PT谐振的解决办法

合集下载

消除PT谐振的措施及PT消谐分析

消除PT谐振的措施及PT消谐分析

消除PT谐振的措施及PT消谐分析摘要:电磁式电压互感器的铁磁谐振是非有效接地系统中常见的一种现象,电磁式电压互感器引起铁磁谐振后,其介质击穿或爆炸都会导致母线故障。

本文针对铁磁谐振对中性点非有效接地系统带来的影响,对电磁式电压互感器铁磁原理及现有的消谐措施进行分析,在各种情况下选择合适的消谐方式。

关键词:不接地系统;电压互感器;铁磁谐振;消谐措施1 引言在电力系统非有效接地系统中,由于技术和成本原因,广泛采用电磁式电压互感器(下面简称TV),电磁式电压互感器在单相接地、操作等外部因素激发的条件下,易发生铁磁谐振,使得TV受到谐振过电压和过电流的冲击。

谐振过电压一旦发生,往往会造成电气设备的损坏或继电保护装置的误动,导致发生停电事故。

为了尽可能地避免谐振过电压的发生,在设计时应进行必要的参数计算,采取适当的防止谐振的措施,在操作设备时应有合理的调度安排,尽量避免形成谐振回路。

本文从变电站实际发生的一系列谐振过电压现象,对电磁式电压互感器引起的铁磁谐振及消除方法进行讨论。

2 铁磁谐振的危害及主要消谐措施由铁磁谐振产生的原理可看出,当谐振产生时,中性点电压升高,产生零序谐振过电压,过高的电压可能导致设备结缘损坏、设备击穿甚至爆炸及保护装置误动等。

随着供电网络的发展,特别是城区、开发区和大型工厂内部等电缆线路的日益增多,系统单相接地电容电流不断增加。

当发生单相金属性接地故障时,流过故障点的短路电流为所有线路对地电容电流之和,造成故障点的电弧不易熄灭,导致过电压,很可能破坏设备结缘,发展成相间短路,造成停电或损坏设备的事故。

同时,系统震荡时,会产生高次谐波和分次谐波,由于铁芯的磁特性的非线性,电感值会随这外部电压的变化而改变,由于频率低,铁芯磁通密度很高,TV 线圈会产生很大的励磁电流而烧坏TV。

消除铁磁谐振的措施归纳起来主要有三方面:改变系统参数,使其不具备谐振条件,不易引起参数谐振;消耗谐振过程中产生的能量,消除谐振的发生;合理分配有功负荷,一般在轻载或空载条件下易发生谐振[1]。

PT谐振的分析与抑制措施

PT谐振的分析与抑制措施

129科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 工 业 技 术湖南湘潭钢铁公司动力厂35kV系统在近几年运行中,发生了三起PT爆炸事故,对系统的安全运行构成极大威胁。

对此,我们进行了现场调研,结合35kV系统故障录波图,初步分析认定这三起事故均为系统单相接地导致PT 饱并引起谐振。

动力厂发生事故的35kV系统,都是中性点不接地系统,装有一次接线为Y0的电磁式电压互感器(PT)由于PT一次线圈的X 端接地,且铁芯易饱和,易于产生两种不利状况:一是电网间歇性接地或接地消失时,电网对地电压产生低频自由分量,使X端接地的Y 0接线电压互感器深度饱和,一次线圈通过涌流,使PT 熔丝熔断甚至烧坏PT 。

二是在一定外界激发条件下,产生铁磁谐振,谐振使得电网三相对地电压波动,影响电网正常运行,严重时,使得绝缘设备损坏,造成电网事故。

经过对各地区电网运行进行情况进行分析,发现P T 铁磁谐振是电力系统中发生较为频繁且造成较多事故的一种内过电压。

谐振过程可持续很长时间,幅值有高有低,且频率各有不同如分频、基频、高频等,有些过电压并不高,但是由于频率低,且谐振电流很大,对电网的安全运行有很大的危害。

1 PT谐振产生的原因分析铁磁谐振产生的条件有:ωL>1/ωC;激发因素。

其中主要包括电网电压冲击、励磁涌流、合闸相角、系统间歇性接地、电网频率波动等。

系统产生铁磁谐振的原理如图1所示。

(1)首先对于中性点不接地系统,在某种情况下出现单相接地,故障点对地流过电容电流,不接地的两相相电压升高至线电压。

在间歇性接地时,一旦接地故障点消失,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈并经其接地点流入大地,在这电压突变瞬间,PT高压线圈的非接地两相的励磁电流突然增大,使P T 达到饱和,由于间歇性接地,非接地两相的励磁电流不断激增,极易激发相间串联谐振。

