300B单端胆机的实作
300B 单端胆机制作

本功放采用两级电压放大,都采用SRPP电路结构。
SRPP原是为高频放大而研制的电路,现在把它用于低频放大电路,理所当然可望获得更为宽阔的频率响应。
由于三极管放大的噪声要比五极管小,所以本机两级电压放大均采用三极管。
输入级特意选用了双三极管5814A,该管相当于12AU7的高性能管,目的在于最大限度地减小输入级的放大噪声。
由于5814A的放大因数(μ)低,采用SRPP电路能够提高该级的增益和降低其输出阻抗。
第2级电压放大采用12BH7A,该管适用于音频放大、振荡和脉冲放大,因而作为低频应用具有良好的性能保证。
该级工作电流取得较大,目的是为300B提供足够驱动力。
根据图1中5814A、12BH7A阴极电压和阴极电阻,可估算它们的静态工作电流。
(1)5814A静态工作电流I=6.7(v)/3900(Ω)=0.0017(A)=1.7(mA)(2)12BH7A静态工作电流I=5.8(V)/1500(Ω)=0.0038(A)=3.8(mA)上述两级电压放大的最大输出电压(削波点前)达到90V,足以满足推动300B的需要。
此外,两级电压放大级的噪声小,失真低,为整机采用无负反馈放大奠定了基础。
功率输出级300B采用初级阻抗为3.5k Ω的输出变压器,从图l中实测阴极电压可知其静态电流为I=64(V)/1000(Ω)=0.064(A)=64(mA)由此可见,300B的工作状态介于附表所示两种工作状态之间。
根据阴极电压可以估算出300B栅极推动电压为U=64(V)×0.7=44-8(V)≈45(V)。
显然,该值比电压放大级最大输出电压小得多,这有利于300B 获得足够的驱动且失真也较低。
300B栅极与输入级阴极之间的680k Ω(2W)电阻是电压放大级之间的负反馈电阻,可减小电压增益200左右,也能降低一些电压放大级的失真。
为了监视输出级工作电流,300B阴极经100kΩ电阻串有一只1mA电流表。
这样一来,使该电流表转换成100V电压表,由于300B阴极电阻为lkΩ,每伏读数相当于lmA电流。
高手解析 英国Audio Note Kit One 单端300B功放与仿制

高手解析英国Audio Note Kit One 单端300B功放与仿制单端输出变压器有一个十分重要的参数,就是铁芯的空气间隙,决定了磁芯是否能够良好的工作在B-H线性区域,它不仅仅是为了调整磁饱和参数、改善漏感和低频,实验表明,这个间隙的大小和隔离片材料对音质影响十分重大。
一、Audio Note Kit One 300B浅析这是英国安克公司享誉全球的梦幻之声300B单端经典电路,电路部分十分成熟,设计简洁,性能优良,音效卓著。
Kit1第一次面世是在上世纪90年代中期,第一款机型应该是Audio Note Kit One300B,后来有了4周年、8周年纪念机型(Audiokits Kit1 300B-8)。
可以说,它的出现具有划时代的意义,不仅电路简洁,而且音效卓著,它的声音低音厚实,高音细腻,中音飘逸鲜活,整体上声音密度高,音域宽广,泛音丰富,十分耐听。
Kit1一经面世,即成为世界上最为流行的真空管放大器之一。
1、Audio Note Kit 1主电路AUDIO NOTE Kit 1的电路为近腾公康设计,电路非常简洁,输入级采用线性和高频都比较好的共阴极结构,选用了中u放大特性的双三极管6SN7对输入的L/R声道进行电压放大,该级阴极电压为4.8V,阴极电阻680R,电流约7ma;经6SN7电压放大级放大的信号,进入由低内阻双三级管5687构成的SEPP电路推动级作放大,5687的阴极电压为8.4V,阴极电阻820R,电流约10ma;经5687推动级放大后,进入由300B构成的单端功率放大级进行功率放大,最后推动音箱,300B的阴极电压为75V,阴极电阻900R,电流约83ma。
在8欧姆负载下,输出约8.2W的功率该电路的独特之处在于:(1)电压放大级与推动级间插入了100K音量电位器,既可控制增益又同时作为电压放大级的负载,起到了电压放大级和前级的双重作用。
