3)若 P{X :: } =0.95 求■ 解(1)P{X 2.18} =0.975,P{X :: 20.09} =1-P{X 20.09} = 1 -0.01 = 0.99(2) P{X •} =0.025 二,-17.534X 2 2」,max(X ,,X 2,X 3)|X i -X 3 I 哪些是统计量?2 2X iX 2 X2 3(3) P{X }=0.95 P{X . •} =0.05 二,-15.5076设总体X ~ N (3.2,62 3 4), X ,,X 2,...,X n 是X 的样本,则容量n 应取多大,才能使得P{1.2 :: X :: 5.2} _0.95P{1.2 :::X ::5.2}二仁5^尹)一讥违竺)凡(亍)一讥一亍)n= :.:,( □)_:「( 0) =2+(」)_1 _0.9533 3y' n Tn ::」()_ 0.975 1.96 n_ 34.5 7 4433所以n 最小为35第14次1从某正态总体 X 取得样本观测值:14.7,15.1,14.8,15.0, 15.2,14.6,用矩法估计总体均值」和方差c 2 解」-X =1(14.7 15.1 14.8 15.0 15.2 14.6) =14.96A —1-X21 n--------------------------- 2 1 2 2 2 匚 (X i -X) [(14.7—14.9)(15.1—14.9)(14.8—14.9)n i 总 6(15.0-14.9)2 (15.2 -14.9)2 (14.6 -14.9)2] =0.28X 乞1 2总体x 的密度为p(x) =1 飞,样本为X 1,X 2 ,...X n 求二的矩法估计量归 ex 〉11 3总体x 的密度为p (x )=1。
第八章试题答案 概率论与数理统计

第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率 答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( ) A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
《概率论与数理统计》习题及答案第八章

《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。
3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。
解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。
概率论与数理统计习题及答案第八章

习题8-11.填空题(1) 假设检验易犯的两类错误分别是____________和__________.解第一类错误(弃真错误); 第二类错误(取伪错误).(2) 犯第一类错误的概率越大, 则右侧检验的临界值(点)越_____, 同时犯第二类错误的概率越_____.解小, 小.2. 已知一批零件的长度X(单位:cm)服从正态分布(,1)Nμ, 从中随机地抽取16个零件, 得到长度的平均值为40cm. 求:(1) 取显著性水平α=0.05时, 均值μ的双侧假设检验的拒绝域;(2) μ的置信水平为0.95的置信区间;(3) 问题(1)和(2)的结果有什么关系.解(1) 计算得到拒绝域为(-∞, 39.51)∪(40.49, +∞).(2) 已知x=40, σ =1,α = 0.05, 查表可得0.02521.96,z zα==所求置信区间为22()(40 1.96,40 1.96),x z x zαα+=-(39.51,40.49).=(3) 对于显著性水平α=0.05, μ的双侧假设检验的接受域恰为μ的置信水平为0.95的置信区间.习题8-21.填空题(1) 设总体2~(,)X Nμσ,12,,,nX X X是来自总体X的样本. 对于检验假设H:μμ=(μμ≥或μμ≤), 当2σ未知时的检验统计量是,H为真时该检验统计量服从分布; 给定显著性水平为α, 关于μ的双侧检验的拒绝域为, 左侧检验的拒绝域为, 右侧检验的拒绝域为__________.解Xt=; 自由度为n-1的t分布;2t tα…;t tα-…;t tα….2. 统计资料表明某市人均年收入服从2150μ=元的正态分布. 对该市从事某种职业的职工调查30人, 算得人均年收入为2280x=元, 样本标准差476s=元. 取显著性水平0.1, 试检验该种职业家庭人均年收入是否高于该市人均年收入?解由于总体方差未知, 故提出假设H0:μ≤μ0=2150; H1:μ>μ0.对于α=0.1,选取检验统计量X t =拒绝域为t >)1(-n t α=t 0.1(29)=1.3114.代入数据n =30, x =2280, s =476, 得到4959.130476215022800=-=-=n s x t μ>1.3114.