PT谐振及处理

PT谐振及处理

PT谐振及处理1、PT谐振PT谐振对于yo/yo电磁式PT,在正常情况下线路发生单相接地不会出现铁磁谐振过电压,但在下列条件下,就可能引发铁磁谐振。

(1)对于中性点不接地系统,当系统发生单相接地时,故障点流过电容电流,未接地的两相相电压升高3倍。

但是,一旦接地故障点消除,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈经其自身的接地点流入大地,在这一瞬间电压突变过程中,PT高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。

(2)系统发生铁磁谐振。

近年来,由于配电线路用户PT、电子控制电焊机、调速电机等数量的增加,使得10kV配电系统的电气参数发生了很大的变化,导致谐振的频繁出现。

在系统谐振时,PT将产生过电压使电流激增,此时除了造成一次侧熔断器熔断外,还将导致PT烧毁。

个别情况下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。

(3)线路检修,事先不向调度部门申请办理停电手续,随意带负荷拉开分支线路隔离刀闸或带负荷拉开配电变压器的高压跌落开关,造成刀闸间弧光短路而引发谐振。

(4)当配电变压器内部发生单相接地故障时,故障电流将通过抗电能力强的绝缘油对地放电,也会产生不稳定的电弧激发电网谐振。

(5)运行人员送电操作程序不对,未拉开PT高压侧刀闸就直接带PT向空母线送电,引起PT铁磁谐振。

2.谐振的处理(1)当出现空母线谐振时,不宜拉开PT的隔离刀闸,应考虑增大母线电容和并联电感,即合上一条空载线路或者空载的变压器来破坏谐振条件,可使三相电压恢复平衡。

(2)在PT高压线圈中性点的接地线中串接一只约5kΩ阻尼电阻(在一次侧中性点串接阻尼电阻会影响二次侧反映单相接地故障的灵敏度,且在相电压有同期装置的回路中一般不宜采用)。

相当于在零序阻抗上并联一个电阻,可以有效地抑制单相接地故障引起的谐振。

(3)PT发生谐振时的电压是相电压的3倍,则在开口三角处将会产生100~200V电压,因此在PT开口三角处可并联一只220V/200W消谐灯泡(或选用220V/800W/60Ω标准电阻。

三种常见铁磁谐振过电压治理方法的对比

三种常见铁磁谐振过电压治理方法的对比

常见的三种铁磁谐振过电压治理方法对比
随着时代的发展,人们对用电安全要求越来越高。

国家对电力建设投入也越来越大,但是电力系统铁磁谐振过电压问题仍频繁发生,始终得不到有效解决。

经市场调研结果显示,目前国内解决铁磁谐振问题的常见方法主要有以下三种:
一、提高PT的抗饱和度
可以减少铁磁谐振发生的机率,保护PT自身和电网的安全运,但PT 的抗饱和倍数不能无限做大,PT的抗饱和度受体积限制,抗饱和度大的电压互感器系统,一旦发生铁磁谐振,谐振过电压会更高,危害性越大。

二、PT 中性点经非线性压敏电阻接地
系统发生谐振时,过电压幅值较低时其呈高阻态,有效抑制谐振起始发展,系统正常运行时,非线性压敏电阻阻抗极大,达到兆欧级,影响PT的测量精度,此外易发生热击穿。

消谐电阻的运行状态无法得知。

三、PT剩余绕组加二次消谐电阻
在PT开口三角侧并联可控阻尼(微机消谐装置)。

由微机控制的智能消谐装置,当发生谐振时,相应地投入“消谐电阻”吸收谐振能量,消除铁磁谐振。

但“消谐电阻”的大小难以控制。

对比得知以上治理铁磁谐振的措施都有欠缺,由此人们提出PT 中性点经非线性流敏电阻接地+二次智能消谐的综合智能治理方案,即流敏消谐治理法。

防谐振pt

防谐振pt

图1 中性点不接地系统示意图
PT防谐振的常用措施及存在的问题

针对6~35kV中性点不接地电网中电磁式电压互感器的消 谐问题,设计人员通常采取加装二次消谐器或加装一次消 谐器两种较为有效的措施,但经过运行实践证明两种方法 各有利弊,任何单一措施都不能完美的解决该问题。