(2)推动级由双三级管5687组成SEPP电路,其高频响应非常好,并且失真随着频率升高而显著减小。
DIY 2A3和300B单端甲类胆机(设计制作篇)要点

DIY 2A3和300B单端甲类胆机(设计制作篇)一直想做一台2A3和300B通用单端胆机,可以将1993年购买的2A3用起来,而且刚把300B推挽机改为EL34和KT88通用推挽机(见《老树发新芽-2A3和300B推挽胆机》),换下了1992年版的曙光300B。
从设计和修改电路、购买半成品机箱、设计制作变压器和扼流圈,到实际动手制作安装调试,花了一年多的业余时间,到2013年10月完成。
之后两年多时间里又修改四次。
现在信噪比约90db,耳朵紧贴音箱才可听到一点非常轻微的哼声,稍微离开一点就听不到了。
听感:中高频很好,尤其中频失真很小,低频厚实而富有弹性。
一、设计线路本机电路图如下:乍一看,此电路电源是CLC滤波,然而第一个电容取值很小(0.68uf),只起到了使输出电压在0.9Vin~1.414Vin之间调节的作用。
带负载的情况下,Vin=352V和403V时,V out=308V和355V表明:Vout=0.88Vin,因此,其实仍是LC滤波。
最初LC滤波并没有采用聚丙烯电容与电解电容混合并联,而是用多个聚丙烯电容并联成180uf,结果通电试机感到哼声比较大,离音箱1米才听不到,而且不受音量电位器控制。
很明显,哼声来源于电源和输出级。
于是利用机箱剩余空间,增加了多个开关电源用的电解电容并联,使每声道总容量达到710uf。
用于开关电源的电解电容具有更小的ESR。
下面从理论上估算电源哼声的大小。
Vin=352VL=10HC=530uf+180uf=710ufV~= Vin/3.7LC=352/3.7×10×710=0.0134V=13.4mV功率管内阻ra与阳极负载RL(输出变压器)构成分压器,所以输出管2A3阳极处脉动电压:Va~=(ra×V~)/(ra+RL)=800×13.4mV/(800+2500)=3.25mV输出变压器只响应绕组两端的电压,因此它得到的哼声是:13.4mV—3.25mV=10.15mV在满输出之下,2A3的电压摆幅为92Vrms,信噪比S/N=20㏒(92/0.01015)=79.15db信噪比约80db,意味着靠近音箱仍可听到哼声。
自己动手,乐趣多多----自制西电WE91-300B单端过----杨维中

[功放音箱]自己动手,乐趣多多----自制西电WE91-300B单端过程[复制链接]杨维中君子动手,乐在其中-------我的仿西电WE-91单端300B胆机实验制作总结杨维中一直以来,素有“胆中之王”美誉之称的三极管直热胆300B,以其清澈透明、隽逸纯美的音色而备受胆迷的青睐和推崇。
故近年来,应运而生的不同形式300B放大电路,可谓花样繁多层出不穷。
然而,笔者在认真参阅了多个300B单端放大电路之后,最终还是将目光锁定在成熟、经典、简洁的西电WE-91上。
由于此电路经改良后仅为310A+300B两级放大,所使用元器件数量不多,因此很适宜工薪烧友集中兵力采用优质器件制作,从而具有成功率高、花费相对低、音质出众多重实战意义。
为展现古朴风韵,我的WE91采用了木质机框造型设计,其内衬铝板压制成槽型,以加强刚性和方便上下盖板的安装。
整机上盖板选用了5mm厚铝板经拉丝、铣孔工艺而成,并采取高于机框的凸出安装形式以增强视觉上的立体感。
两只300B(曙光300BS-B)和10米12C(俄罗斯管,可直接代换310A)及曙光胆整流管5Z3,均采用接触牢固、可靠的黑胶木管座,并辅以防震板作二次固定安装。
此外,两只台湾产的100mmA圆形表头,也特别采用了紧配合镶嵌安装手法,并在其内部各安装了两枚橙色发光管,以强化视觉上的美观和晕光效应。
工欲善其事,必先利其器“如果没有一对好的输出牛,我宁愿不做”,这是笔者中学母校王英才老师的至理名言,王老师年近八十,从1947年就开始制作电子管收音机,其观点为多年体会有感而发。
