方程的意义和解简易方程
简易方程

简易方程一、解简易方程1、方程的意义:含有未知数的等式,成为方程。
2、方程和等式的关系:方程是等式,等式不一定是方程,等式中还有未知数才是方程。
3、等式的性质:(1)等式两边同时加上或减去相同的数,左右两边仍然相等。
例1、如果x+4=9,那么x+4-4=9-()。
(2)等式的两边同时乘或除以相同的数(0除外),左右两边仍然相等。
例2、如果3x=99,那么3x÷3=99○()4、解方程的依据:解方程的依据是等式的基本性质。
(1)我们可以运用:等式两边同时加上或减去相同的数,左右两边仍然相等来求形如x+a=b 或x-a=b的方程的解。
解方程时要注意不能运用连等式,在用递等式时,含有未知数x的式子总是放在等式的左边。
例3、天平的左边有两个砝码,一个x克、一个10克,右边也有两个砝码,一个10克、一个40克。
当天平平衡时,x是多少?解:x+10=10+40x+10-10=50-10x=40仿练:解下列方程。
(1)x+2.4=5.6 (2)x-30=60方法1:运用“等式的两边同时除以相同的数(0除外),左右两边仍然相等”的性质可以解形如ax=b的方程的解。
例4、解方程:12x=36解:12x÷12=36÷12x=3仿练:解下列方程。
(1)2.5x=8 (2)3x=54方法2:运用“等式的两边同时乘相同的数(0除外),左右两边仍然相等”的性质可以解形如x÷a=b的方程的解。
例5、解方程:x÷4=12解:x÷4×4=12×4x=48仿练:解方程。
(1)x÷6=2.64 (2)0.7x=0.49 (3)x÷0.3=4.3方法3:要看求出来的方程的解对不对,可以将求出的未知数的值代入原方程,算一算等号的左边的值是否等于等号右边的值。
例6、解方程:17+x=20并检验。
解:17+x-17=20-17 验算:方程的左边=17+xx=3 =17+3=20=方程的右边所以,x=3是方程17+x=20的解。
五年级上册数学《简易方程》知识点总结

五年级上册数学《简易方程》知识点总结小学五年级上册数学《简易方程》知识点1、方程的意义含有未知数的等式,叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式加数=和-另一个加数减数=被减数–差被减数=差+减数因数=积另一个因数除数=被除数商被除数=商除数五年级下册第七单元数学知识点1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。
众数能够反映一组数据的集中情况。
在一组数据中,众数可能不止一个,也可能没有众数。
2、中位数:(1)按大小排列;(2)如果数据的个数是单数,那么最中间的那个数就是中位数;(3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。
3、平均数的求法:总数÷总份数=平均数4、一组数据的一般水平:(1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。
(2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。
(3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。
五年级数学知识点(小数乘小数)知识点一:因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:小数乘法的一般计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。
)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:小数乘法的验算方法1、把因数的位置交换相乘2、用计算器来验算五年级数学知识点观察物体1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。
方程的意义和解简易方程教案

方程的意义和解简易方程教案第一章:方程的定义与意义1.1 方程的定义解释方程的概念,引导学生理解方程是一个数学表达式,其中包含未知数和等号。
举例说明方程的特点,如2x + 3 = 7。
1.2 方程的意义解释方程在数学和现实世界中的应用,强调方程可以帮助我们解决问题和求解未知数。
给出实际生活中的例子,如购物时计算总价和找零。
第二章:解方程的基本步骤2.1 识别未知数引导学生识别方程中的未知数,即需要求解的数。
用标记或颜色突出显示未知数。
2.2 移项解释移项的概念,即将未知数项移到方程的一边,常数项移到另一边。
演示如何移项,并给出例子。
2.3 合并同类项解释合并同类项的概念,即将方程中同类项的系数相加或相减。
演示如何合并同类项,并给出例子。
2.4 化简方程引导学生化简方程,即将方程中的项进行简化,消去公因数或合并同类项。
给出例子,并指导学生练习。
第三章:解简易方程3.1 线性方程解释线性方程的概念,即方程的最高次数为一次的方程。
引导学生使用解方程的基本步骤解线性方程。
给出线性方程的例子,如2x + 3 = 7,并指导学生解题。
3.2 比例方程解释比例方程的概念,即方程中包含比例关系的方程。
引导学生使用解方程的基本步骤解比例方程。
给出比例方程的例子,如2/3 = x/5,并指导学生解题。
3.3 简易方程组解释方程组的概念,即包含多个方程的数学问题。
引导学生使用解方程的基本步骤解简易方程组。
给出简易方程组的例子,如2x + 3y = 8和x y = 2,并指导学生解题。
第四章:方程的检验与解答4.1 方程的检验解释检验的概念,即验证解是否满足原方程。
引导学生进行方程的检验,并给出例子。
4.2 方程的解答解释解答的概念,即找到方程的解并写出解的形式。
引导学生写出方程的解答,并给出例子。
4.3 解的合理性强调解的合理性,即解必须是实数范围内的有意义的解。
引导学生判断解的合理性,并给出例子。
第五章:巩固与练习5.1 解方程练习提供一些解方程的练习题目,让学生独立解答。
小学五年级上册数学《简易方程》知识点及练习题