1) 仅在电压互感器二次侧开口三角形绕组开口端加装消谐装置。

由于消谐电阻器安装在中性点与地之间,消谐电阻上的电压 是由电压互感器励磁电流产生的,而消谐电阻器上的电压作用于 三相电压互感器的零序回路。因此一次消谐器厂家经过试验和分 析得出结论:a、三相电磁式电压互感器本身的伏安特性不一致, 导致三相励磁电流中的基波向量和不为零,当三相基波电流向量 不为零时,消谐电阻器上则有一定的基波电压,且该电压无法消 除,若三相电磁式电压互感器本身的伏安特性相差过大时,就会 造成开口三角电压升高很多,但这种情况较少。b、串接消谐电 阻器后,由于三相电磁式电压互感器本身的励磁特性,导致消谐 电阻器上会产生一定的三相谐波电压,当励磁特性正常时,产生 的开口三角电压一般可以接受,励磁特性较差时,开口三角电压 过高在电压互感器一次侧的中性点与地之间串接消谐器。 由于电压互感器二次侧开口三角形绕组开口端加装多功能消谐 装置后,电压互感器一次涌流得不到有效控制,各设计单位及各 供电局都在寻求一种更有效设备,既可以消谐又可以有效抑制一 次涌流。于是就有了一次消谐装置的说法。 一次消谐装置即是在电压互感器一次侧的中性点与地之间串 接非线性消谐电阻器,起阻尼与限流作用。采用该措施之初,多 数运行单位反映情况良好,尤其是安装了L型一次消谐器后,不但 电压互感器高压熔断器频繁熔断的问题得到了有效解决,并且杜 绝了各种谐波的谐振现象。但运行了一段时间后就有部分运行单 位提出在该单位所辖变电站10kV中性点不接地电网中,电磁式电 压互感器一次侧的中性点与地之间串接消谐电阻器后,发现电压 互感器开口三角两端电压升高很多,有的高达10~15V。拆除消谐 电阻器后,开口三角的电压升高现象就消失。

PT谐振的分析与抑制措施

PT谐振的分析与抑制措施

PT谐振的分析与抑制措施作者:赵嘉来源:《科技资讯》2014年第04期摘要:对湘钢动力厂35 kV系统的PT爆炸事故进行了分析,指出事故的原因是系统单相接地导致PT饱和并引起谐振,分析发生谐振现象的多种原因,阐述了常用消谐方法及其优缺点。

关键词:PT谐振谐振原因参数消谐二次消谐一次消谐中图分类号:TM132 文献标识码:A 文章编号:1672-3791(2014)02(a)-0129-02湖南湘潭钢铁公司动力厂35 kV系统在近几年运行中,发生了三起PT爆炸事故,对系统的安全运行构成极大威胁。

对此,我们进行了现场调研,结合35 kV系统故障录波图,初步分析认定这三起事故均为系统单相接地导致PT饱并引起谐振。

动力厂发生事故的35 kV系统,都是中性点不接地系统,装有一次接线为Y0的电磁式电压互感器(PT)由于PT一次线圈的X端接地,且铁芯易饱和,易于产生两种不利状况:一是电网间歇性接地或接地消失时,电网对地电压产生低频自由分量,使X端接地的Y0接线电压互感器深度饱和,一次线圈通过涌流,使PT熔丝熔断甚至烧坏PT。

二是在一定外界激发条件下,产生铁磁谐振,谐振使得电网三相对地电压波动,影响电网正常运行,严重时,使得绝缘设备损坏,造成电网事故。

经过对各地区电网运行进行情况进行分析,发现PT铁磁谐振是电力系统中发生较为频繁且造成较多事故的一种内过电压。

谐振过程可持续很长时间,幅值有高有低,且频率各有不同如分频、基频、高频等,有些过电压并不高,但是由于频率低,且谐振电流很大,对电网的安全运行有很大的危害。

1 PT谐振产生的原因分析铁磁谐振产生的条件有:ωL>1/ωC;激发因素。

其中主要包括电网电压冲击、励磁涌流、合闸相角、系统间歇性接地、电网频率波动等。

系统产生铁磁谐振的原理如图1所示。

(1)首先对于中性点不接地系统,在某种情况下出现单相接地,故障点对地流过电容电流,不接地的两相相电压升高至线电压。

在间歇性接地时,一旦接地故障点消失,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈并经其接地点流入大地,在这电压突变瞬间,PT高压线圈的非接地两相的励磁电流突然增大,使PT达到饱和,由于间歇性接地,非接地两相的励磁电流不断激增,极易激发相间串联谐振。