当然,这也并非表明工薪胆迷DIY胆机,就一定得用上售价昂贵的日本双T牛(TANGO、TAMRADIO)。
况且,面对芸芸众生追求各异、流派迭起的300B胆迷,以及民间藏龙卧虎的绕牛高手,关于“好牛”的准确定义,恐怕也是见仁见智难以尽言量化了。
笔者最终选择的全套胆牛,为齐齐哈尔“胆机艺人”候先生的纯手工制品。
之所以如此绝非心血来潮,因本人与他1996年便已相识,对其气质性格与做事态度、风格早已心知肚明。
DIY 2A3和300B单端甲类胆机(设计制作篇)

DIY 2A3和300B单端甲类胆机(设计制作篇)一直想做一台2A3和300B通用单端胆机,可以将1993年购买的2A3用起来,而且刚把300B推挽机改为EL34和KT88通用推挽机(见《老树发新芽-2A3和300B推挽胆机》),换下了1992年版的曙光300B。
从设计和修改电路、购买半成品机箱、设计制作变压器和扼流圈,到实际动手制作安装调试,花了一年多的业余时间,到2013年10月完成。
之后两年多时间里又修改四次。
现在信噪比约90db,耳朵紧贴音箱才可听到一点非常轻微的哼声,稍微离开一点就听不到了。
听感:中高频很好,尤其中频失真很小,低频厚实而富有弹性。
一、设计线路本机电路图如下:乍一看,此电路电源是CLC滤波,然而第一个电容取值很小(0.68uf),只起到了使输出电压在0.9Vin~1.414Vin之间调节的作用。
带负载的情况下,Vin=352V和403V时,V out=308V和355V表明:Vout=0.88Vin,因此,其实仍是LC滤波。
最初LC滤波并没有采用聚丙烯电容与电解电容混合并联,而是用多个聚丙烯电容并联成180uf,结果通电试机感到哼声比较大,离音箱1米才听不到,而且不受音量电位器控制。
很明显,哼声来源于电源和输出级。
于是利用机箱剩余空间,增加了多个开关电源用的电解电容并联,使每声道总容量达到710uf。
用于开关电源的电解电容具有更小的ESR。
下面从理论上估算电源哼声的大小。
Vin=352VL=10HC=530uf+180uf=710ufV~= Vin/3.7LC=352/3.7×10×710=0.0134V=13.4mV功率管内阻ra与阳极负载RL(输出变压器)构成分压器,所以输出管2A3阳极处脉动电压:Va~=(ra×V~)/(ra+RL)=800×13.4mV/(800+2500)=3.25mV输出变压器只响应绕组两端的电压,因此它得到的哼声是:13.4mV—3.25mV=10.15mV在满输出之下,2A3的电压摆幅为92Vrms,信噪比S/N=20㏒(92/0.01015)=79.15db信噪比约80db,意味着靠近音箱仍可听到哼声。
300B胆功放

用300B胆管制作单端A类归并式功放2020年12月08日 11:02 本站整理佚名关键字:我是爱好者,曾组装过量款胆管放大器,如6P14单端小胆机、6L6及FU-5(805)单端机、KT88推挽机等,制作30OB一直是我的美好愿望,故于两年前邮购了套件,通过两年的尽力终于制作成功了,现将自己的乐趣分享给大伙儿。
最后定型电路如图1所示(在原厂提供的电路上略加改动)。
1.关于300B胆管1930年,由美国Wester Electric(西部电器公司,简称西电公司)生产出了举世闻名的古典直热式三极电子管300及300A,那时的灯丝电流有1.0A、1.2A、1.4A等多种,电子管的功率也分8W、10W、1 2W等数种,随后通过数年的多次优化改良,于1934年定型为300B,沿用至今已有约80年的历史。
由于该电子管内部结构设计合理、功率适中、内阻较低、线性极佳,几乎达到了完美无瑕的理论设计极限,用它组装的单端A类功率放大器推动那时的高效率号筒扬声器,能播放出行云流水般的声音,倾倒了一代又一代的发烧友及爱乐者。