小学五年级上册数学《简易方程》知识点及练习题【#五年级# 导语】方程是指含有未知数的等式。
是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。
求方程的解的过程称为“解方程”。
简易方程是小学生应该掌握的必要知识之一。
为大家准备了以下内容,希望对大家有帮助。
【篇一】小学五年级上册数学《简易方程》知识点1、方程的意义含有未知数的等式,叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式加数=和-另一个加数减数=被减数–差被减数=差+减数因数=积另一个因数除数=被除数商被除数=商除数【篇二】小学五年级上册数学《简易方程》练习题一、填空。
1、某厂计划每月用煤a吨,实际用煤b吨,每月节约用煤( )吨。
2、一本书100页,平均每页有a行,每行有b个字,那么,这本书一共有( )个字。
3、用字母表示长方形的周长公式()4、根据运算定律写出:9n+5n=( + )n= a×0.8×0.125=(×)ab=ba运用()定律。
5、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。
186+a 表示()6、一块长方形试验田有4.2公顷,它的长是420米,它的宽是()米。
7、一个等腰三角形的周长是43厘米,底是19厘米,它的腰是()。
8、甲乙两数的和是171.6,乙数的小数点向右移动一位,就等于甲数。
甲数是();乙数是()。
二、判断题。
(对的打√,错的打×)1、含有未知数的算式叫做方程。
()2、5x表示5个x相乘。
()3、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。
人教版同步教参数学五年级上册——简易方程:解简易方程(寇向伟)

第五单元 简易方程第 2 节 解简易方程【知识梳理】1.方程的意义。
含有未知数的等式就是方程。
注意:(1)方程一定是等式,而等式不一定是方程。
等式和方程的关系如下图所示:(2)方程必须具备的两个条件:① 必须是等式;②必须含有未知数。
2.等式的基本性质。
等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
注意:因为除数不能为0,所以等式两边同时除以的数不能为0。
3.方程的解与解方程。
使方程左右两边相等的未知数的值,叫做方程的解;求方程的解的过程叫做解方程。
重点提示:“方程的解”中的“解”是名词,指使方程左右两边相等的未知数的值;“解方程”中的“解”是动词,指求方程的解的过程。
4.解形如b a =±x ,b ax =,c b =±ax 和()c b =±x a 的方程。
注意:①解方程的依据等式的性质。
②解方程的书写格式:在解方程之前必须先写“解”字,等号上、下要对齐。
5.检验。
把求得的未知数的值代入原方程,看方程左边的值是否等于方程右边的值,如果相等, 所求的未知数的值就是原方程的解;否则就不是。
依据方程的解的含义检验方程的解是否正确。
【诊断自测】一、判断:(1)5x+3是方程。
()(2)方程是等式,等式是方程。
()。
(3)方程的解就是解方程。
()(4)x=0.5是方程4x=2的解。
()二、下列式子中,哪些是等式?哪些是方程?(填序号)①6.5+3=9.5 ②0x+5 ③2x-50=2 ④4+2x=10⑤7-x>5 ⑥5+12x=65 ⑦9x=0 ⑧x÷12=6⑨9y等式:方程:三、选择。
(1)等式两边除以()的数,左右两边仍然相等。
A.不为0B. 相同C.同一个不为0(2)x=1.5是方程()的解。
A.18÷x=5.4+6.6B. (1.5+x)×4=7.5C.x+10.8+2.7=16四、解方程。
六年级数学教案方程的意义和解简易方程ppt