谐振引起PT事故分析与解决对策

谐振引起PT事故分析与解决对策

谐振引起PT事故分析与解决对策1、事故现象在某10kV系统线路中,当投入运行时,第一段母线送电后PT二次侧电压值很不平衡,而且开口三角处出现高电压。

停电对母线及PT进行全面检查,没发现问题。

当再次投入运行时,三相电压仍然很不平衡,而且使该组PT中的两相很快烧损。

怀疑是PT有问题。

于是换上不同厂家生产的经过全面试验合格的互感器进行几次投试,但二次仍然出现电压值有时正常,时而不正常,而且每次投入的电压数值也不相同,并伴有接地信号。

连续5次投入测试的结果如下;2、原因分析经反复测试和分析后认为,这种奇怪现象实际上就是供电系统中偶然发生的铁磁谐振。

当供电线路各相对地电容形成的容抗与线路上所接入的PT各相的综合感抗数值相近或相等时,就会发生铁磁谐振现象。

因为在10kV母线段试送电时并没有投入其他供电回路,母线本身只有几十米长,所以每相对地的电容Co 值很小,即各相的容抗Xc较大。

单相PT的各相的感抗X l也较大,两者数值接近。

出现各相电压不平衡,而且每次投入时电压数值又不断变化的原因是,由于各相母线对地的位置相对不同,故各相对地电容的大小有差异,另外,每次投入PT时,各相的接触电阻及同期性都随手车推入的速度、力量大小的变化而变化,所以引起的各相谐振程度就不一样。

由于各相电压在铁磁谐振时的严重不平衡,使PT组二次侧开口三角处感应出很高的电压。

电力系统中发生不同频率的谐振与系统中导线对地分布电容的容抗Xco和PT并联运行的综合电感的感抗Xm两者的比值Xco/Xm有直接关系。

(1)当Xco/Xm的比值较小时,发生的谐振是分频谐振。

电容和电感在学镇时能量交换所需时间较长,谐振频率较慢。

如50Hz的1/2、1/3、1/4等,故称为分频谐振。

表现为:①过电压倍数较低,一般不超过2.5倍的相电压。

②三相电压表的指示值同时升高,而且有周期性的摆动。

线电压表指示数正常。

(2)当Xco/Xm的比值较大时,发生的谐振是高频谐振。

PT谐振的分析与抑制措施

PT谐振的分析与抑制措施


衡, 使 电 压 互 感 器 的 中 性 点 时 地 电 f | l P T小 车 在合 化 , 则将 P T小车 摇 出 后 , 再 送 电。 应严格按操作 规程进行操作。
( 3 ) 检 修 人 员应 量将 断路 器和PT小 车
发生偏移 , 导敛 情 振 。 或 因合 过程【 } 1 ,
二是 住 一 定 外 界 激 发 条 什 , 产 铁 磁 惜
过 程 中 出现 过 电压 ( 如 A相 ) , 则有n r 能 使 此
( 2 ) 变 电 站值 班 人 员在 恢 复 送 电 时 , 宜
柏 电压 互 感 器 铁 心 : “现 饱 平 ¨ , 导 致 线 圈 参 化 确 认 P T的 小 车 实 际 位 簧 后 , 如 在 分 离 位
湖 南 湘 潭 钢 铁 公 司动 力』 ‘ 3 5 k V系统 种 情 况 Ff J 』 现 相 接 地 , 故 障 点 对 地 流 过 在 近 几 年运 行 中 , 发 生 r三起 P T 爆炸事故, 对 系统 的 安 全 运 行构 成 极 人成 胁 。 埘此 , 技
仃】 进行 r 现 场 凋研 , 结合3 5 k V系统 故 障 录 电容电流 , 接地 的两相卡 H电 压 升 高 至 线
动 力 发生 事 故 的 3 5 k V系统 , 都是 r f J 磁 式 电 压 瓦 感 器( P T) I } 1 1 : I ’ T ・ 次线 圈的 X 端接地 , 且 铁芯 易饱 和 , 易 j : 产生 两种 利
次 侧 中性 点 对 地 接 消 情 器 的 方 法
的非接地两卡 ¨ 的 励 磁 电流 突 然 增 大 , 使P T 2. 1 改变谐 振参 数消谐
置, 才 对 空 母线 送 电 , 再将 PT小车 摇 到 位 ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.前言
35kV和10kV系统,是采用中性点不接地系统的运行方式。

这种运行方式的最大优点是系统发生单相接地故障时,系统还可以运行2个小时,在这期间系统接地故障随时都可能自动消除,系统恢复正常运行,这样就避免了频繁发生的单相接地故障时的操作,减少了操作次数,提高了供电的可靠性和连续性。