难怪现今有发烧友把它喻为发烧的至高境遇,一颗镶嵌在音响文化皇冠上的宝石,而且断言“没有听过300B声音就算不上胆机发烧友”,此话固然有些停激,但也说明了300B营造出的清澈透明、甜美莼真的音质、音色的魅力所在。
30OB的准确叫法应为WE300B3,因为它是西电的专利产品,其他如欧洲的、俄罗斯的或是我国的300B均属仿造品。
尽管品种目前已不下30个,但不管从技术指标上看仍是从听感上讲,和WE300B 相较,至今无出其右者。
WE300B在它的进展历史道路也是一波三折,在晶体管盛行并全国取代电子管的1988年,那个世界电子管进展历史中曾经辉煌了快要60年的WE300B的生产线元奈地停产了,停产进仅存的3万余只电子管专门快被目光深造的日本人和法国人抢购一空。
由于货物的日渐减少,成了无源之水,致使其价钱迅速飙升,在美国WE300B被炒到了750美元/只,在亚洲更是高达1250美元/只,就这仍是有价无货。
300B 单端胆机的实作

300B单端胆机的实作简洁至上,只要在推动力足够的前提下,尽量减少放大器的级数,这是笔者制作线路的基本原则。
说到300B,玩电子管的都知道有多种线路,也实作过多种线路。
在制作过多款线路之后,笔者感觉有一款线路无论从实听效果还是线路结构上来说都是非常不错的,因此笔者特地把它写了出来,希望喜爱300B的读者能享受到其中的乐趣。
一.原理简介甲类单端作为一种古老、低效、功耗大的放大器,它依然以其独特而难以抗拒的魅力吸引着无数的音响爱好者。
无论甲类石机还是甲类胆机,笔者对它们均情有独钟。
大家都知道.一个放大器如果它的放大级数太多的话,无论你采取任何一种方式来减少失真,它的失真总的来说绝对要比级数少的要大,而且放大的级数愈多,相移的可能性就越大,通频带就会越窄。
本文所介绍的是一款两级的单端放大器,它就很好地避免了以上的一些情况。
大家都清楚,电压放大级的主要作用就是将音频信号放大到足够的振幅,以达到能够推动末级功率放大的目的,这就需要电压放大级首先应有足够的放大倍数,即能达到整个音频放大器所需要的灵敏度,其次还需要频率特性均匀,以及放大后的信号不失真。
由于五极管具有放大系数大、驱动力较强等特点,因此本机电压放大级就选择了五极管。
由于6J4P的特性曲线、屏压、屏流以及放大系数均较符合做本机的电压放大级,因此笔者选择了6J4P作本机的推动管(图1为6J4P特性曲线图)。
一般来说五极管的失真比三极管要大一些,但是通过正确的设计和必要的措施,无论从实听还是从测试指标上来说,五极管并不逊色于三极管。
功率放大则由300B担任,(具体的电路原理见图2),(图3为300B的特性曲线图)。
Rg1为电压放大级的栅极电阻,Rg2为功率放大级的栅极电阻,这一栅极电阻有两个作用:一是:使下一级的电子管能将栅偏压Eg通过Rg加到栅极上去,即作为Eg的直流通路,同时下一级电子管内电子从阴极流向屏极的过程中,或多或少总有一些电子落到栅极上,Rg就给这些电子一个直流通路,使栅极的电位不至于越来越负从而影响放大器的正常工作,因此栅极电阻又叫栅漏电阻;作用二是:将屏极回路输出的交流信号Rg电阻的取值不宜过大也不宜过小,当该电阻过大时,电子从栅电压送到下一级去。
用300B制作胆机

用300B制作胆机如今流行的靓声放大器是300B胆机,功放管用300B的胆机声音通透,纤细,分析力高,音色自然、优美,有人认为听了会上瘾,因此很多发烧友都想拥有。
由于300B已炒得价格很昂贵,300B 商品机当然价格不菲。
并且,商品机由于成本的原因,在下料上不得不折衷地考虑,则听感也不一定达到较高的水准,买回来后有时还要再摩。
因此,有动手能力者便自己焊机,自制300B胆机,即使采用比较发烧的元件,成本也可以降低三分之一以上,制作得法,也可以得到不俗的放音效果。
300B功放电路有推挽式和单端式输出电路,推挽式输出功放有较夫的输出功率和速度感,动态大。
单端式输出电路由于工作在甲类工作状态,音色纯真,无交越失真、线性好,虽然输出功率稍小,但音色幼滑温暖,听人声更加迷人,弦乐更优美。