所以拒绝原假设, 可以认为该种职业家庭人均年收入高于市人均年收入.3. 从某种试验物中取出24个样品,测量其发热量, 算得平均值11958, 样本标准差316s =.设发热量服从正态分布. 取显著性水平α=0.05, 问是否可认为该试验物发热量的期望值为12100?解 提出假设 H 0: μ=μ0=12100; H 1:μ≠μ0 .对于α=0.05,选取检验统计量X t =, 拒绝域为|t |>)1(2-n t α=t 0.025(23)=2.0687代入数据n =24, x =11958, s =316, 得到|| 2.20144x t ===>2.0687.所以拒绝原假设, 不能认为该试验物发热量的期望值为12100.4.从某锌矿的东西两支矿脉中, 各抽取容量分别为9和8的样品, 计算其样本含锌量(%)的平均值与方差分别为:东支: 0.230,x =2110.1337,9;n s ==西支: 0.269,y =2220.1736,8s n ==.假定东、西两支矿脉的含锌量都服从正态分布. 取显著性水平0.05α=, 问能否认为两支矿脉的含锌量相同?解 提出假设 H 0:μ1-μ2=0 ; H 1: μ1-μ2≠0.已知α=0.05, 210.230,0.1337x s ==, 220.269,0.1736y s ==,129,8,n n ==选取检验统计量X Y t =, 22112212(1)(1)2w n S n S S n n -+-=+-,拒绝域为|t |>120.0252(2)(15) 2.1315.t n n t α+-==因为2222112212(1)(1)(91)0.1337(81)0.17360.392982wn s n s s n n -+--⨯+-⨯===+-+-,||0.2058x y t ===<2.1315,所以不能拒绝原假设, 可以认为两支矿脉的含锌量相同.习题8-3一、 填空题1. 设总体2~(,)X N μσ, 12,,,n X X X 是来自总体X 的样本, 则检验假设0H :220σσ=(220σσ≥或220σσ≤), 当μ未知时的检验统计量是 , 0H 为真时该检验统计量服从 分布; 给定显著性水平α, 关于σ2的双侧检验的拒绝域为 , 左侧检验的拒绝域为 , 右侧检验的拒绝域为__________.解 2220(1)n S χσ-=; 2(1)n χ-; 2212(1)n αχχ--≤或222(1)n αχχ-≥;221(1)n αχχ--≤;22(1)n αχχ-≥. 2. 为测定某种溶液中的水分, 由它的10个测定值算出样本标准差的观察值0.037s =%. 设测定值总体服从正态分布, 2σ为总体方差, 2σ未知. 试在0.05α=下检验假设0:0.04H σ≥%; 1:0.04H σ<%.解 只需考虑假设 022:0.04)%H ≥(σ; 122:(0.04)%H <σ . 对于α=0.05, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22210.95(1)(9) 3.325n αχχχ--==≤.代入数据10=n ,220(0.04%)=σ, s 2=(0.037%)2, 计算得到222220(1)(101)(0.037%)(0.04%)n S --⨯==χσ=7.701>3.325,不落在拒绝域内,所以在水平α=0.05下接受H 0, 即认为σ≥0.04%.3. 有容量为100的样本, 其样本均值观察值 2.7x =, 而10021225()i i x -x ==∑.试以0.01α=检验假设H 0: σ2=2.5.解 提出假设 2201: 2.5;: 2.5.H H σσ=≠对于α=0.01, 选取检验统计量2220(1)n S χσ-=, 拒绝域为22220.9950.995121(1)(99)(2n z αχχχ--=≈+≤=65.67,或22220.0050.00521(1)(99)(2n z αχχχ-=≈≥=137.96.代入数据n =100, 2(1)225,n s -=得到2220(1)2252.5n s χσ-===90.因为65.67<90<137.96, 即χ2的观察值不落在拒绝域内, 所以在水平α=0.01下接受H 0, 即认为σ2=2.5.习题8-41..试在显著性水平α=0.025下检验H 0: X 的概率密度2,01,()0,.x x f x <<⎧=⎨⎩其它解 因为22/4(1)/41(1){}2,4416i i i i i i i p P X x x ----=<==⎰≤d i =1, 2, 3, 4.待检假设 02,01,:()0,.x x H X f x <<⎧=⎨⎩ 其它列计算表如表8-1所示, 算得2421() 1.83.i i i if np npχ=-==∑表8-1 第1题数据处理查表知20.025(3)9.348,χ= 经比较知220.0251.83(3)9.348,χχ=<=故接受H 0, 认为X 的概率密度为2,01,()0,.x x f x <<⎧=⎨⎩其它2. 