的理解。
解方程的步骤掌握不够熟练
02
部分学生在解方程时出现错误,需要加强练习和巩固。
实际应用能力有待提高
03
学生在解决实际问题时,对方程的应用不够灵活,需要加强实
际应用的训练。
下一步的学习计划与展望
深入理解方程的意义
通过更多的实例和练习,帮助学生深入理解方程的意义。
强化解方程的技能
通过大量的练习和纠错,提高学生的解方程技能。
掌握方程的解法对于解决实际问 题非常重要,能够帮助我们理解 数量之间的关系,并找到未知数
的值。
移项法则
移项法则是解方程的基本技巧 之一,即将含有未知数的项移 到等式的左边,常数项移到等 式的右边。
通过移项,可以将方程转化为 更容易解决的形式,从而找到 未知数的值。
移项时需要注意符号的变化, 例如,如果从等式的左边移到 右边,未知数的符号会发生变 化。
提高实际应用能力
通过更多的实际问题解决,培养学生的实际应用能力,提高数学 素养。
THANKS。
去括号法则
去括号法则是将方程中的括号去除,将其内部的项展开。
去括号时需要注意括号的性质和运算顺序,例如,括号前是加号时,展开后各项的 符号不变;括号前是减号时,展开后各项的符号需要变化。
去括号后,可以将方程进一步简化,方便求解未知数。
去分母法则
去分母法则是将方程 中的分数去除,将其 转化为整数形式。
方程的种类
一元一次方程、二元一次方程、一元二次方程等 。
方程的表示方法
01
02
03
文字表示法
用文字描述方程,如“x + 5 = 10”。
符号表示法
用数学符号表示方程,如 “x + a = b”。
简易方程--解方程(基础+提高稍复杂方程)

.
. 简易方程--解方程(基础+提高)
一、方程的意义
1、方程的意义
含有未知数的等式,我们称为方程。
如
100+x=150 5x=20
方程的两大要素:
①等式;②含有未知数(即字母)例1:下面的式子,哪些是方程?为什么。
4+3X =10
6+2X 7-X >3 X+Y=30 4a+3=5 17-8=9 8X =0 18÷X =2 m-4y=2
针对练习:下列式子中,是方程的在括号里打“√”
9-2x=3() 5.6+2.4=8() 3m-4=16
()3.8b >a( ) x
÷1.2=8.4÷7(
) y=6.3()2、方程和等式的关系3、等式的性质
等式两边同时加上或减去一个相同的数,左右两边仍然相等。
等式两边同时乘或除以一个相同的数(0除外),左右两边仍然相等。
方
程等式联系
方程一定是等式,等式不一定是方程区别含有未知数不一定含有未知数。
方程的意义和解简易方程教案