因为300B是直热式三扳管,更适合作单端输出功率放大器,因此现在流行的300B机大部分是单端输出的功放。
如何制作好声的单端输出的300B胆机,本文就谈谈制作中的体会,供各位参考。
300B是直热式三极功率放大管,一般认为用直热式三极管制作单端输出机时,交流声大(推挽式输出级由于输出变压器初级两个屏极线圈有抑制交流声的作用,所以可以获得很低的交流声),但由于300B的灯丝是经过改进的,和其他直热式三极管(如2A3等)的灯丝结构不相同,它的灯丝较长,灯丝首尾相连为一端,中间的头则为另一端,这样灯丝就短而粗,用交流电点燃时,则交流声低,所以300B胆机要比2A3的交流声低得多。
业余条件下焊机,信噪比可以达到85dB 以上,耳朵贴近扬声器才可以辨别出一点交流声。
300B是上个世纪30年代研制生产的本是工业用管,用于Hi-Fi放大器是在70—80年代才流行,所以流行的线路很少,300B单端机经典线路是用五极管推动,因为五极管的频响宽,更能发挥300B的特点,典型的线路是WE310A作电压放大的300B机,由于WE310A不容易找到,则现在较多是用容易找到的五极管6SJ7推300B的线路(其他五极管如6JB、6AU6等都可以用),见图2,还可以在增益级之后再加一推动级。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
300B 单端胆机的实作简洁至上,只要在推动力足够的前提下,尽量减少放大器的级数,这是笔者制作线路的基本原则。
说到300B,玩电子管的都知道有多种线路,也实作过多种线路。
在制作过多款线路之后,笔者感觉有一款线路无论从实听效果还是线路结构上来说都是非常不错的,因此笔者特地把它写了出来,希望喜爱300B的读者能享受到其中的乐趣。
一.原理简介甲类单端作为一种古老、低效、功耗大的放大器,它依然以其独特而难以抗拒的魅力吸引着无数的音响爱好者。
无论甲类石机还是甲类胆机,笔者对它们均情有独钟。
大家都知道.一个放大器如果它的放大级数太多的话,无论你采取任何一种方式来减少失真,它的失真总的来说绝对要比级数少的要大,而且放大的级数愈多,相移的可能性就越大,通频带就会越窄。
本文所介绍的是一款两级的单端放大器,它就很好地避免了以上的一些情况。
大家都清楚,电压放大级的主要作用就是将音频信号放大到足够的振幅,以达到能够推动末级功率放大的目的,这就需要电压放大级首先应有足够的放大倍数,即能达到整个音频放大器所需要的灵敏度,其次还需要频率特性均匀,以及放大后的信号不失真。
由于五极管具有放大系数大、驱动力较强等特点,因此本机电压放大级就选择了五极管。
由于6J4P的特性曲线、屏压、屏流以及放大系数均较符合做本机的电压放大级,因此笔者选择了6J4P作本机的推动管(图1为6J4P特性曲线图)。
一般来说五极管的失真比三极管要大一些,但是通过正确的设计和必要的措施,无论从实听还是从测试指标上来说,五极管并不逊色于三极管。
功率放大则由300B担任,(具体的电路原理见图2),(图3为300B的特性曲线图)。
Rg1为电压放大级的栅极电阻,Rg2为功率放大级的栅极电阻,这一栅极电阻有两个作用:一是:使下一级的电子管能将栅偏压Eg通过Rg加到栅极上去,即作为Eg的直流通路,同时下一级电子管内电子从阴极流向屏极的过程中,或多或少总有一些电子落到栅极上,Rg就给这些电子一个直流通路,使栅极的电位不至于越来越负从而影响放大器的正常工作,因此栅极电阻又叫栅漏电阻;作用二是: 将屏极回路输出的交流信号电压送到下一级去。
Rg电阻的取值不宜过大也不宜过小,当该电阻过大时,电子从栅极泄漏到阴极就比较困难,且栅极易出现反栅流,由于Rg过大,极其微小的反栅流就会在Rg两端产生较大的电压降,它的正端就会加到栅极上,结果使栅极回路的栅偏压值变小,甚至可能会使栅压趋向正值,导致屏流猛增而损坏电子管。
当该电阻过小时,它对电子管屏极负载电阻Rg的分路作用就很大,这样就会使电子管的放大倍数降低。