在显著性水平α=0.05下, 检验这枚骰子是否均匀.解 用X 表示骰子掷出的点数, P {X =i }=p i , i =1, 2, …, 6. 如果骰子是均匀的, 则p i =16, i =1, 2, …, 6. 因此待检假设01:6i H p =, i =1, 2, …, 6. 计算检验统计量221()ni i i if np np χ=-=∑的值, 得2222222100100100[(13)(14)(20)666100100100100(17)(15)(21)]66663.2.χ=-+-+-+-+-+-÷=查表知20.05(61)11.071,χ-= 经比较知220.053.2(5)11.071,χχ=<= 故接受H 0, 认为骰子是均匀的.。
概率统计第三章答案

概率统计第三章答案概率论与数理统计作业8(§3.1~§3.3)一、填空题 1.YX ,独立同分布323110//P X,则()().XY E ,Y X P 94951==≤+ 2. 设X 的密度函数为2(1)01()0x x f x -<<⎧=⎨⎩其它,则()E X 31/,2()X =61/.3. 随机变量X 的分布率为303040202...P X-,则()E X =-0.2 ,2(35)E X +=13.4 。
4. 已知随机变量X 的分布列为P (X m =)=101,m=2,4,…,18,20,,则 ()E X =115. 对两台仪器进行独立测试,已知第一台仪器发生故障的概率为1p ,第二台仪器发生故障的概率为2p .令X 表示测试中发生故障的仪器数,则()=X E 21p p +二、计算题1. 连续型随机变量X 的概率密度为2. 对某工厂的每批产品进行放回抽样检查。
如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。
设每批产品的次品率为p ,求每批产品抽查样品的平均数。
解:设随机变量X 表示每批产品抽查的样品数,则:∴X 的概率分布表如下:3.设二维随机变量()Y X ,的联合密度函数为()⎪⎩⎪⎨⎧≤≤=其它,0142122y x y x y x fX )m X (P =4q 521ppq432pq 3pq ;),,,m (pq )m X (P m 43211===-)q p (1=+4545q q pq )X (P =+==4324325101055432p p p p q pq pq pq p EX +-+-=++++=∴1)求()X E ,()Y E 及()XY E ; 2)求X 与Y 的边缘密度函数; 解:1)()();dx x x dy y x x dx dxdy y ,x xf EX x0821421117312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()();dx x x dy y x y dx dxdy y ,x yf EY x 9747421118212112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-()()();dx x x dy y x xy dx dxdy y ,x xyf XY E x 047421119312112=-=⋅==⎰⎰⎰⎰⎰--+∞∞-+∞∞-2)当时,1≤x ()()();x x ydy x dy y ,x f x f x X62218214212-===⎰⎰+∞∞-当时,1≥x ().x fX0=当时,10≤≤y ()();y ydx x dx y ,x f y fyy Y25227421===⎰⎰-∞+∞-当时,或01<>y y ().y fY0=概率论与数理统计作业9(§3.4~§3.7)一、填空题1. 设随机变量1X ,2X ,3X 相互独立,其中1X 在[0,6]上服从均匀分布,2X 服从1()2e ,3X 服从参数为λ=3()()⎪⎩⎪⎨⎧>≤-=∴.x ,;x ,x x x f X 10182162的泊松分布,记12323Y XX X =-+,则()D Y = 462. 随机变量Y X ,相互独立,又()⎪⎭⎫⎝⎛41,8~,2~B Y P X 则()=-Y X E 2 --2 ,()=-Y X D 2 8 .3. 随机变量~(10,0.6),~(0.6),X B Y P 相关系数1(,)4R X Y =,(,)Cov X Y =__0.3__ .4、若X ~(,)B n p ,且()12E X =,()8D X =,则n = 36 ,p =31.二、选择题1. 设随机变量X 和Y 的方差存在且不等于0,则()()()D X Y D X D Y +=+是X 和Y 的 BA )不相关的充分条件,但不是必要条件;B )独立的必要条件,但不是充分条件;C )不相关的必要条件,但不是充分条件;D )独立的充分必要条件2. 设)(~λP X ,且()(1)21E X X --=⎡⎤⎣⎦,则λ= A A )1, B )2, C )3, D )03. 设123,,X XX 相互独立同服从参数3λ=的泊松分布,令1231()3Y XX X =++,则2()E Y =CA )1.B )9.C )10. D )6.4. 将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 与Y 的相关系数等于( A )。