方程的意义和解简易方程教案第一章:方程的意义教学目标:1. 了解方程的概念,理解方程的意义。
2. 学会正确识别和表示方程。
3. 掌握方程的解法。
教学内容:1. 方程的定义:方程是一个含有未知数的等式。
2. 方程的意义:方程是数学中用来描述两个量相等关系的一种表达形式,其中的未知数是需要求解的数。
3. 方程的表示:方程通常用等号“=”连接左右两边的表达式,未知数用字母表示,如x、y等。
教学活动:1. 引入概念:通过实例介绍方程的概念,让学生感受方程在实际生活中的应用。
2. 讲解方程的意义:解释方程表示两个量相等关系,强调未知数的概念。
3. 示例讲解:给出一些简单的方程示例,讲解如何识别和表示方程。
练习题目:1. 判断下列表达式是否为方程,如果是,请指出未知数和等号。
a) 3x + 4 = 13b) y 5 = 7c) 2 + 4d) 5 x = 25第二章:解简易方程教学目标:1. 学会解一元一次方程。
2. 掌握解简易方程的基本方法。
3. 能够应用解方程的方法解决实际问题。
教学内容:1. 一元一次方程:只含有一个未知数,且未知数的最高次数为1的方程。
2. 解简易方程的方法:a) 移项b) 合并同类项c) 化简d) 求解未知数教学活动:1. 讲解一元一次方程的概念,引导学生理解一元一次方程的特点。
2. 演示解简易方程的过程,讲解每一步的操作和方法。
3. 学生分组讨论和练习,教师指导解答过程中的疑问。
练习题目:1. 解下列一元一次方程:a) 2x + 5 = 15b) 3x 4 = 7c) 4x + 8 = 2x 4第三章:方程的解法教学目标:1. 学会使用代入法解方程。
2. 掌握加减法解方程的方法。
3. 能够灵活运用不同的解法解决实际问题。
教学内容:1. 代入法:将方程中的未知数用另一个表达式代替,从而简化方程。
2. 加减法解方程:通过加减同类项的方法,将方程化简为未知数的一元一次方程。
教学活动:1. 讲解代入法的原理和步骤,示例演示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方程的意义和解简易方程
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!
教学内容:(教材第105一107页,练习二十六)。
教学要求:
1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。
2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。
教具:
教学天平、小黑板。
学具:
自制的简易天平、定量方块。
教学步骤:
一、复习
1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。
(1)一个加数=()○()
(2)被减数=()○()
(3)减数=()○()
(4)一个因数=()○()
(5)被除数=()○()
(6)除数=()○()
2.求未知数X(并说说求下面各题X的依据)。
(1)20十X=100 (2)3X=69
(3)17—X=0。
6 (4)x÷5=1。
5
二、新授
1.理解和掌握“方程的意义”。
(1)出示天平,介绍使用方法(演示)后,设问:在天平两边放物体,在什么情况下才能使天平保持平衡?
(两边的物体同样重时,天平才能保持平衡。
)
(2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。
说明了什么?怎样用式子表示?
板书:20十30=50
指出:表示左右两边相等的式子叫等式。
(并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。
(3)教学例2(课本105页)。
①教师继续演示,调整,在左盘放一20克的重物
和一个未知重量的方块,右盘里放一个100克重的砖码。
(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。
怎样用等式表示出来呢?
板书:20+?=100
②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成(板书)20十X=100
③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。
④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)
(4)教学例3(课本106页)。
出示教材第106页上面的例图的放大图,并根据图意写出等式。
设问:
①图中每个篮球的价钱是X元,3个篮球的总价是多少元?(3x)
②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样
的等式表示出来?
(板书)3X=234
③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)(5)方程的意义:
综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:
20+30=50……一般的等式
20+X=200 含有未知数的等式
3X=234 称之为方程
(板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。
①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。
)
②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分。
)
(6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。
2.学习“解简易方程”。
(i)理解和掌握方程的解和解方程的含义。
设问:①看教材第107页,什么叫做方程的解?什么叫解方
程?
(板书)使方程左右两边相等的未知数的值,叫做方程的解。
例如:X=80是方程20+X=100的解;
X=78是方程3X=234的解。
(板书)求方程的解的过程叫做解方程。
②方程的解和解方程有什么联系和区别?
方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。
因此方程的解是解方程过程当中的一部分。
它们既有联系,又有区别。
(2)教学例1:
解方程X一8=16
①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。
②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)
(板书)解方程X一8=16
解::根据被减数等于减数加差;
X=16十8(与原来学过的求X的思路相同)
X=24
检验:把X=24代人原方程
左边=24一8=16,右边=16
左边=右边
所以X=24是原方程的解。
总结有关的格式要求:
①做题时要先写上“解”字。
②各行的等号要对齐,并且不能连等。
③方框里的运算根据可以不写。
④验算以“检验”的形式出示,有固定的格式。
解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。
指导学生看教材第105一107页。
三、巩固
1.教材107页“做一做”。
2,教材第108页练习二十六第1、2题。
四、练习
教材第108页,练习二十六第3~5题。
作业辅导
1.判断题。
(1)含有未知数的式子叫方程。
()
(2)方程是等式,所以等式也叫方程。
()
(3)检验方程的解,应当把求得的解代人原方程。
(
(4)36是方程X÷3=12的解。
()
2.把下面的各关系式写完整。
(1)一个加数=()○()
(2)被减数=()○()
(3)减数=()○()
(4)一个因数=()○()
(5)除数=()○()
(6)被除数=()○()
3.解下列方程。
(第一行两小题要写出检验过程)10—X=0。
42 4。
5X=27 X十5。
8=16。
4
X÷28=76 2÷X=0。
5 X—8。
75=4。
65
板书设计:
解简易方程
例1解方程X-8=16
检验:
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!。