同时,Rg的阻抗如果远大于耦合电容C的阻抗时,那么Ra上被放大的交流信号电压就会有很大一部分直接作用在耦合电容C上,而实际加到下一级栅极上的交变信号电压就会减少。
该电阻的取值一般来说应该是屏极电阻的4~9倍。
同时由该电阻产生的栅偏压也有两个作用:一是使电子管在正常工作的过程中其栅极电位始终低于阴极电位而使电子不能由栅极跑到阴极,从而达到栅极回路中没有栅流的目的;二是通过栅偏压来正确确定静态工作点Q,只有当Q点位于动态特性曲线的直线都分中心的位置的时候屏流波形的正负半周才会对称,也只有此时失真才是最小的。
Rk1为阴极电阻,其电路形式为自偏压电路,主要作用是产生稳定的栅偏压。
在此我们取消了阴极旁路电容Ck,其主要原因是考虑到该电容的加入对失真(主要是非线性失真和频率失真)有一定的影响,并且在一定的工作电压范围内,该电容的取消能够使失真降低一半。
虽然该电容的增加能够提高增益,但作为五极管来说,其增益已经足够,从利弊的角度出发,我们还是选择了取消该电容,当然这也要建立在电路稳定、推动电压足够的基础上。
一般来说五极管的阴极电阻Rk可以用下式来计算取值:Rk=Eg/(Iao+Ig2o)(Ig2o为帘栅的直流分量,Iao为屏流的直流分量,由于流过阴极电阻的电流除屏流外还有帘栅流,因此阴极电阻上电流应该等于帘栅流和屏流的总和)。
由于Rk的取值对增益有一定的影响,当Rk取值过大时,增益偏小,当Rk取值过小时,增益过高又会引发失真,因此该电阻的取值必须在以上公式的基础上通过实践来获取。
Ra为屏极负载电阻。
当电子管栅极回路加入交流信号电源时,由于栅极的控制作用使原来恒定的阳极电流变为随信号电压而变的脉动电流,从而产生了交流分量,并且屏流上的交流分量在阳极负载电阻Ra上产生了交流电压降,该压降使屏极与阴极间得到了一个放大了的信号电压。
因此该电阻对放大倍数又有着一定的影响。
该电阻的取值也不宜过大和过小。
当该电阻过大时,它对屏极电源电压所产生的直流压降,使真正加到电子管屏极上的电压过低、屏流过小,这使得电子管工作点的位置大为降低而工作在特性曲线的弯曲部分。
此时的电子管内阻增大,放大倍数减少,同时又会产生严重的非线性失真,并且屏极电阻过大时对高频特性也有着不良的影响。
当屏极电阻过小时,耦合电容C的分流作用受到影响,虽然能够减少高频区的幅频失真,但同时又使得中频区的放大倍数减少了,因此该电阻也不能取得过小。
所以该电阻的取值既要考虑放大倍数同时又要兼顾工作区域的幅频失真。
通常来说,该电阻的取值应该使得该管屏极的电压值等于该管供电电压的一半左右。
由帘栅极降压电阻Rg2,帘栅极分压分流电阻Rg3,和帘栅极旁路电容Cg2组成的降压、限流、稳压的电路,为帘栅极提供了一个稳定的直流工作电压。
电阻R1、R5设立的主要作用是用来消除寄生振荡的能量,使寄生振荡的幅度变得很弱,从而维护放大器的正常工作;另一个作用就是具有缓冲保护和隔离的作用。
Rk2为功率管的阴极电阻,Ck为功率管的阴极旁路电容,Rk2,Ck主要作用是用来产生负栅压的,当功率管的直流分量Iao过阴极电阻Rk2时,会在Rk2上产生一个大小为Iao ×Rk2的直流电压,这个电压就是电子管栅极的负栅压。
而旁路电容Ck的作用是旁路屏流的交流分量,使它不会在Rk2上产生交流电压降。
因此要求旁路电容Ck的电容值要足够大,因为电容值越大它对交流分量的阻抗就会越小,也就是说Ck对音频电流的阻抗必须要比Rk2的的阻值小得多。
只有这样,才能起到较大的旁路作用。
W为300B灯丝电压平衡调节电阻,调节该电位器可以降低本机的噪声。
二.输出变压器作为非常关键的一环,输出牛的好坏直接影响到放音效果,而决定音频输出变压器的几个主要参数分别是自感(电感量)、效率、漏感、磁通密度、功率及工作频率。
电感量直接影响和决定着低频段的频率响应和低频段的电压波形失真,以及输出阻抗。
输出牛的效率不但影响着输出牛的铁心尺寸,而且对输出牛的音色走向和通透度也起着较为重要的作用。
漏感量的大小直接决定着输出牛的高频端的频率响应,然而自感和漏感都是与圈数平方成正比的,在增大电感量的同时,漏感也会随之而增大,此时就必须采用分层分段间绕的绕制方法。