这种运行方式也有一个弊端,就是容易发生铁磁谐振。

当系统有操作或故障(或扰动)时系统对地电压有低频自由分量出现,使PT对地电压升高,PT一次线圈中出现涌流,涌流可能使铁芯深度饱和,其电感值随铁芯的饱和而减小,这时,有可能出现两种情况:一是PT的一次电流继续增大,烧断PT一次侧的熔断器或烧坏PT;另一种情况是当电感降至ωLXQ=1/ωC(ωo=ω)时,就会导致铁磁谐振。

谐振使得电网三相对地电压不稳定,常使两相电压升高,另一相对地电压降低,这种现象与系统出现单相非金属性接地故障的现象完全一致,不仅使运行人员难以区分,而且容易损坏弱绝缘设备而造成事故。

这些问题长期威胁着我局的安全生产,我们一直在寻求、探索解决这个问题的方法。

2.解决PT谐振常采取的措施
为消除和抑制铁磁谐振,通常可以采取以下措施:
a、选用励磁特性较好的电压互感器或电容式电压互感器;
b、在电压互感器的开口三角形绕组开口端加装非线性阻尼电阻R,可消除各种谐波的谐振现象。

35kV及以下系统中R值一般在10~100Ω范围内;
c、在10kV及以下的母线上加装一组对地电容器可避免谐振;
d、采取临时倒闸措施,如投入消弧线圈,变压器中性点临时接地,或投入事先规定的某些线路或设备;
e、在电压互感器的开口三角形绕组开口端加装线性小阻尼电阻、灯泡等,线性阻尼电阻一般小于1Ω;
f、在电压互感器的开口三角形绕组并联多功能微机消谐器;
g、PT中性点临时拉开;
h、在PT一次侧的中性点与地之间串接RXQ型、LXQ型消谐器;
3.解决PT谐振的措施与效果
3.1 我局解决PT谐振最先采用的措施是在PT开口三角形绕组开口端加装灯泡。

这种方法简单、易于实施,可起到零序阻尼作用,但安装后运行效果不够理想:PT高压熔断器熔断还是比较多,对非金属性接地所激发起来的谐振无法抑制。

同时在系统持续性单相接地时,此灯泡吸收大量的能量,要求PT开口三角形绕组要有足够大的容量。

3.2 在PT开口三角形绕组开口端加装可控硅多功能消谐装置。

随着多功能微机消谐器在电力生产中LXQXQ型、LXQXQ(D)型6~35kV电压互感器中性点消谐器主要电气参数的应用,我局用KSX-17型可控硅多功能消谐装置代替了在PT开口三角形绕组开口端加装灯泡的做法。

这种消谐装置由微电脑控制,当PT发生各种谐振时,能瞬时多次短接PT开口三角形绕组进行消谐。

经运行证明,KSX-17型可控硅多功能消谐装置具有较好的消谐效果。

但其最大的缺点是不能限制PT一次涌流,PT高压熔断器熔断还是得不到有效的控制。

我局在装KSX-17型可控硅多功能消谐装置后,PT高压熔断器熔断最多的是丙村变的52PT,2000年1-6月份PT高压熔断器熔断达37相次。

我们通过分析认为,原因在于:1、52PT的励磁特性较差,容易饱和;2、1-6月是雷雨季节,地处山区的丙村站10kV系统的故障(或扰动)较其它电站多;3、KSX-17型可控硅多功能消谐装置不能限制PT一次涌流。

3.3在PT一次侧的中性点与地之间串接LXQ型消谐器。

鉴于多功能微机消谐器存在的缺陷造成PT高压熔断器熔断频繁的现状,我们对各种消谐措施进行了全面综合比较,决定尝试采用PT一次侧的中性点与地之间串接LXQ型消谐器。

我局自2000年8月装了LXQ型消谐器运行至2001年6月,丙村变的52PT高压熔断器从未熔断过,取得了理想的效果,各站PT高压熔断器熔断频繁的局面已得到控制,并且杜绝了各种谐波的谐振现象。

4、小结
LXQ型消谐器最大的特点:能有效抑制PT的一次涌流,消除各种谐波的谐振现象。

其电气性能如下表:
LXQ型消谐器除具有适度的非线性系数及负的温度系数外,还有如下的优点:
a、LXQ型消谐器中的非线性电阻元件,是有SiC等材料经高温焙烧而成,其金属固定物是铸铝件,无瓷套,因而具有坚固的机械强度、良好的散热性能、不为雨水所侵蚀,适合户内外安装。

b、体积小、重量轻,易于在各种运行环境下安装。

c、与多功能微机消谐器相比,LXQ型消谐器维护方便,其电气性能可结合PT的预试进行测试,大大提高了消谐装置的可靠性。

保定辰辉电气科技有限公司。

相关文档
最新文档