第八章试题答案概率论与数理统计

第八章试题答案概率论与数理统计第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是()A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0?H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为() A .nμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是() A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-ni iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是() A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
27173概率论与数理统计课后答案第8章 答案

由α = 0.05查表得Fα(n1 − 1, n2 − 1) = F0.025(5,5) = 2
无法查F0.025(5,5)对应值,故无法做. 习题 8.4 某厂使用两种不同的原料生产同一类产品,随机选取使用原料 A 生产的产品 22 件, 测得平均质量为
X = 2.36(kg),样本标准差Sx = 0.57(kg).取使用原料 B 生产的样品 24 件,测得平均 质量为y = 2.55(kg),样本标准差Sy = 0.48(kg).设产品质量服从正态分布,这两个样 本相互独立.问能否认为使用 B 原料生产的产品平均质量较使用原料 A 显著 大?(取显著性水平α = 0.05). 解:检验假设H0: μA ≥ μB, H0: μA < μB; 选取检验统计量
甲)
Y(机床 15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0
乙)
问这两台机床的加工精度是否一致?
解:该题无α值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω)
A 批 0.140
0.138
0.143
0.141
0.144
即使用 B 原料生产的产品平均质量于使用原料 A 生产的产品平均质量无显著大.
自测题 8
一、,选择题
在假设检验问题中,显著性水平α的意义是 A .
A. 在H0成立的条件下,经检验H0被拒绝的概率 B. 在H0成立的条件下,经检验H0被接受的概率 C. 在H0不成立的条件下,经检验H0被拒绝的概率 D. 在H0不成立的条件下,经检验H0被接受的概率 二、,填空题
1. 设总体 X 服从正态分布N(μ, σ2), 其中 μ 未知, x1, x2, ⋯ , xn为其样本.若假设检 验问题为H0: σ2 = 1,
概率统计习题课八xin

R = X ≥ 1.96 ,试证样品容量 n 应取 25
由已知条件, 证明: 由已知条件,若 H 0为真 Z =
其拒绝域为
X
{
}
Z ≥ zα 2 ,
R=
zα 2
σ n = z 0.025 = 1.96
~ N (0,1)
即
X ≥ Zα 2 ⋅ σ
而题中知拒绝域
{ X ≥ 1.96}
n = 1.96 ⋅ 5 / n
知拒绝域为
X − 70 t= ≥ tα / 2(n − 1), S/ n
由 n = 36, X = 66.5, S = 15, t 0.025 ( 35) = 2.0301,
X − 70 66.5 − 70 得t = = = 1.4 < 2.0301, S/ n 15 / 36 所以接受 H 0 , 认为全体考生的平均成 绩是70分.
数理统计
解 已知 X = 101, n = 10, S = 2, α = 0.05
由题意 (1)、 需检验
H 0 : µ = 100 ↔ H1 : µ ≠ 100
拒绝域
t =
X − 100 S n
≥ t α 2 ( 9) tα 2 (9) = 2.2622
接受H 0
X − 100 t = = 1.5 < 2.2622 S n
拒绝域为
t ≥ tα / 2(n1 + n2 − 2).