由于层段之间存在的分布电容将会随着分层分段的增加而增加,分布电容也直接影响输出牛高频端的频率响应,因此妥善处理好电感、漏感、分布电容之间的关系是作为一个好的输出牛的重要条件。
同样,在窗口面积一定的情况下,如果去追求大的电感量,就必须使用较小的铜线绕更多的圈数。
这样的结果是一次侧的铜阻增大,效率降低,其放音效果也会受到一定的影响。
不过不管怎样,输出牛的设计制作主要是为了听音乐、是为人服务的,而实际测试的参数只能作为一个重要的依据,只有通过不断地实践、实验、实听,才能做出一个好的输出牛。
影响音频变压器低频段的波形失真不仅与电感量、空气隙有关,而且与磁通密度和有无直流磁化有关,且磁化电流的波形失真系数与交流磁通密度之间的关系是非线性关系。
最低工作频率不仅决定着铁心尺寸的大小,而且是影响低频响应和电压波形失真的一个重要的参数,通过多次的实验,我们觉得使用进口国标铁心、导磁率在16000~18000高斯的铁心作输出牛比较容易做出效果。
关于输出牛的具体设计步骤许多书上均有介绍,笔者在此就不再重复。
(变压器的制作如图4所示)。
三.选材与实作一个好的线路相当于一部好的电子管功放的一半。
但花儿虽美仍需要绿叶来衬托,一个好的线路也同样离不开好的元器件,因此我们在选择元器件时必须谨慎认真。
国产的大红炮电阻的质量及其放音效果,在音响界均有美誉,再加上其价格不贵,音色的表现也相当不错,因此该项重任非它莫属。
电容首选无极性的电容,如国产的CZY油浸电容,CZM金属化纸介电容,其次是有极性的电解电容。
本机中有一个0.22uF的耦合电容,该电容是一个音频信号耦合电容,该电容较为关键,建议选择国内外优质的油浸电容或者使用斯碧VQ油性银膜电容。
电子管作为信号的放大和转换的重要器件,它的好坏直接影响到整个放大器的放音效果。
经过我们的测试。
南京早期生产的6Ж4C、6Ж8C,OTK产的6Ж4C以及曙光产的6J4P、6J8P等都有不错的表现,其中南京的产品物美价廉,其表现在本机中相当不错,值得读者一试。
由于各个厂家生产的管相互之间均有一定的差异,只有设计好电子管的工作点,使其工作在最佳的工作电压下,才能发挥出该管的最佳效果。
目前国内生产过300B的厂家有3个,其中经过测试对比之后,笔者较为欣赏的300B有早期柳州桂光厂生产的4300B金栅丝、4300B改良型发黑屏金栅丝、4300BLX以及长沙曙光早期生产的300BA。
最近曙光厂生产的300BS茄子形胆的表现也还可以,但给人的总体感觉像是多了点现代商业的气息,少了些音乐的韵味。
材料选好之后,就可按照我们给出的图纸安装了,既可以搭棚安装,(也可以采用图5的线路板来安装)。
元器件安装完毕后,检查无误后即可加电测试了,加电前最好在电源变压器一次侧加上一个2.5A的保险管,和高压开关K2。
(1)首先不用装电子管。
加电首先测试电子管的灯丝电压,当灯丝电压正确后就可以加上6J4P、274B电子管。
合上高压开关K2,由于6J4P和300B的工作电压都是相互独立的,因此可以分别插管进行调试。
先加上6J4P,测试屏极的电压A点的电位,应该在236V。
然后再测试帘栅极B 点电压。
应该在115V,此时阴极电阻的压降应该是1.9V,流过该管的屏流应该是5mA左右。
以上各点电压均是对地实测电压,如果与上面所测试的电压有较大的出入,那就需要断电检查,看看电阻、连线有没有错误。
如果测试的电压与上面的电压值相差不大,那就证明该级已经工作正常了,调试成功了。
(2)300B工作点的调整。
调试前输出端要加负载,先加灯丝电压预热3min,然后再合上高压开关K2,测试300B的屏极电压,就是D点对地的电压。
此时的电应该是403V,然后测出阴极由阻的压降应该在70V左右。
通过欧姆定律算出流过阴极电阻的电流,该电流即为流过300B的电流,测试300B管的压降(D点与E点的电压,该电压约为328V)算出此时300B的屏耗,该屏耗应该在40W以内。