由 t0.025 (10 + 8 − 2) = t 0.025 (16) = 2.1199,
9 × 40.96 + 7 × 14.44 S = = 29.3575, S w = 5.418, 16 X −Y 27.3 − 30.5 得t = = = 1.245 < 2.1199, 1 1 5.418 × 0.474 Sw + n1 n2 所以接受 H 0 , 认为抗折强度的期望无 显著差异.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》练习题8答案
考试时间:120分钟
题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)
1、设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( )。
A 、0
B 、1
4 C 、18
D 、15
答案:D
2、如果,A B 为任意事件,下列命题正确的是( )。
A 、如果,A B 互不相容,则,A B 也互不相容
B 、如果,A B 相互独立,则,A B 也相互独立
C 、如果,A B 相容,则,A B 也相容
D 、AB A B =⋅
答案:B
3、设随机变量ξ具有连续的分布密度()x ξϕ,则a b ηξ=+ (0,a b ≠是常数)的分布密度为( )。
A 、
1y b a a ξϕ-⎛⎫ ⎪
⎝⎭ B 、1y b a a ξϕ-⎛⎫ ⎪⎝⎭ C 、1y b a a ξϕ--⎛⎫
⎪⎝⎭
D 、
1y b a a ξϕ⎛⎫
- ⎪ ⎪⎝⎭
答案:A
4、设,ξη相互独立,并服从区间[0,1]上的均匀分布则( )。
A 、ζξη=+服从[0,2]上的均匀分布, B 、ζξη=-服从[- 1,1]上的均匀分布, C 、{,}Max ζξη=服从[0,1]上的均匀分布,
D 、(,)ξη服从区域01
01x y ≤≤⎧⎨≤≤⎩
上的均匀分布
答案:D
5、~(0, 1), 21,N ξηξ=-则~η( )。
A 、(0, 1)N
B 、(1, 4)N -
C 、(1, 2)N -
D 、(1, 3)N - 答案:B
6、设1ξ,2ξ都服从区间[0,2]上的均匀分布,则12()E ξξ+=( )。
A 、1 B 、2
C 、0.5
D 、4
答案:B
7、设随机变量ξ满足等式{||2}116P E ξξ-≥=,则必有( )。
A 、14D ξ=
B 、14
D ξ>
C 、1
4
D ξ<
D 、{}
15216
P E ξξ-<=
答案:D
8、设1(,,)n X X 及1(,,)m Y Y 分别取自两个相互独立的正态总体21(, )N μσ及
2
2(, )N μσ的两个样本,其样本(无偏)方差分别为21
S 及22
S ,则统计量2
122
S F S =服从F 分
布的自由度为( )。
A 、(1, 1)n m -- B 、(, )n m C 、(1, 1)n m ++
D 、( 1, 1,)m n --
答案:A
9、在参数的区间估计中,给定了置信度,则分位数( )。
A 、将由置信度的大小唯一确定; B 、将由有关随机变量的分布唯一确定;
C 、可按置信度的大小及有关随机变量的分布来选取;
D 、可以任意规定。
答案:C 10、样本容量n 确定后,在一个假设检验中,给定显著水平为α,设此第二类错误的概率为β,则必有( )。
A 、1αβ+=
B 、1αβ+>
C 、1αβ+<
D 、2αβ+<
答案:D
二、填空(5小题,共10分)
1、5个教师分配教5门课,每人教一门,但教师甲只能教其中三门课,则不同的分配方法有____________种。
答案:72
2、试在一次试验中事件A 发生的概率为p ,则在4次重复独立试验中。
事件A 至多有一次
不发生的概率是______________________。
答案:434(1)P P p +-
3、设ξ服从正态分布(1,4)N ,则1ηξ=-的分布密度()y ηϕ=____________。
答案:1
222
8π
e y
-
4、设ξ的概率密度为0
()00
x e x x x ϕ-⎧≥=⎨<⎩则(21)E ξ+=___________________。
答案:3
5、设两正态总体211(,)N μσ和2
22(,)N μσ有两组相互独立的样本,容量分别为1n ,2n ,均值为1X 及2X ,(无偏)样本方差为21S ,22S ,1μ及2μ未知,要对2212σσ=作假设检验,统计假设为22012:H σσ=,22112:H σσ<,则要用检验统计量为_________。
给定显著
水平α,则检验的拒绝域为____________。
答案:2212F S S =,12(0,(1, 1)]F n n α--
三、计算(5小题,共40分)
1、将一颗均匀的骰子掷两次,求至少一次出现4点的概率。
答案:2212511
()6636
P A ⨯=
+= 2、设随机变量ξ的概率密度为()()
2
11x x ϕπ=
+,求()2
0a a ηξ=>的概率密度。
答案:函数2y ax =在(,0),(0,)-∞+∞
上的反函数分别为x x ==对于0y η>的分布函数为
}{
{
()F y p y p ηηξ=≤=<≤=
(
)(
)0
x dx x dx ϕ=
当0y ≤时,()0F y η=
于是η的概率密度为()
n
0()0
0y y F y y ηψ>==≤⎩
3、一批产品共有50件,其中一等品30%,二等品50%,三等品20%,从这批产品中每
次抽取一件产品,有放回地抽取5次,求取出的5件产品中一等品,二等品件数的联合分布律。
答案:设ξ和η分别表示抽取的5件产品中一等品和二等品的件数
{}()()()()55!,0.30.50.2!!5!
m n m n
P m n m n m n ξη--===
⋅⋅--
(0,1,2,3,4,5;0,1,2,3,4,5;5)m n m n ==+≤
4、设随机变量
ξ
服从(0- 1)分布,其分布律为
(1),(0),(01,1)P p P q p p q ξξ====<<+=求,()E D ξξ。
答案:01E q p p ξ=⋅+⋅=
22()()()D E E E p ξξξξ=-=-
22(0)(1)()p q p p pq p q pq =-⋅+-⋅=+=
或01E q p p ξ=⋅+⋅=
22201E q p p ξ=⋅+⋅=
222()()(1)D E E p p p p pq ξξξ=-=-=-=
5、设某种灯泡的使用寿命服从参数λ的指数分布,今抽取20个灯泡测得使用寿命数据如下:(单位:小时)20,25,39,52,69,105,136,150,280,300,330,420,460,510,630,180,200,230,828,1150,求λ的最大似然估计量。
答案:按1
ˆX
λ
= 116106305.32020
n i i X x ====∑
11ˆ0.0033305.3
X λ
=== 四、应用(2小题,共20分)
1、一袋中装有3个红球5个白球,从袋中一个一个无放回地取球,共取了4次,用ξ表示取得红球的个数,求ξ的分布列。
答案:ξ的取值范围是0,1,2,3ξξξξ====
{}454851
07014c P c ξ====
{}13354
83103
1707c c P c ξ⨯⨯====
{}22354
8303
2707c c P c ξ⨯==== {}31354
851
37014
c c P c ξ⨯==== 即
2、有一大批混合种子,其中良种占1
6
,今在其中任选6000粒,试问在这些种子中,良种所占的比例与
1
6
之差小于1%的概率是多少?已知标准正态分布函数0,1F (x)的值:0,1F (2.078)=0.9812,0,1F (0.072)=0.5279,0,1F (0.72)=0.7642
答案:设6000粒中良种有ξ粒,则ξ服从16000,6B ⎛⎫ ⎪⎝⎭
由德莫佛−拉普拉斯定理知
{}10.0110006060006P P ξξ⎧⎫-<=-<⎨⎬⎩
⎭P ⎧⎫⎪
=<
0,10,1F F ≈-⎝⎭⎝
⎭()0,10,1212 2.0781F F =-=-⎝⎭
=2⨯0.9812-1=0.9624。